OFFICE PARLEMENTAIRE D'ÉVALUATION
DES CHOIX SCIENTIFIQUES ET TECHNOLOGIQUES

RAPPORT
de la mission parlementaire sur
la sécurité nucléaire, la place de la filière et son avenir

Président de la mission : M. Claude Birraux, député
Rapporteurs : M. Christian Bataille, député et M. Bruno Sido, sénateur

RAPPORT D’ÉTAPE : LA SÉCURITÉ NUCLÉAIRE

Déposé sur le Bureau de l'Assemblée nationale par M. Claude BIRRAUX,
Président de l'Office

Déposé sur le Bureau du Sénat par M. Bruno SIDO,
Premier Vice-Président
SOMMAIRE

SAISINES ... 5

COMPOSITION DE LA MISSION PARLEMENTAIRE
SUR LA SÉCURITÉ NUCLÉAIRE, LA PLACE DE LA FILIÈRE, ET SON AVENIR……………… 9

INTRODUCTION... 11

I.– Une gestion rigoureuse de la sécurité .. 15
A. – La prise en compte des différents types d’aléas ... 15
1. Les risques majeurs ... 15
 a) Les risques naturels .. 16
 b) Les risques industriels ... 25
2. Le facteur humain ... 27
 a) Le suivi des conditions de travail .. 27
 b) La protection contre les actes de malveillance ... 28
B. – Une organisation de la sécurité très complète .. 29
1. Un bouclier multiforme ... 29
 a) Les différentes barrières de protection ... 30
 b) La robustesse du dispositif .. 31
 c) Les piscines d’entreposage .. 32
 d) Les procédures de conduite et la formation des opérateurs 33
2. Une surveillance étendue .. 34
 a) Le contrôle de toutes les composantes de la filière ... 34
 b) La couverture d’activités connexes .. 35
C. – Un dispositif de gestion en constante amélioration .. 40
1. La consolidation du contrôle de sûreté .. 40
 a) Un contrôle géré désormais à trois niveaux ... 40
 b) Un renforcement constant de l’exigence de sûreté ... 46
2. Les progrès continus de la transparence .. 49
 a) Une composante essentielle de la sûreté ... 49
 b) Les bonnes pratiques ... 51
3. La gestion de crise entre anticipation et adaptation aux situations réelles 54
 a) L’articulation des niveaux d’intervention ... 55
 b) Les actions menées par l’exploitant nucléaire ... 58
 c) La responsabilité de l’État ... 64
 d) Les réponses de proximité ... 73

II.– Les axes prioritaires du renforcement du dispositif .. 75
A. – La prise en compte d’autres formes de risques majeurs .. 75
1. L’intégration de l’hypothèse de chocs simultanés ou en cascade 75
2. Une meilleure appréciation des incertitudes .. 77
3. Une nouvelle articulation des moyens disponibles ... 78
B. – Une anticipation plus poussée des situations possibles .. 82
1. L’optimisation des procédures de commande ... 82
 a) L’effort de sécurisation ... 84
 b) La logique de « l’approche par états » ... 85
 c) Le rôle des simulateurs ... 87
 d) Les mécanismes d’arrêt d’urgence ... 90
2. L’adaptation des plans de sécurité civile ... 91
 a) Les problématiques en jeu ... 91
 b) La protection radiologique des intervenants ... 97
 c) La pertinence des mesures planifiées .. 98
3. La sensibilisation des populations ... 100
 a) Les exercices de crise .. 100
 b) Des scénarios plus complets .. 104
C. – La sécurité n’a pas de prix .. 105
1. Le maintien dans le giron de l’État .. 105
2. Un renforcement ciblé des moyens ... 106
 a) La consolidation des instances de contrôle .. 106
 b) Une dimension nouvelle pour la transparence ... 107
3. Un besoin d’implication encore accrue des personnels ... 108
 a) L’anticipation des besoins de formation ... 108
 b) La nécessaire remise à plat des pratiques de sous-traitance ... 109
4. La nécessité d’un effort permanent de recherche ... 111
 a) La relation complexe entre sûreté et innovation .. 111
 b) La recherche, gage de crédibilité et de transparence ... 113
5. L’EPR ... 116
 a) Le retour d’expérience de la IIème génération ... 117
 b) Le cas de l’EPR de Flamanville .. 119
 c) La sécurité n’a pas de prix, mais son coût manque de transparence 121

CONCLUSION DU RAPPORT D’ÉTAPE .. 123

RECOMMANDATIONS .. 125

EXAMEN DU RAPPORT (Jeudi 30 juin 2011) ... 129

CONTRIBUTIONS .. 151
 Contribution de Mme Marie-Christine Blandin, sénatrice .. 151
 Contribution de M. Yves Cochet, député .. 155
 Contribution de M. Daniel Paul, député .. 159

ANNEXES ... 163

Annexe 1 : COMPOSITION DU COMITÉ D’EXPERTS ... 165

Annexe 2 : LISTE DES PERSONNES RENCONTRÉES LORS DES DÉPLACEMENTS 167

Annexe 3 : COMPTES RENDUS DES AUDITIONS ... 177
 Liste des personnes auditionnées .. 179
 La crise nucléaire au Japon (Mercredi 16 mars 2011) ... 185
 La gestion post-accidentelle des crises nucléaires (Jeudi 5 mai 2011) 233
 La gestion de crise en cas d’accident nucléaire (Vendredi 13 mai 2011) 293
 La gestion post-accidentelle des crises nucléaires (Jeudi 19 mai 2011) 321
 Les protections des réacteurs nucléaires (Mardi 24 mai 2011) .. 359
 L’organisation de la sûreté nucléaire (Mardi 31 mai 2011) .. 415
 La transparence en matière de sûreté nucléaire(Jeudi 16 juin 2011) 465

Annexe 4 : RÉUNIONS .. 505
 Réunion (Jeudi 14 avril 2011) ... 505
 Audition des membres du comité d’experts sur la sûreté nucléaire (Mardi 28 juin 2011) 525

Annexe 5 : DOCUMENTS .. 537
 Structure du budget de l’Autorité de sûreté nucléaire ... 539
 Décision n° 2011-DC--0204 de l’Autorité de sûreté nucléaire du 4 janvier 2011 541
 Comparaison entre Three Mile Island, Tchernobyl et Fukushima 561

Annexe 6 : GLOSSAIRE DES SIGLES UTILISÉS .. 565
Monsieur le Président,

Conformément à l'article 6 ter de l’ordonnance du 17 novembre 1958 relative au fonctionnement des assemblées parlementaires, le Bureau a décidé, au cours de sa réunion du 16 mars 2011, à la demande de M. Jean-Marc Ayrault, président du groupe SRC, de saisir l’Office parlementaire d’évaluation des choix scientifiques et technologiques d’une étude sur « la sécurité nucléaire, la place de la filière et son avenir ».

Le Bureau a pris en compte le fait que cette proposition recueillait votre pleins accord de principe.

Cette étude aurait pour objet d’établir des informations objectives sur l’état actuel de nos connaissances et sur les développements à attendre de cette filière industrielle, à la lumière des événements dramatiques auxquels le Japon est confronté depuis vendredi dernier.

Je me félicite qu’un sujet aussi important puisse faire l’objet des analyses approfondies et de l’expertise de l’Office. J’ai proposé, lors de la réunion de Bureau, qu’y soient associées, en tant que tels, des membres de la Commission des Affaires économiques et de la Commission du Développement durable, qui, comme nous en sommes convenus, seront au nombre de quatre pour chaque commission.

Monsieur Claude BIRRAUX
Président de l’Office parlementaire
d’évaluation des choix scientifiques et technologiques
Par ailleurs, il m’a semblé également pertinent de proposer à cette occasion l’élargissement du conseil scientifique afin qu’il compte parmi ses éminents spécialistes des représentants de la sûreté nucléaire.

Je souhaite également que cette étude soit exemplaire sur le plan de la transparence : les auditions que vous menerez seront publiques et, de toute évidence, très suivies. Elles devront en conséquence faire preuve de la plus grande rigueur dans le choix des personnes auditionnées. Le vous invite, à chaque fois, en début d’audition, à présenter l’intervenant de façon la plus complète possible et à lui demander de faire état des liens qu’il aurait avec telle ou telle partie prenante au dossier. Il me semble, et le Bureau a été unanime sur ce point, que ces critères d’indépendance et de transparence seront essentiels pour la crédibilité des conclusions que vous remettrez.

Je vous prie d’agréer, Monsieur le Président, l’expression de mes sentiments les meilleurs.

Bernard ACCOYER
Monsieur Claude BIRBAUX
Président
Office parlementaire d’évaluation des choix scientifiques et technologiques
Assemblée nationale
126 rue de l’Université
75355 PARIS CEDEX 07 SP

Paris, le 23 mars 2011

DH: CO-0352 (vth)

Monsieur le Président,

L’accident grave survenu à la centrale de Fukushima Daiichi a la suite du tremblement de terre et du tsunami qui ont frappé le Japon nous impose d’en tirer tous les enseignements pour la sécurité des centrales nucléaires françaises et l’avenir de la filière et le Parlement a bien évidemment réagi dans cette réflexion.

En accord avec M. Bernard Accoyer, Président de l’Assemblée nationale, le Président Gérard Larcher considère que l’Office parlementaire d’évaluation des choix scientifiques et technologiques est le plus à même pour conduire cette étude et je partage totalement cette analyse compte tenu de l’expertise scientifique que l’office a acquise en matière nucléaire.

C’est pourquoi, en application du V de l’article 6 ter de l’ordonnance n° 58-
1100 du 17 novembre 1958, relative au fonctionnement des assemblées
parlementaires, la commission de l’économie, du développement durable et de
l’aménagement du territoire que j’ai l’honneur de présider, a décidé, lors de sa
réunion du 23 mars 2011, de fixer l’Office parlementaire d’évaluation des
choix scientifiques et technologiques pour la confier une étude sur la sécurité
des centrales nucléaires françaises, la place de la filière et son avenir.

J’adresse une copie de ce courrier à M. Bruno Sido, premier vice-président
de l’OPECST.

Je vous prèe d’agréer, Monsieur le Président, l’expression de mes sentiments
les meilleurs.

Jean-Paul EBORIN

6 rue des Valois 75116 Paris Cedex 16 Télécopie 01 40 13 02 64 Télécopie 01 40 34 76 54
COMPOSITION DE LA MISSION PARLEMENTAIRE SUR LA
SÉCURITÉ NUCLÉAIRE, LA PLACE DE LA FILIÈRE,
ET SON AVENIR

Président de l’OPECST
M. Claude BIRRAUX

Premier Vice-Président de l’OPECST
M. Bruno SIDO, sénateur

Vice-Présidents de l’OPECST
M. Claude GATIGNOL, député
M. Pierre LASBORDES, député
M. Jean-Yves LE DEAUT, député
Mme Brigitte BOUT, sénatrice
M. Marcel DENEUX, sénateur
M. Daniel RAOUl, sénateur

Députés

MM. Christian BATAILLE
Claude BIRRAUX
Alain CLAEYS
Yves COCHET (*)
Jean-Pierre DOOR
Paul DURIEU (*)
Mme Geneviève FIORASO
MM. Jean-Louis GAGNAIRE (*)
Claude GATIGNOL
Alain GEST
François GOUARD
Christian KERT
Pierre LASBORDES
Jean-Yves LE DÉAUT
Michel LEJEUNE
Jacques LE NAY (*)
Jean-Claude LENOIR (*)
Claude LETEURTRE
Daniel PAUL
Philippe PLISSON (*)
Mme Bérengère POLETTI
MM. Franck REYNIER (*)
Jean-Louis TOURAINE
Philippe TOURTELIER
Jean-Sébastien VIALATTE

Sénateurs

MM. Gilbert BARBIER
Paul BLANC
Mme Marie-Christine BLANDIN
M. Jean-Marie BOCKEL (**) Mme Brigitte BOUT
MM. Marcel-Pierre CLÉACH
Roland COURTEAU
Jean-Claude DANGLOT (**)
Marc DAUNIS
Christian DEMUYNCK
Marcel DENEUX
Didier GUILLAUME (**)
Alain HOUPERT (**)
Serge LAGAUCHE
Mme Elisabeth LAMURE (**)
M. Hervé MAUREY
Jean-Claude MERCERON (**)
Jean-Marc PASTOR
Xavier PINTAT
Ladislas PONIATOWSKI (**)
Mme Catherine PROCACCIA
MM. Daniel RAOUl
Ivan RENAR
Bruno SIDO
Michel TESTON (**)
Alain VASSELLE

(*) Membre de la commission des affaires économiques de l’Assemblée nationale
(**) Membre de la commission de l’économie, du développement durable et de l’aménagement du territoire du Sénat
(°) Membre de la commission du développement durable et de l’aménagement du territoire de l’Assemblée nationale
INTRODUCTION

Mesdames, Messieurs,

Alors que le débat sur les conditions de l’adaptation au changement climatique avait paru, au cours des dernières années, favoriser les énergies décarbonées, en particulier l’énergie nucléaire, au point que certains industriels de l’électricité semblaient se laisser de plus en plus tenter par l’hypothèse d’un modèle de production nucléaire au coût inférieur à celui des réacteurs à sécurité renforcée, un événement est venu brutallement stopper cette évolution.

L’accident à la centrale nucléaire de Fukushima le 11 mars 2011 est la conséquence de mouvements tectoniques sous-marins de forte ampleur suivis d’un tsunami qui a atteint la côte nord-est de l’île principale de l’archipel du Japon.

Dans les trois jours qui ont suivi, le gouvernement allemand, a fixé un moratoire à la prolongation en cours de la durée d’exploitation des centrales nucléaires, et ensuite, le 30 mai 2011, a décidé d’arrêter définitivement l’ensemble des 17 réacteurs électronucléaires d’ici 2022.

Aujourd’hui, tous les projets de réacteurs « low cost » (bon marché) sont oubliés, et les avis convergent pour vérifier la sécurité des réacteurs existants et ne construire, dans l’avenir, que des réacteurs de troisième génération à sûreté maximale avec une majoration du coût qui, tout en restant raisonnable, à moins de 20%, représentera des dépenses non négligeables.

C’est dans ce contexte que l’Office parlementaire d’évaluation des choix scientifiques et technologiques a été saisi, de façon conjointe, par le Bureau de l’Assemblée nationale, d’une part, le 18 mars 2011, et par la commission de l’Économie et du développement durable et de l’aménagement du territoire du Sénat, d’autre part, le 23 mars 2011, d’une étude sur la sécurité nucléaire, la place de la filière et son avenir.

La saisine précise que “cette étude aurait pour objet d’établir des informations objectives sur l’état actuel de nos connaissances et sur les développements à attendre de cette filière industrielle, à la lumière des événements dramatiques auxquels le Japon est confronté”.”

Pour la conduite de cette nouvelle étude, l’OPECST a été associé à sept membres des commissions des Affaires économiques et du Développement durable de l’Assemblée nationale, ainsi qu’à huit membres de la commission de l’Économie et du développement durable et de l’aménagement du territoire du Sénat.

Cette mission *ad hoc*, associant membres de l’Office parlementaire et représentants des trois commissions, fonctionnera comme s’il s’agissait d’une étude de l’OPECST, sous réserve d’un aménagement, souhaité par son président, M. Claude Birraux, également président de l’OPECST, vis-à-vis des parlementaires non membres de l’Office: tous les membres de la mission disposent à égalité d’un droit de vote au moment des délibérations. L’OPECST nous a désignés comme rapporteurs de l’étude le 30 mars.

Les travaux s’appuient par ailleurs sur un comité d’experts, composé d’éminents spécialistes de la sûreté nucléaire.

Lors de la présentation de l’étude de faisabilité, le 14 avril, une démarche en deux étapes a été décidée. La première étape, dont la publication de ce rapport marque le terme, a concerné l’étude de la sécurité et de la sûreté nucléaire. Elle s’est appuyée sur six auditions publiques, dont le compte-rendu figure en annexe. Par ailleurs, la mission parlementaire a effectué sept déplacements pour visiter des installations de la filière nucléaire : centrales de production, usines du cycle du combustible, ou ateliers de fabrication d’équipements sous pression. La seconde étape s’attacherà plus largement à l’étude de l’avenir de la filière nucléaire dans le système énergétique de notre pays, et conduira à publier un rapport définitif au mois de décembre 2011.

Vos rapporteurs se sont efforcés de préserver la spécificité de cette étude parlementaire sur la sécurité et de la sûreté nucléaire, à savoir l’analyse de la situation dans sa dimension véritablement politique et stratégique au sens de l’intérêt général du pays.

Par essence, la démarche de la mission parlementaire se démarque en effet d’autres initiatives publiques parallèles de nature plus technique :

...
- les “évaluations complémentaires de sûreté”, dont la réalisation a été demandée à l’Autorité de sûreté nucléaire par le Premier ministre dans une lettre du 15 mars, et dont le cahier des charges a été adopté le 5 mai par l’Autorité, sous la forme de douze prescriptions adressées aux exploitants; elles concernent toutes les installations nucléaires;

- les “évaluations de sûreté” (*stress tests*) décidées par le Conseil européen des 24 et 25 mars, dont le cahier des charges a été approuvé par l’ENSREG (*European Nuclear Safety Regulators Group*) le 25 mai; elles concernent seulement les 143 réacteurs nucléaires européens ;

- l’étude demandée à la Cour des comptes par le Premier ministre, dans une lettre du 22 mai, sur les coûts de la filière nucléaire, y compris ceux relatifs au démantèlement des installations ;

- le groupe de travail, de réflexion et de proposition « *Solidarité Japon* », mis en place le 21 mars par l’Académie des sciences sous l’égide de son président Alain Carpentier, qui réunit des académiciens des trois domaines concernés : sismique, nucléaire et médical.

Ces objectifs sont ceux inscrits à l’article 1er de la loi du 13 juin 2006 relative à la transparence et à la sécurité nucléaire : « La sécurité nucléaire comprend la sûreté nucléaire, la radioprotection, la prévention et la lutte contre les actes de malveillance, ainsi que les actions de sécurité civile en cas d’accident. (…) L’État définit la réglementation en matière de sécurité nucléaire et met en œuvre les contrôles visant à l’application de cette réglementation. Il veille à l’information du public sur les risques liés aux activités nucléaires et leur impact sur la santé et la sécurité des personnes ainsi que sur l’environnement. »

Bien qu’elle se soit rendue sur plusieurs sites, la mission parlementaire n’a ainsi pas vocation à juger de la pertinence des barrières ou
autres systèmes techniques de sauvegarde aperçus sur place ; pas plus qu’il ne lui appartient de se substituer à l’Autorité de sûreté nucléaire quant à la décision d’autoriser ou non la poursuite de l’exploitation du réacteur n°1 de la centrale de Fessenheim.

En revanche, il lui appartient de donner son appréciation sur la cohérence et l’efficacité de l’ensemble du cadre institutionnel de gestion de la sécurité nucléaire, s’agissant notamment de son organisation et de ses procédures.

A cet égard, vos rapporteurs ont le sentiment que la sécurité et la sûreté nucléaire sont gérées en France de la manière la plus rigoureuse ; mais ils ont néanmoins identifié des axes d’amélioration possible, au regard de l’exigence de progrès permanent qui est indissociablement attachée au concept de sûreté et en traduction du retour d’expériences suite aux événements de Fukushima.
I.– UNE GESTION RIGOUREUSE DE LA SÉCURITÉ

Aux yeux de vos rapporteurs, il ressort de l'ensemble des visites et des auditions effectuées par la mission parlementaire que la sécurité des installations nucléaires, et en particulier leur sûreté, fait l'objet d'une gestion parfaitement rigoureuse. Les deux meilleurs témoignages en sont le statut d'indépendance de l'Autorité de sûreté nucléaire, consacré par la loi et reconnu dans les faits, et la procédure des visites décennales, qui conditionne la poursuite de l'exploitation des réacteurs, au cas par cas, à l'actualisation de leur niveau de sûreté en tenant compte des meilleures pratiques internationales.

Cette rigueur tient à la mise en œuvre d'une démarche de surveillance méthodique, qui prend en compte toutes les différentes formes d'aléas, et intègre le souci d'amélioration constante intrinsèque au concept de sûreté.

A. – LA PRISE EN COMPTE DES DIFFÉRENTS TYPES D'ALÉAS

Les principaux risques susceptibles d’affecter les installations nucléaires en France sont les inondations, les tempêtes, les séismes et mouvements de terrain, ainsi que les incendies de forêt. D’autres risques sont liés aux activités humaines, notamment l’environnement industriel des installations, qui peut générer des interactions entre les sites et provoquer d’éventuels effets dominos. Enfin, le facteur humain, volontaire ou involontaire, est également intégré au dispositif de gestion de la sécurité.

1. Les risques majeurs

L’existence de risques majeurs est prise en compte dès la conception de l’installation, dans le choix de son implantation et de son dimensionnement. Il n’existe pas de dimensionnement « standard », chaque installation étant conçue en fonction des caractéristiques du site choisi qui varie sur l’ensemble du territoire français, mais n’est en tout état de cause pas comparable à celui du Japon pour ce qui concerne les risques sismiques et de tsunami.
a) Les risques naturels

Votre mission a examiné la question des risques naturels lors de l’audition ouverte à la presse du 19 mai 2011 ainsi qu’au cours de chacun de ses déplacements sur site, qui furent l’occasion d’examiner concrètement le dimensionnement des installations à l’origine, puis l’amélioration continue des protections qui a été apportée en fonction de l’évolution des connaissances et de la prise en compte des retours d’expérience.

Les risques naturels, qui constituent des agressions de type externe, ont la particularité d’être susceptibles d’affecter l’ensemble d’un site, c’est-à-dire de le fragiliser à plusieurs niveaux et donc de remettre en cause les principes de base de la défense en profondeur que sont la redondance et la diversification.

Les risques naturels ont également pour effet de bouleverser l’environnement du site considéré, cet impact régional modifiant les conditions des communications avec le site : difficultés d’accès par la route, perte des moyens de communication vers l’extérieur.

LA PRISE EN COMPTE DU RISQUE SISMIQUE

- Le risque sismique en France métropolitaine

Le territoire métropolitain français est soumis à un risque sismique évalué de « très faible » à « moyen », sans commune mesure avec la sismicité du territoire japonais qui est liée à la présence d’une zone de subduction de la plaque Pacifique, qui plonge sous le Japon. C’est cette zone de subduction qui s’est rompue sur une longueur de 500 km lors du séisme du 11 mars 2011, de magnitude 9.

D’ailleurs, la survenue d’un tsunami de plus de 10 m au Japon était, d’après les données disponibles sur les tsunamis des 5 derniers siècles, un événement susceptible d’intervenir sur une période de 30 ans.
Il y a eu dans le cas japonais une sous-estimation de l’aléa, d’ailleurs reconnue par le gouvernement japonais dans son rapport à l’AIEA1.

Ainsi que l’a indiqué M. Vincent Courtillot, de l’Académie des sciences, lors de l’audition du 19 mai 2011, s’il y a une zone où la France court des risques comparables à ceux du Japon, ce sont les Antilles, où s’est produit un grand tremblement de terre en 1843, probablement de magnitude 8, ainsi qu’un séisme de magnitude 7 en 2007 (Martinique).

Le risque encouru sur le territoire métropolitain n’est pas comparable avec celui que connaissent le Japon ou les Antilles, même dans les Alpes ou dans les Pyrénées, où le risque est jugé le plus élevé.

LE SÉISME DU 11 MARS 2011 AU JAPON

Un séisme de très forte magnitude Mw 9 (estimée entre 8,9 et 9,1 suivant les sources) s’est produit le 11 Mars 2011 à 05h46 UTC, au large de la côte est de l’île de Honshu, dans la partie nord du Japon. C’est un des séismes les plus puissants enregistrés depuis une centaine d’années, et le plus fort enregistré instrumentalement au Japon. L’épicentre est situé à environ 400 km au nord-est de Tokyo, capitale du Japon, et 160 km à l’est de la ville de Sendai. Le séisme de magnitude 9 a été suivi par un nombre très important de répliques, la plus forte atteignant la magnitude 7,1.

Ce séisme a rompu une portion de l’ordre de 500 km de la zone de subduction plongeant sous le Japon, entre la plaque Pacifique et la micro-plaque d’Okhotsk. Le glissement cosismique sur la zone de faille a dépassé largement les dix mètres. La rupture s’est étendue au sud jusqu’à la région de Tokyo. Le séisme a généré un tsunami destructeur qui a ravagé la côte est de Honshu, avec des hauteurs de « run-up »2 de l’ordre de 10 m. Ce tsunami s’est propagé ensuite à travers tout l’océan Pacifique en s’atténuant progressivement. Source : IPGP

2 L’amplitude du tsunami à son contact avec la côte (déferlement) est appelée run-up et correspond à la hauteur de la vague au-dessus du niveau moyen des hautes marées.
Les bâtiments ont plutôt bien résisté à ce séisme d’une très forte magnitude. En effet, traumatisés par la catastrophe meurtrière de Kobé en 1995, les autorités japonaises avaient décidé d’agir en élévant les normes parasismiques. Les enseignements tirés de Kobé ont sans aucun doute permis de limiter les effondrements d’édifices. D’une manière générale, les Japonais, en raison de l’activité sismique à laquelle ils doivent en permanence faire face, ont su mettre au point des matériaux de construction capables de subir des déformations importantes sans céder.

Toutefois, le tsunami a dévasté la côte, emportant tout sur son passage, et causant la mort de plus de 15 000 personnes.

Les plaques tectoniques

Source : CEA

Depuis 2010, la France dispose d’un nouveau zonage sismique divisant le territoire national en cinq zones de sismicité croissante en fonction de la probabilité d’occurrence des séismes 1 :

- une zone de sismicité 1 où il n’y a pas de prescription parasismique particulière pour les bâtiments à risque normal (l’aléa sismique associé à cette zone est qualifié de très faible) ;

quatre zones de sismicité 2 à 5, où les règles de construction parasismique sont applicables aux nouveaux bâtiments, et aux bâtiments anciens dans des conditions particulières.

La réglementation sismique de droit commun ne concerne toutefois pas les installations nucléaires qui ont un dispositif spécifique et plus exigeant de dimensionnement aux risques, de sorte que la modification récemment intervenue du zonage sismique sur le territoire n’a pas eu d’impact particulier sur les installations nucléaires.

- La prise en compte dans les installations nucléaires

La Règle Fondamentale de Sûreté (RFS 2001-01), qui est venue modifier une première Règle en date de 1981, précise la démarche pour évaluer l’aléa sismique sur les sites des installations nucléaires.
La détermination de l’aléa sismique suit une démarche dite déterministe, qui se compose de trois étapes¹ :

- Définir des zones géologiques (zones sismotectoniques) où les séismes historiquement connus pourraient se reproduire à l’avenir sur la base d’une synthèse des données géologiques et sismologiques ;

- Sélectionner les séismes qui, s’ils se reproduisaient, créeraient les effets les plus forts et les translater dans la zone du site et dans les zones adjacentes ;

- Calculer les deux paramètres principaux (magnitude et profondeur) des séismes historiques de référence, dits Séismes Maximaux Historiquement Vraisemblables (SMHV) ;

- Augmenter la magnitude des séismes de référence ainsi déterminés de 0,5. Cette majoration forfaitaire, qui conduit à définir un ou des Séismes Majorés de Sécurité (SMS), permet de tenir compte des incertitudes inhérentes à l’estimation des caractéristiques des séismes de référence.

La RFS de 2001 a complété le dispositif de protection contre les séismes de deux façons :

- Elle impose la prise en compte des indices de paléo-séismes : au cours des dernières décennies, les recherches effectuées par les géologues ont conduit à reconnaître l’existence de forts séismes survenus à des périodes très anciennes (quelques milliers à quelques dizaines de milliers d’années). La RFS préconise de prendre en compte ces indices de séismes passés, parce qu’ils complètent les catalogues existants (sismicité instrumentale et sismicité historique) qui recouvrent une période trop courte pour décrire avec suffisamment de recul dans le temps la sismicité française.

¹ Source : IRSN, d’après RFS 2001-01 du 31 mai 2001 sur la détermination du risque sismique pour la sûreté des installations nucléaires de base.
• Exemples de prise en compte du risque « séisme »

Lors des déplacements de la mission, exploitants et autorité de sûreté ont exposé les modalités particulières de prise en compte du risque de séisme sur le site considéré.

A Fessenheim, le SMHV est le séisme de Bâle de 1356, évalué par les experts français à 6,2 sur l’échelle de Richter. Augmenté de 0,5, en application de la méthode décrite ci-dessus, il correspond donc à un SMS de 6,7 soit cinq fois l’évaluation du séisme de Bâle. Il faut préciser, en outre, que cette magnitude de 6,7 génère une accélération de 0,13 g au niveau du sol, mais que la construction est conçue pour résister à une accélération de 0,2 g. Deux marges de sécurité sont cumulées, au-delà de la stricte évaluation du séisme de Bâle. De plus, dans le cadre des troisièmes visites décennales, EDF a renforcé les structures et équipements du site pour faire face au risque. Des poutres et structures métalliques ont été installées, des espaces ont été dégagés entre certains bâtiments en zone industrielle. Le radier de Fessenheim faisant l’objet d’une préoccupation particulière, les avis de l’ASN et les réponses de l’exploitant à ce sujet doivent être rendus publics.

Au Tricastin, le séisme de référence est celui de Châteauneuf du Rhône de 1873 qui était de magnitude 4,7 sur l’échelle de Richter. La centrale est donc conçue pour résister à un séisme majoré de sécurité de 5,2, placé juste sous le site pour être le plus pénalisant possible, conformément à la réglementation. Dans son avis du 4 novembre 2010 autorisant la poursuite d’exploitation du réacteur n° 1 du Tricastin, l’ASN juge néanmoins nécessaire des études complémentaires « concernant le génie civil et la tenue au séisme de certains équipements sans toutefois remettre en cause l’aptitude à la poursuite d’exploitation du réacteur n° 1 de la centrale nucléaire du Tricastin ». Quant aux installations nouvelles d’Areva au Tricastin (Georges Besse II et Comurhex II), elles sont dimensionnées pour résister à un séisme de 5,5, mais ce n’est pas le cas des installations anciennes encore en exploitation notamment Comurhex I. Sur le Rhône, les centrales du Bugey et de St Alban sont dimensionnées respectivement pour des séismes de magnitudes 6 et 5,5.

Les centrales de Gravelines et de Nogent-sur-Seine sont conçues en référence à un séisme qui s’est produit le 6 avril 1580 dans la zone du sud de
l’Angleterre, de l’ouest de la Belgique et du nord de la France, ressenti à Londres et à Paris, de magnitude estimée à 6.2. Son épicentre pourrait avoir été situé en mer ; il a engendré des inondations dont on ne sait si elles sont liées ou non à un phénomène de type tsunami. Ce séisme a fait suite à un autre tremblement de terre destructeur, de magnitude estimée à 6, en 1382.

Bien qu’étant conçues en référence au même séisme, les centrales de Gravelines et de Nogent ne sont pas dimensionnées tout à fait identiquement : à Nogent, le SMS est de 6,7 sur l’échelle de Richter ; à Gravelines, il est de 6,5.

LA PRISE EN COMPTE DU RISQUE D’INONDATION

La prise en compte du risque d’inondation

Le risque d’inondation est appréhendé également de façon dite déterministe, à partir d’une étude historique des événements contre lesquels les installations doivent être protégées, en application d’une RFS de 1984 actuellement en cours de refonte (voir ci-après).

Les inondations laissant moins de traces dans le paysage que les séismes, la période d’observation est plus courte, de l’ordre de cent ans, et l’extrapolation à mille ans se fait par une méthode statistique\(^1\). Une majoration de 15 % sur le débit de crue millénaire ainsi calculé est appliquée, de manière à aboutir à une cote majorée de sécurité (CMS) qui constitue la base de dimensionnement des installations.

La RFS « inondation » permet, par exemple, d’envisager les scénarios les plus pénalisants de rupture de barrage. Toutes les centrales situées sur des fleuves sont en effet concernées par la présence d’un grand barrage en amont. Le scénario de rupture d’un grand barrage ne peut être ignoré : comme cela a été rappelé lors de l’audition ouverte à la presse du 19 mai 2011, deux accidents sur le barrage de Bouzey, haut de 18 mètres, ont causé 100 morts en 1884 et 1895. Le barrage de Malpasset, haut de 66 mètres, s’est rompu en décembre 1959, provoquant la mort de

\(^1\) La sûreté des INB et les risques externes : problématique, réglementation et application, par Yves Boulaille et Adeline Clos, Revue Contrôle de l’ASN n° 142 (septembre 2001)
421 personnes. A Vajont, en Italie du nord, en 1963, un glissement de terrain a entraîné une vague qui est passée au-dessus du barrage, entraînant plus d’un millier de morts.

<table>
<thead>
<tr>
<th>CENTRALES ET GRANDS BARRAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toutes les centrales proches des fleuves sont concernées par un grand barrage en amont. On peut citer, en particulier :</td>
</tr>
<tr>
<td>- barrage du Vieux Pré : Cattenom ;</td>
</tr>
<tr>
<td>- barrages Suisses : Fessenheim ;</td>
</tr>
<tr>
<td>- barrage de Vouglans : Bugey, St-Alban, Cruas, Tricastin ;</td>
</tr>
<tr>
<td>- barrage Aube : Nogent sur Seine ;</td>
</tr>
<tr>
<td>- barrages de Villerest et Naussac : Dampierre, Belleville, St Laurent des Eaux, Chinon.</td>
</tr>
</tbody>
</table>

A la suite de l’inondation partielle de la centrale du Blayais au cours de la tempête des 26 et 27 décembre 1999, une révision de la RFS de 1984 a été entreprise, avec la rédaction d’un guide, en cours de finalisation, dont le domaine d’application sera élargi à l’ensemble des installations nucléaires de base.

Ainsi que l’ASN l’a indiqué lors de l’audition du 19 mai 2011 :

- **Neuf événements supplémentaires seront envisagés** : pluies, crue sur le petit bassin versant, dégradations ou dysfonctionnements d’ouvrages, de circuits ou d’équipements, intumescences\(^1\), remontée de

\(^1\) Onde de déformation de la surface libre induite par une variation brutale de la vitesse (du débit) de l’écoulement. On parle d’intumescence « positive » lors d’une réduction brutale de la vitesse, et inversement d’une intumescence « négative » lors d’une augmentation brutale de la vitesse. Peut s’observer lors d’un arrêt/démarrage brutal des groupes d’une usine hydro-électrique au fil de l’eau, ou de pompes du circuit d’eau brute dans un canal de prise d’une centrale nucléaire en circuit ouvert.
nappe phréatique, clapot\footnote{1}, vagues, seiche\footnote{2}, autres événements en bord de mer (tsunami, vagues dues aux navires)

- **Des modifications sont opérées pour les événements déjà considérés dans la RFS** : dans les sites en bord de mer seront ajoutées des majorations pour couvrir les horsains\footnote{3} et l’augmentation du niveau marin liée au changement climatique ; le scénario de crue résultant de la rupture d’un ouvrage de retenue est fortement modifié

- **La précision sur les principes de protection est accrue.**

 - Exemples de prise en compte du risque d’inondation

La centrale nucléaire du **Tricastin** est protégée contre une crue correspondant au débit de dimensionnement de l’aménagement hydraulique du canal de Donzère-Mondragon, canal de dérivation du Rhône. Toutefois, dans le cadre de son avis sur la poursuite d’exploitation du réacteur n° 1, l’ASN prescrit des travaux afin d’assurer une protection adaptée de la centrale nucléaire contre le risque d’inondation en cas de crue millénaire majorée, dont le niveau a été réévalué. Ces travaux portent sur l’aménagement hydraulique de Donzère-Mondragon et ont suscité de nombreuses discussions entre son concessionnaire (la Compagnie nationale du Rhône) et EDF. Si une issue semble avoir été récemment trouvée, l’ASN considère néanmoins qu’à ce stade la protection de la centrale nucléaire du Tricastin en cas de crue millénaire majorée n’est pas assurée et prescrit la réalisation de cette protection avant le 31 décembre 2014. Pour la centrale du Tricastin, comme d’ailleurs pour celle du Bugey, le scénario envisagé comme le plus pénalisant est celui d’une rupture du barrage de Vouglans.

\footnote{1}{Le clapot correspond à l’état de la mer caractérisé par de toutes petites vagues dont l’onde a une période comprise entre 1 à 4 secondes.}

\footnote{2}{Onde stationnaire qui peut se manifester dans des plans d’eau fermés ou semi-fermés tels qu’un port, un bassin, un lac ou une baie. Dans un bassin maritime semi-fermé, les seiches sont dues à la pénétration d’ondes longues provenant du large. Leur période est généralement comprise entre deux et quelques dizaines de minutes. Si la période de la seiche coïncide avec la période de résonance du bassin, elle peut être amplifiée par résonance à l’intérieur du bassin. Ce balancement peut se poursuivre pendant quelques minutes, quelques heures voire plusieurs jours même lorsque le phénomène initiateur a disparu.}

\footnote{3}{En Normandie, nom donné à toute personne étrangère au pays. Par extension, le terme désigne une donnée qui se distingue par sa valeur significativement différente de celles des autres données de l’échantillon concerné.}
A Fessenheim, le grand canal d’Alsace, sous lequel se trouve la centrale, permet de maîtriser le débit du Rhin, ce qui réduit le risque d’inondation. Un plan d’actions a été mis en œuvre à la suite de l’incident du Blayais pour renforcer les protections de la centrale. Ce plan a comporté la construction d’un talus en périphérie sud et ouest, pour protéger le site contre d’éventuelles infiltrations d’eau dans la digue du Grand Canal d’Alsace, ainsi que la mise en place de protections volumétriques devant certains locaux. Si la rupture de la digue est considérée comme impossible, tant par EDF que par l’ASN, la centrale est toutefois dimensionnée pour subir des fuites très importantes (jusqu’à 12 m³/s). La situation de la centrale sous le canal permet d’envisager éventuellement un refroidissement gravitaire sans pompes, en cas de perte d’alimentation électrique.

A Gravelines, la plateforme de la centrale a été calée à 8,50 m CM (carte marine) à la construction, puis relevée à 9,50 m CM à la suite du retour d’expérience du Blayais. Des modifications des installations ont été réalisées pour faire face au risque d’inondation. L’ASN note que les investigations restent à approfondir sur le risque de tsunami en conséquence d’un éventuel glissement de terrain.

Il serait nécessaire que l’ASN réévalue de la même façon les dispositifs de secours et d’alimentation électrique pour les centrales situées en bord de mer.

➤ LA PRISE EN COMPTE DU RISQUE DE SÉCHERESSE

Le risque de sécheresse a été évoqué lors des déplacements de la mission sur plusieurs sites. En réalité, ce risque pose davantage un problème pour la production que pour la sûreté. En effet, les sécheresses sont des phénomènes lents, susceptibles d’être anticipés, au contraire des inondations. La quantité d’eau qu’il faut pour refroidir un réacteur à l’arrêt est faible.

b) Les risques industriels

D’autres risques sont liés à la **présence d’activités industrielles à proximité des centrales nucléaires.**
Des protections sont prévues contre le risque de marée noire, par exemple à Gravelines et à Fessenheim. D’autres dispositifs sont prévus pour faire face à des risques particuliers dans le cas de Gravelines, qui est située dans une zone industrielle très dense comportant 17 sites classés Seveso seuil haut. Les industriels sont associés de façon étroite dans le cadre de la prévention des risques.

Le centre nucléaire de Gravelines est partie prenante de la démarche d’élaboration des plans de prévention des risques technologiques par les sites industriels Seveso. Les industries sont associées aux exercices de crise réalisés afin d’examiner les interactions entre sites. L’ASN souligne toutefois l’impact fort du scénario de Boil-over de bacs d’hydrocarbures proches de la centrale (appontements pétroliers des Flandres) qui pourrait nécessiter des modifications matérielles et organisationnelles.

PRISE EN COMPTE DES RISQUES INDUSTRIELS À GRAVELINES

<table>
<thead>
<tr>
<th>Risques</th>
<th>Dispositions mises en œuvre sur le CNPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risque d’explosion externe d’un méthanier</td>
<td>• Systèmes spécifiques pour protéger les conduits de ventilations</td>
</tr>
<tr>
<td></td>
<td>• Portes anti-souffle</td>
</tr>
<tr>
<td></td>
<td>• Toiture des Bâtiments Combustibles renforcée (dalle de 60 cm au lieu de 20)</td>
</tr>
<tr>
<td>Risque d’incendie généralisé des cuves du stockage pétrolier</td>
<td>• Construction d’une dune entre le CNPE et le site de stockage</td>
</tr>
<tr>
<td></td>
<td>• Dispositif spécifique d’arrosage des façades des bâtiments du CNPE exposés à l’onde de chaleur</td>
</tr>
</tbody>
</table>

Source : EDF

2. Le facteur humain

Au-delà des indispensables protections contre les forces naturelles ou industrielles, la sécurité des installations nucléaires suppose aussi d'anticiper les perturbations potentielles induites par les interactions avec l'environnement humain. Ces perturbations d'origine humaine peuvent résulter soit de défaillances involontaires de l'organisation, soit d'actes agressifs intentionnels.

a) Le suivi des conditions de travail

Le pilotage de toute installation nucléaire doit intégrer en permanence deux contraintes : l’exigence de sûreté maximale, condition du droit à poursuivre l'activité, et l’optimisation de la disponibilité, condition de la rentabilité.

La sûreté, dont l’exploitant est le premier responsable, est indispensable au maintien de la confiance du public dans cette filière ; la disponibilité justifie économiquement la supériorité du nucléaire sur les autres sources de production d’électricité.

Ce double objectif impacte le travail des équipes, qui doivent constamment concilier respect des procédures et contrainte de temps. Il en résulte une tension et une fatigue, qu’il convient de surveiller pour éviter une baisse de vigilance et un risque de défaillance.

La qualité des conditions de travail constitue de ce fait un paramètre de la sûreté des installations. Et c'est là toute la justification de la compétence d'inspection du travail qui est reconnue à l'Autorité de sûreté nucléaire, dans les centrales nucléaires, par l'article 57 de la loi TSN.

Le contrôle exercé à ce titre par l'ASN concerne le respect de la réglementation du travail, la santé, la sécurité et la qualité de l’emploi des salariés d’EDF, de ses prestataires ou sous-traitants. Il est pratiqué lors de la construction, l’exploitation et le démantèlement des centrales nucléaires.
C’est dans ce cadre que l’ASN, suite à une enquête détaillée, a informé le parquet d’une sous-déclaration d'accidents sur le chantier de l'EPR par l’exploitant ou ses sous-traitants.

Dans les installations nucléaires autres que les centrales d'EDF, où l'ASN n'a pas directement cette compétence, elle veille néanmoins à mener son contrôle de sûreté en bonne intelligence avec les services de l'inspection du travail, ne serait-ce qu'au titre d’une nécessaire coordination dans le domaine de la radioprotection.

b) La protection contre les actes de malveillance

Le risque d'actes de malveillance existe vis à vis des installations nucléaires, comme à l'encontre de toute installation stratégique. Cependant, comme l'a rappelé Claude Birraux lors de l'audition publique du 24 mai, il serait pour le moins paradoxal d'indiquer quelles atteintes terroristes sont, ou peuvent être, envisagées et quelles parades sont prévues : « Il faut être totalement naïf, ou totalement de mauvaise foi, pour penser que cette question puisse être traitée publiquement. Il est, en tout cas, hors de question que le prochain rapport de l'Office comporte un manuel du terrorisme nucléaire pour les nuls ».

A l'occasion de la présentation de l'étude de faisabilité, le 14 avril, Christian Bataille avait indiqué que « l’impératif de transparence n’oblige en rien à élaborer publiquement un mode d’emploi à l’attention des terroristes », mais que les travaux de la mission, et en particulier l'audition du 24 mai, relative à la protection du cœur et des circuits critiques des réacteurs, permettrait de « mesurer les conséquences potentielles, d’un point de vue fonctionnel, de tous les types de sinistres pouvant affecter les installations nucléaires, qu’ils soient d’origine naturelle ou humaine ».

En tout état de cause, toute installation nucléaire est protégée par des portiques de sécurité et des procédures d'accès, ainsi que par des dispositifs de détection d'intrusion, comme vos rapporteurs l'ont appris lors de leur visite à la centrale de Gravelines, où des clandestins ont été découverts à l’intérieur d’un camion.
Lors de l’audition du 24 mai, M. Jean-Marc Miraucourt a en outre rappelé qu’une « centrale est automatiquement mise à l’arrêt en cas de déviation de n’importe quel paramètre affectant la sûreté, ce qui vaut aussi bien pour des défaillances matérielles que pour des causes humaines. Un arrêt d’urgence du réacteur se produit ainsi en cas d’action inappropriée : une cinquantaine de cas sont enregistrés chaque année ».

B. – UNE ORGANISATION DE LA SÉCURITÉ TRÈS COMPLÈTE

Comme exposé à vos rapporteurs lors de l’audition sur « les protections des réacteurs nucléaires », c’est la conception même du réacteur qui constitue la première ligne de défense : dès la phase de projet, il s’agit de recenser les fonctions de sûreté à assurer.

Leur maîtrise garantit en effet la protection de l’homme et de l’environnement contre les effets des accidents. D’autres dispositifs peuvent ensuite être ajoutés lors des contrôles ou des révisions de sûreté par upgrading, c’est-à-dire une mise à niveau constante de l’ensemble des éléments du réacteur hors cuve et enceinte de confinement.

1. **Un bouclier multiforme**

Pour dimensionner les systèmes de protection, il s’agit tout d’abord de définir la stratégie de défense et de cumuler les lignes, qui peuvent ainsi être multiples et diversifiées.

Il existe trois angles d’approche : la multiplicité des dispositifs de protection (passifs, actifs, ou pilotés par un opérateur), la robustesse des dispositifs (reondance, diversité, et vérification), et le facteur humain (procédures et formation).
a) Les différentes barrières de protection

Nos installations reposent sur trois critères de sûreté : la maîtrise de la réaction nucléaire, l’évacuation de la puissance et le confinement de la radioactivité.

La conception même du cœur des réacteurs à eau pressurisée (REP) français intègre un système de sûreté passive : l’auto-régulation de la puissance du cœur en cas d’augmentation de la puissance nucléaire.

En effet, ces réacteurs ont un coefficient de vide négatif, qui correspond à un auto-contrôle de la réaction nucléaire : si la puissance neutronique augmente, la densité de l'eau diminue, ce qui a pour effet de diminuer la densité du modérateur (l'eau est à la fois caloporteur et modérateur), d'où une diminution de la puissance.

Un coefficient de vide positif correspond à un auto-emballement potentiel du réacteur ; c'est l'un des facteurs qui ont amené à la catastrophe de Tchernobyl.

L’arrêt de la réaction nucléaire est obtenu en faisant varier la quantité de matériaux absorbant les neutrons dans le cœur. Pour cela, deux moyens complémentaires sont disponibles :

- passivement, par l’utilisation des crayons absorbants, ou « grappes de contrôle », qui peuvent être introduits dans le cœur. Généralement utilisées pour réguler la puissance du réacteur, ces grappes peuvent également chuter très rapidement sous leur propre poids en cas de perte d’alimentation électrique.

- piloté par un opérateur, en faisant varier la concentration en acide boric, un absorbtant de neutrons dilué dans l'eau primaire. L'acide boric présente l'avantage d'être réparti uniformément dans le volume du cœur, mais sa concentration ne varie pas rapidement.

Les réacteurs français disposent de soupapes automatiques de sécurité sur le circuit du réacteur et sur les générateurs de vapeur. Il est
également possible de procéder à une injection d’eau de secours dans le circuit du cœur du réacteur ou dans les générateurs de vapeur.

Le démarrage des générateurs diesels de secours se fait également automatiquement en cas d’interruption de l’alimentation électrique de la centrale.

Il faut toutefois souligner que, à la différence du Japon, le système de détection sismique des centrales françaises ne conduit pas, en cas de dépassement du seuil visé, à une mise à l'arrêt automatique des réacteurs. Le système de détection a pour vocation de donner l’alarme et de transmettre des données afin d’être en mesure de prendre rapidement les dispositions adéquates pour mettre et maintenir les tranches de la centrale dans l’état de repli considéré pour chacune d’elles comme le plus sûr après l’apparition du séisme, ou pour en poursuivre l'exploitation.

b) La robustesse du dispositif

Comme souligné lors de l’audition du 24 mai 2011, la robustesse de ces systèmes de protection repose sur trois principes :

- **La redondance**

Les actions automatisques de protection du cœur, destinées à agir dès les premiers instants d’un accident, sont quadruplées dans le contrôle-commande. Les systèmes de sauvegarde – injections de sécurité, diesels de secours, circuits d’aspersion auxiliaires, circuits de refroidissement des piscines de stockage de combustible – sont doublés, chacun d’eux pouvant assurer, à lui seul, la fonction requise.

Nous verrons (pages 117 et 118) que, dans l’EPR, la redondance de ces systèmes de protection a été encore accrue.

- **La diversité**

Les centrales disposent, en permanence, de cinq sources d’alimentation électrique différentes, dont les diesels de secours. Une seule de ces cinq alimentations est suffisante pour garantir le fonctionnement des matériels de sûreté.
Pour le cas particulier du refroidissement du cœur, outre les cinq sources électriques décrites précédemment, sont également disponibles des turbopompes, fonctionnant grâce à la vapeur produite par le générateur de vapeur lui-même, ce qui permet de se dispenser d’alimentation électrique extérieure.

La vérification

Des vérifications du bon fonctionnement des systèmes de protection sont effectuées en permanence. Ainsi, plus de 2 000 essais destinés à vérifier le bon fonctionnement des systèmes de protection sont réalisés sur chaque réacteur tous les ans, se succédant à intervalles de quelques jours pour les fonctions les plus importantes (la fréquence des essais étant adaptée à la nature et à l’importance de la fonction).

En cas d’indisponibilité d’un système de protection, l’arrêt du réacteur peut être décidé, sous une heure par les systèmes assurant la protection du cœur à court terme.

c) Les piscines d’entreposage

S’agissant des combustibles usés entreposés dans les piscines, l’accident de Fukushima a montré une vulnérabilité d’autant plus préoccupante qu’une piscine peut contenir à un instant donné l’équivalent de plusieurs cœurs de réacteur.

Cette vulnérabilité concerne également les piscines d’entreposage de l’usine de retraitement de La Hague, ainsi que l’ensemble des unités du cycle du combustible qui font de l’entreposage.

Vos rapporteurs considèrent qu’il s’agit d’un point qui devra être pris en compte dans le cadre des évaluations de sûreté conduites par l’ASN au titre du retour d’expérience.
d) Les procédures de conduite et la formation des opérateurs

- Les Procédures de conduite

La centrale doit pouvoir être pilotée de manière sûre en situation normale et en situation accidentelle. Pour cela, les exigences et les contraintes à satisfaire sont adaptées selon les types de situation.

- Principes de conduite normale

Les principes de conduite normale recouvrent le fonctionnement en puissance, en suivi de charge, ou l’arrêt et le démarrage du réacteur. Mais ils recouvrent également les événements non programmés n’entrant pas dans une classification incidentelle ou accidentelle.

Dans ce dernier cas, des conduites particulières doivent être appliquées par l’équipe de conduite en remplacement ou en support des consignes normales.

- Principe de conduite incidentelle ou accidentelle

Les règles de conduite ont pour objet la réduction des conséquences et la sauvegarde du cœur, par des actions à réaliser sur l’installation à partir des informations fournies par l’opérateur.

En cas d’accident grave, c'est-à-dire si la température en sortie de cœur dépasse 650°C, le fonctionnement du réacteur peut exiger une conduite inhabituelle, parfois même en contradiction avec la conduite normale.

- La formation du personnel

Les opérateurs bénéficient d’une formation pratique et théorique de 2 ans dispensée par EDF, puis ils rejoignent un réacteur où ils sont encadrés par un opérateur expérimenté pendant une période complémentaire.

L’opérateur bénéficie ensuite de trois semaines de formation par an sur un simulateur, dont la description est faite plus en détail (page 87).

Mais la consolidation de la sûreté ne passe pas uniquement par les dispositions prises par les industriels et l’exploitant, elle se base également
sur un arsenal de contrôle et de réexamen exigeant, couvrant l’ensemble des composantes de la filière.

2. Une surveillance étendue

Le contrôle de sûreté ne se cantonne pas aux centrales nucléaires proprement dites. Selon l’article 1er de la loi du 13 juin 2006 dite TSN, il s’étend à toutes les « installations nucléaires de base », identifiées par décision de l’ASN, la dernière liste en ayant été établie au 31 décembre 2010 par la décision n° 2011-DC-0204 (cf annexe n°5).

a) Le contrôle de toutes les composantes de la filière

Cette liste intègre d’abord tous les réacteurs nucléaires, même lorsqu’ils n’appartiennent pas à ce qu’on appelle communément une “centrale nucléaire” et qu’EDF nomme un « Centre Nucléaire de Production d’Electricité » (CNPE). En particulier, cela concerne les réacteurs de recherche, généralement de plus petite puissance que les réacteurs destinés à produire de l’électricité, qui sont utilisés pour des expérimentations, comme Phébus et Minerve sur le site du CEA à Cadarache. Le futur réacteur Jules Horowitz, actuellement en construction sur le même site, est destiné tout à la fois à la recherche et à la production de radionucléides à finalité médicale. De son côté, l’IRSN dispose pour certaines de ses recherches du réacteur Cabri.

A côté des réacteurs nucléaires, l’article 28 de la loi dite TSN mentionne également au nombre des installations nucléaires de base les installations “de préparation, d’enrichissement, de fabrication, de traitement ou d’entreposage de combustibles nucléaires”. Cela vise, en amont de la combustion en réacteur, l’usine Comurhex qui fabrique l’hexafluorure d’uranium utilisé pour l’enrichissement de l’uranium; les installations Georges Besse I et Georges Besse II qui réalisent cet enrichissement selon deux technologies différentes, et que la mission parlementaire a visité lors de son déplacement au Tricastin, le 27 mai; enfin, les usines de fabrication de combustibles comme celle de Roman pour les combustibles usuels, ou l’usine Melox à Marcoule pour le combustible MOX. Le magasin interrégional de Chinon fournit l’exemple d’un centre d’entreposage d’EDF pour les combustibles neufs.
L’article 28 de la loi TSN vise encore, à l’aval de la combustion en réacteur, les installations de traitement, d’entreposage ou de stockage de déchets radioactifs. Cela concerne au premier chef l’usine de La Hague, visitée par la mission parlementaire le 20 mai, qui traite les combustibles nucléaires usés de manière à séparer l’uranium restant (96% de la masse), le plutonium (1% de la masse), et les déchets de haute activité à vie longue (3% de la masse).

Enfin, l’article 28 de la loi TSN précise que tous les « transports de substances radioactives » relèvent du contrôle de sûreté. Cela inclut évidemment les transports entre les unités de fabrication ou d’exploitation aux différents stades de la production et de l’utilisation du combustible nucléaire : de la fourniture initiale en uranium à l’envoi final vers les centres d’entreposage ou de stockage des déchets nucléaires.

b) La couverture d’activités connexes

Mais le champ du contrôle de sûreté s’étend au-delà de la filière nucléaire, d’une part, parce qu’il concerne toute utilisation de sources radioactives, d’autre part, parce qu’il remonte jusqu’au stade de la
fabrication des pièces mécaniques essentielles utilisées par l’industrie nucléaire.

 ➢ L’unification du contrôle de sûreté et de radioprotection

Le contrôle de sûreté s’étend, au-delà de la filière nucléaire, à toutes les activités industrielles ayant recours à la gammagraphie, notamment à des fins de vérification des soudures. Toutes les activités de recherche utilisant des radionucléides sont également soumises à ces mêmes pouvoirs de contrôle, y compris lorsque l’objet de la recherche n’a aucun lien avec l’énergie nucléaire : en particulier, les laboratoires hébergeant un accélérateur de particules, comme le LURE à Orsay, sont soumis au régime des installations nucléaires de base.

Enfin, tous les établissements de recherche ou de soin exploitant les possibilités de la médecine nucléaire ou des rayonnements ionisants sont aussi soumis au contrôle de l’autorité de sûreté. Dès son premier rapport d’activité pour l’année 2007, correspondant à la première année de l’extension de ses compétences au monde médical, l’Autorité de sûreté nucléaire a d’ailleurs émis des inquiétudes quant aux conditions de sûreté dans les centres de radiologie et de radiothérapie, au regard des pratiques de référence dans l’industrie nucléaire; du reste, malgré les efforts du ministère en charge de la santé, la question reste d’actualité.

 ➢ Le contrôle des équipements sous pression

La mission parlementaire a visité, le 16 mai, les usines Areva du Creusot et de Chalon qui fabriquent les pièces mécaniques essentielles des réacteurs nucléaires, en particulier la cuve, les générateurs de vapeur, les pressurisateurs.

Les parlementaires présents ont pu mesurer l’importance du maintien d’un savoir-faire à travers le spectacle prométhéen des forges du Creusot et de l’usine de Saint-Marcel. Au-delà de l’intérêt évident de maintenir en France des spécialités indispensables pour l’autonomie de notre industrie, il est tout aussi évident que le contrôle qualité et le haut niveau d’exigence de sûreté sont beaucoup mieux contrôlés que dans l’hypothèse de commandes auprès d’industries étrangères.
Dans ces deux usines, 500 composants lourds ont été fabriqués depuis 1975, permettant d’équiper l’ensemble des réacteurs du parc français.

Cette visite a d’abord permis de mesurer l’importance du choix nucléaire de la France pour le développement du tissu économique national. Avec ces deux usines, notre pays a préservé jusqu’aujourd’hui une compétence d’industrie lourde de haute précision, l’usine du Creusot assurant la forge des pièces à partir de lingots d’acier pesant plusieurs centaines de tonnes, et l’usine de Chalon / Saint Marcel équipant et montant ces pièces pour aboutir au composant achevé, prêt à l’expédition à partir d’une sortie donnant directement sur un embarcadère, pour un transport par péniche sur la Saône. Au total, c’est un millier d’emplois qui sont concernés1. Les composants sont expédiés dans le monde entier, jusqu’aux États-Unis et en Chine, car ces usines ont peu de concurrents à l’échelle internationale, sinon au Japon.

Mais cette visite a permis aussi de constater la prégnance du contrôle de sûreté bien en amont de l’industrie nucléaire. Car ce contrôle s’applique dès le stade de la fabrication pour les pièces essentielles du réacteur.

Les équipements sous pression (ESP) sont soumis à une pression de 155 bars, et fonctionnent en outre à haute température (environ 300°C). Ils jouent un rôle critique dans la sûreté d'un réacteur à eau pressurisée, puisqu'ils contribuent au confinement de l'eau du circuit primaire en contact avec le réacteur, et assurent la circulation de l'eau servant au refroidissement du cœur.

L’importance de leur contrôle, dès le stade de leur fabrication, a justifié la création par les instances en charge de la sûreté nucléaire, dès le milieu des années 70, d'une unité spécifique, basée à Dijon, aujourd'hui la Direction des équipements sous pression. Outre les deux usines du Creusot et de Chalon, en Saône-et-Loire, elle a la responsabilité du contrôle de l'usine Valinox à Montbard, en Côte d'Or, qui fabrique les tubes des générateurs de vapeur.

1 Le bassin d’emploi comprend aussi l’aciérie Industeel d’ArcelorMittal située elle-aussi au Creusot, qui fabrique les lingots.
Le contrôle sur la fabrication des pièces suppose en amont une attention portée à la conception, c'est-à-dire à la stratégie choisie pour obtenir la forme voulue avec les performances de résistance requises, et, en aval, une surveillance des dispositifs de mesure et de correction prévus, en cours de fabrication, pour respecter le cahier des charges.

Une documentation suit chaque pièce; elle doit recevoir une signature de validation d'un inspecteur de l'autorité de sûreté à chaque nouvelle étape de conception, puis de fabrication.

Lorsqu'une pièce d'un réacteur français est fabriquée à l'étranger, notamment au Japon s'agissant du corps des cuves, les agents de la Direction des équipements sous pression vont effectuer le contrôle sur place, en liaison avec les autorités de sûreté locales. En juillet 2008, une inspection a ainsi détecté un écart sur deux anneaux de jointure (viroles) destinées à l'EPR de Flamanville, et l'Autorité de sûreté a demandé au sous-traitant italien de recommencer leur fabrication.

En dépit de toutes les garanties internationales, vos rapporteurs estiment que quand la sûreté des installations, et à plus long terme celle des populations, est en cause, l'intégration au plus près des industries de fabrication des éléments de réacteurs s'avère très souhaitable.

La mission de la Direction des équipements sous pression s'étend en outre au suivi des équipements lorsqu'ils sont en fonctionnement, ce qui implique l'examen des programmes de suivi en service, la vérification des programmes de surveillance du vieillissement, et l'organisation, lors des visites décennales, des mises à l'épreuve hydraulique.

Le suivi du vieillissement est assuré par le prélèvement (et l'examen) périodique d'échantillons intégrés à dessein dans la structure, dès la
fabrication. La présence *a priori* de ces échantillons constitue donc un requis rédhibitoire pour la validation d'un équipement sous pression.

Pour assurer le suivi le plus continu possible des opérations soumises à contrôle, la Direction des équipements sous pression recourt à des organismes habilités, principalement Apave Groupe et Bureau Veritas, qui font eux-mêmes l'objet d'inspections périodiques de la part de l'Autorité de sûreté nucléaire; cela permet à cette Direction, dotée d'un effectif limité (27 personnes), de se réserver les interventions de contrôle les plus critiques.

Ainsi, au cours de la visite du 16 mai, les membres de la mission ont pu voir le chantier de reprise intégrale de la centaine de soudures fixant les tubes transversant le couvercle de la cuve, suite à la détection par l'Autorité de sûreté de défauts dans ces soudures. L'Autorité de sûreté a imposé que trois nouvelles soudures soient effectuées entièrement en présence d'inspecteurs appartenant à un organisme habilité, pour que ceux-ci puissent vérifier la qualité de mise en œuvre du nouveau procédé utilisé.
C. – UN DISPOSITIF DE GESTION EN CONSTANTE AMÉLIORATION

Les axes selon lesquels ces avancées permanentes de la sûreté peuvent s'opérer sont multiples, d'ordre technologique ou organisationnel. On peut cependant en identifier trois principaux : la consolidation des procédures de contrôle; l'amélioration des mécanismes de transparence; l'affinage des schémas opérationnels de gestion de crise.

1. La consolidation du contrôle de sûreté

La consolidation des contrôle de sûreté passe d'une part, par la densification du nombre des acteurs de contrôle, et d'autre part, par le relèvement constant du degré d'exigence dans la protection.

a) Un contrôle géré désormais à trois niveaux

L'article 2 de la loi TSN du 13 juin 2006 rappelle sans ambiguïté que la responsabilité ultime de la sûreté repose sur l'exploitant, en application du principe pollueur-payeur. Celui-ci assure donc le premier niveau de contrôle.

Il en résulte que les trois exploitants français se sont dotés, chacun à leur manière, d'un dispositif interne de contrôle de la sûreté, qu'ils ont présenté au cours de l'audition publique du 31 mai.

Les trois exploitants désignent au sein de chacune de leur unité, une personne en charge de la sûreté, qui dispose d'un droit d'accès spécifique au responsable de l'unité, sur une base quotidienne au moins, et d'un devoir d'alerte auprès de lui, sitôt qu'il identifie une difficulté liée à la sûreté. Le schéma reprend à peu près le modèle du délégué du personnel, qui peut saisir son employeur de questions d'hygiène et de sécurité en faisant usage de son droit d'alerte.

EDF ajoute à ce schéma une inspection générale doublant la hiérarchie de l'entreprise, et rattachée directement au président. M.
André-Claude Lacoste, président de l'Autorité de sûreté nucléaire a souligné, au cours de l'audition du 31 mai, l'intérêt que suscitait, en raison de sa liberté de ton, le rapport annuel de l'inspecteur général, lorsqu’il était présenté, à la demande de l’ASN, en appui au rapport français dans le cadre de la revue de la Convention sur la sécurité nucléaire, tous les trois ans.

Le deuxième niveau de contrôle de la sûreté, qui vise à vérifier que l'exploitant remplit bien ses obligations de sûreté, et donc, d'une certaine façon, à surveiller la qualité du premier niveau de contrôle, est constitué par les autorités publiques. La principale en est évidemment l'Autorité de sûreté nucléaire (ASN), telle qu'instituée par la loi TSN du 13 juin 2006; l'Institut de radioprotection et de sûreté nucléaire (IRSN) intervient aussi à ce niveau, en tant qu'appui scientifique et technique de l'ASN.

La loi du 13 juin 2006 confère à l'autorité de sûreté française un statut d’autorité administrative indépendante, garanti notamment par l’inamovibilité des membres du collège (sauf cas de manquement grave), et l’impossibilité du renouvellement du mandat, qui dure six ans.

Au-delà des pouvoirs accordés en pleine indépendance à l'Autorité de sûreté nucléaire, l'Etat conserve une compétence d'intervention très large, voire ultime, en matière de sûreté, ainsi que le rappelle le II de l'article 1er de la loi TSN : « L'État définit la réglementation en matière de sécurité nucléaire et met en œuvre les contrôles visant à l'application de cette réglementation ». En particulier, l'État conserve la capacité pleine et entière d'autoriser ou au contraire d'arrêter une installation nucléaire de base.

Le contrôle public n'a d'aucune manière vocation à se substituer au contrôle de l'exploitant. Il a pour objet d'identifier des risques potentiels, d'inviter l'exploitant à proposer des solutions techniques, de valider la solution qui paraît la mieux adaptée, et enfin d'en vérifier la bonne mise en œuvre.

Le troisième niveau de contrôle résulte du supplément de surveillance induit par les progrès de la coopération internationale en matière de sûreté.
Vos rapporteurs ne voient nullement dans la montée en puissance progressive de cette coopération le germe d'une organisation supranationale ayant vocation à prendre à terme le relais des contrôles publics nationaux. En revanche, ils se réjouissent de l'apport qu'un croisement des approches et des expériences peut avoir pour le renforcement de la sûreté.

La dimension internationale de tout accident nucléaire suggère de prime abord l'idée d'établir des normes internationales de sûreté dont le respect serait garanti par une surveillance elle aussi internationale. Cette idée est intellectuellement satisfaisante, mais elle ne prend pas en compte la réalité des relations diplomatiques. D'une part, la souveraineté des États demeurera toujours un obstacle potentiel à des contrôles efficaces; il faut que les États acceptent explicitement des contrôles étrangers pour qu'ils soient possibles. D'autre part, le jeu des relations diplomatiques implique des recherches d'équilibre entre intérêts nationaux divergents, qui sont contradictoires avec la rigueur absolue que suppose la sûreté nucléaire.

Le sort qui sera donné au résultat des évaluations de sûreté (« stress tests ») des 143 réacteurs nucléaires européens va en donner l'illustration : une fois les tests réalisés sur une base objective commune, un classement des réacteurs par ordre de fragilité décroissante au regard des objectifs de sûreté deviendra possible, et des décisions devront être prises en commençant par les réacteurs les plus exposés à des risques.

Or l'intégralité du parc nucléaire de certains pays membres est un héritage de l'ancien monde socialiste, qui s'est dramatiquement distingué par l'accident de Tchernobyl. Les instances européennes auront-elles la fermeté nécessaire pour exiger l'arrêt de tous les réacteurs identifiés comme insuffisamment sûrs, même si cet arrêt prive un pays membre d'une part importante de sa fourniture d'électricité? Il est fort probable que des aménagements transitoires seront discutés. A l'inverse, un État peut imposer unilatéralement l'arrêt d'une installation implantée sur son territoire.

Par ailleurs, l'expérience prouve que la consistance d'une organisation internationale dépend souvent de l'alchimie complexe qui préside à la nomination de ses dirigeants et de ses agents, laquelle répond nécessairement à des besoins d'équilibre entre les nations participantes; or les quotas de nationalité, par construction, ne permettent pas toujours de garantir
le plus haut degré d'excellence. A l'inverse, une autorité de sûreté nationale peut se voir garantir, comme en France, un statut d'indépendance, au niveau de ses dirigeants comme de ses effectifs, qui lui permet de remplir sa mission au meilleur niveau, et sans aucune concession.

Si l'on peut avoir de sérieux doutes sur la pertinence d'une centralisation mondiale de la gestion de la sûreté, en revanche, il est absolument certain qu'un renforcement de la coopération internationale, sous quelque forme que ce soit, constitue un atout supplémentaire pour la sûreté. Car plus le nombre de regards indépendants se croisent, meilleure est la détection des défauts.

Or la coopération internationale en matière de sûreté se renforce à trois niveaux : celui des exploitants, qui se sont organisés pour s'épauler dans leur activité de contrôle interne; celui des organisations internationales, qui mettent en oeuvre la volonté de coopérer des Etats; enfin, celui des autorités de sûreté.

En réaction à l'accident de Tchernobyl, les exploitants nucléaires mondiaux se sont regroupés au sein de la World Association of Nuclear Operators (WANO), qui compte 100 compagnies membres, couvrant au total 441 réacteurs. Elle dispose de quatre bureaux régionaux à Atlanta, Paris Tokyo, Moscou. Cette association, qui s’appuie sur un effectif de 150 ingénieurs détachés par les opérateurs, est aujourd’hui dirigée par M. Laurent Stricker, venu la présenter au cours de l’audition du 31 mai. WANO conduit des inspections croisées, avec une fréquence moyenne d’une inspection tous les six ans par réacteur. Ces inspections visent aussi les réacteurs à l’arrêt, tant qu’ils hébergent du combustible. Une quarantaine d’inspections est réalisée par an, chacune mobilisant une quinzaine d’ingénieurs. L’association se concerte avec les autres instances de contrôle nationales et internationales, pour intervenir en complément des autres inspections. Un des aspects auxquels l’association prête une attention particulière est l’intégration des retours d’expérience des accidents. M. Laurent Sticker a souligné que la France était en position de pointe s’agissant de l’intégration des enseignements techniques de l’accident de Three Mile Island.

Parmi les organisations internationales en charge des questions nucléaires, l’Agence de l’énergie nucléaire de l’OCDE (AEN) intervient
surtout en tant que diffuseur des bonnes pratiques en ce qui concerne les bases scientifiques, technologiques et juridiques de la gestion de la sûreté dans les pays membres. C’est une instance d’échanges d’informations et d’expériences, qui a pris l’initiative d’une conférence ministérielle, le 7 juin, sur les leçons de l’accident de Fukuhima pour la sûreté nucléaire, suivi le lendemain d’un forum plus technique impliquant les opérateurs et les autorités de sûreté.

L’AEN assure le secrétariat du MDEP (Multinational Design Evaluation Program). Ce programme est une initiative multinationale en vue de développer des approches innovantes afin de mutualiser les ressources et les connaissances des Autorités de sûreté qui auront la responsabilité de l’évaluation réglementaire de nouveaux réacteurs. Ce programme, axé sur la sûreté, est un forum de coopération multinationale travaillant dans le cadre des analyses de sûreté des réacteurs de puissance et orienté vers la convergence des normes de sûreté et vers leur mise en œuvre.

Au niveau du cadre normatif, l’AIEA est à l’origine de cinq conventions internationales concernant respectivement : la protection physique des matières nucléaires (adoptée en 1980); l’assistance en cas d’accident nucléaire (adoptée en 1986, l’année de Tchernobyl); la notification rapide d’un accident nucléaire (adoptée en 1986); la sûreté nucléaire (adoptée en 1994); la convention commune sur la sûreté de la gestion du combustible et sur la sûreté de la gestion des déchets radioactifs (adoptée en 1997). Sur ces bases, l’AIEA produit des normes de sûreté, qui se déclinent en trois catégories : les principes fondamentaux, les prescriptions de sûreté, les guides de sûreté. M. Denis Flory a souligné que la constitution de cet ensemble de règles de référence permettait d’accélérer la mise en place du cadre organisationnel et législatif adéquat dans les pays nouvellement venus à l’énergie nucléaire.
L’activité de contrôle de l’AIEA prend essentiellement la forme des missions OSART (Operational Safety Review Team, mission d'examen de la sûreté en exploitation) qui concernent, non pas les réacteurs, mais les centrales dans leur ensemble, et mobilisent des équipes d'experts provenant d'Autorités de sûreté nucléaire de pays tiers. Toutes les centrales nucléaires françaises ont été soumises au moins une fois à une mission OSART. Au total, 159 missions OSART ont été conduites dans le monde entre 1983 et 2010.

Les missions d'audit IRRS (Integrated Regulatory Review Service) s'appliquent aux autorités de sûreté, et visent à évaluer les modes d’organisation et les pratiques de celles-ci, notamment en matière de réglementation, de contrôle et d'information du public. La mission est composée là encore d'experts provenant d'autorités de sûreté nucléaire de pays tiers. Elle auditionne des responsables, et suit des inspections sur le terrain. L'Autorité de sûreté nucléaire française a fait l'objet d'un audit IRRS en novembre 2006, à l’aube de sa mise en place sur les bases de la loi TSN. La mission était composée de seize experts des autorités de sûreté de Corée du Sud, de Russie, de Nouvelle-Zélande, et de divers pays d'Europe et d’Amérique du Sud. Elle a observé des points forts comme un système d'inspections bien développé et complet, notamment pour ce qui concerne l'élaboration de programmes annuels d'inspections, la préparation et la réalisation des inspections ; elle a formulé quelques recommandations, concernant notamment la poursuite de l'amélioration de la gestion des situations post-accidentelles.

L'AIEA organise sur le même modèle des audits Transas (Transport Safety Appraisal Service), qui visent à évaluer l'organisation d'un pays pour le transport des matières radioactives et l'application de la réglementation internationale. La France a fait l'objet d'une mission Transas en 2004, qui a identifié de bonnes pratiques concernant le transport maritime et la préparation aux situations d'urgence. Une mission de suivi en 2006 a constaté que les recommandations qui avaient été formulées étaient mises en œuvre.

A côté des inspections de WANO et des missions de l’AIEA, une autre dimension du contrôle international se développe de manière moins systématique, sur le modèle du « club », ce qui n’enlève rien à son
efficacité : il s’agit des opérations conjointes, multilatérales, des autorités de sûreté.

Celles-ci se regroupent au sein de deux associations informelles : l’Association internationale des responsables d'autorités de sûreté nucléaire (INRA), l’Association de responsables d'autorités de sûreté nucléaire des pays d'Europe de l'Ouest (WENRA).

Leur coopération s’appuie d’abord sur des échanges bilatéraux de personnel. Tous les continents sont concernés par ces échanges, mais l’Europe, pour des raisons de proximité, y prend assez logiquement la part principale. Il peut s’agir d’inspections conjointes, de missions courtes ciblées sur un thème, ou de missions longues d’immersion complète au sein de l’Autorité de sûreté étrangère. Ces échanges tissent des liens humains qui facilitent ensuite les coopérations institutionnelles.

L’esprit de club a conduit plusieurs autorités de sûreté nationales concernées par un même sujet à émettre publiquement une recommandation conjointe : ce fut le cas pour les autorités française, finlandaise, britannique à propos du contrôle-commande de l’EPR en novembre 2009.

Au total, les progrès de la coopération internationale assurent une dimension supplémentaire au contrôle de sûreté, qui ne cesse ainsi de s’améliorer et de se renforcer.

b) Un renforcement constant de l'exigence de sûreté

L’organisation du dispositif de sûreté incite les opérateurs à aller toujours plus avant dans l’amélioration des mécanismes de sûreté. Cette incitation se manifeste particulièrement au travers de trois processus : les visites décennales, le retour d’expérience, la recherche scientifique.

Bien que pratiquées antérieurement, les visites décennales, plus précisément appelées « réexamens de sûreté », ont vu leur principe et leurs modalités confirmés par l'article 29 de la loi TSN. Elles constituent l’une des pierres angulaires de la politique de contrôle de l’ASN.
Elles visent d'abord à « apprécier la situation de l'installation au regard des règles qui lui sont applicables ». Ainsi, l'exploitant s'assure que l'installation respecte bien la réglementation et les exigences de sûreté définies par les concepteurs (appelé « référentiel de sûreté »).

Elles visent ensuite à « actualiser l’appréciation des risques ou inconvénients que l’installation présente (...) en tenant compte notamment de l’état de l’installation, de l’expérience acquise au cours de l’exploitation, de l’évolution des connaissances et des règles applicables aux installations similaires ». Il s’agit alors pour l’exploitant de mettre en œuvre des contrôles en profondeur et des modifications matérielles, dans le but de maintenir le niveau de sûreté, voire de l’améliorer. La comparaison avec les installations neuves, en particulier, permet d'identifier les éventuelles améliorations.

C’est à l'exploitant d'indiquer, dans un rapport, « les dispositions qu'il envisage de prendre pour remédier aux anomalies constatées ou pour améliorer la sûreté de son installation (...) Après analyse du rapport, l'Autorité de sûreté nucléaire peut imposer de nouvelles prescriptions techniques ». Le but est de porter la sûreté au niveau des « meilleures pratiques internationales ». Il s'agit d'assurer une mise à niveau des équipements.

La visite de la mission à Fessenheim, le 10 juin, a permis de constater que la troisième visite décennale du réacteur n°1, entre octobre 2009 et mars 2010, avait donné des premiers résultats suffisamment satisfaisants pour permettre une reprise du fonctionnement, en attendant les conclusions de l'examen approfondi devant décider de la poursuite de l'exploitation. Ces conclusions devraient être rendues publiques dès l’été 2011.

Le retour d'expérience est lié à la prise en compte des enseignements techniques de tous les « événements significatifs » qui interviennent de façon inopinée en France ou à l'étranger, c'est-à-dire les incidents de niveau plus ou moins élevé qui se produisent dans l'installation même ou une installation similaire, voire les accidents lointains, comme ceux de Three Mile Island, Tchernobyl ou Fukushima.
En vertu de l'article 54 de la loi TSN, chaque « événement significatif », doit être déclaré à l’autorité de sûreté. En retour, celle-ci s’assure que tous les événements qui ont un impact sur la sûreté nucléaire, la radioprotection et la protection de l’environnement, soient corrigés dans des délais acceptables.

L’exploitant doit transmettre dans les deux mois une analyse détaillée des causes de l’événement ainsi que la liste des actions correctives mises en œuvre. L’ASN peut également faire procéder à une analyse approfondie et indépendante par son appui technique pour les événements significatifs les plus notables : ceux qui paraissent les plus marquants, ceux qui ont tendance à se répéter ou ceux qui touchent l’ensemble des centrales nucléaires.

L’ASN examine la manière dont l’exploitant prend en compte les anomalies détectées et met en œuvre le retour d’expérience. Plus un problème porte atteinte à la sûreté, plus il doit être traité rapidement. Si elle le juge nécessaire, l’ASN peut exiger la mise à l’arrêt de l’installation tant que la réparation n’est pas effectuée.

Elle veille également à ce qu’il tire les enseignements des événements significatifs survenus à l’étranger. En l’occurrence, ce sera précisément l’enjeu des "évaluations complémentaires de sûreté" demandées par le Premier ministre le 23 mars, et conduites en cohérence avec le programme des évaluations de sûreté (« stress tests ») demandées par le Conseil européen des 24 et 25 mars, de recueillir les propositions des exploitants pour une « réévaluation ciblée des marges de sûreté des installations nucléaires à la lumière des événements qui ont eu lieu à Fukushima », c'est-à-dire en cas de phénomènes naturels extrêmes, susceptibles de se cumuler.

La recherche scientifique contribue par ses résultats à faire progresser la sûreté nucléaire et la radioprotection. Elle peut faire émerger de nouvelles solutions techniques offrant un meilleur degré de protection contre les anomalies. Elle permet également de mieux comprendre et apprécier la gravité des risques associés à l’exploitation des centrales nucléaires.

L'effort consacré à la recherche par le producteur d’électricité français reste à un niveau élevé, en raison de son intérêt pour la prolongation
de la durée de vie des réacteurs, qui offre la perspective d'une exploitation très rentable, puisque poussée au-delà de la période requise pour l'amortissement de l'investissement initial. L'entreprise poursuit ainsi des recherches sur le vieillissement des matériaux afin de mieux comprendre la manière dont se dégrade l'acier des cuves contenant le cœur radioactif des réacteurs.

2. Les progrès continus de la transparence

Bien qu'elle soit issue de la création, en 1945, d’un commissariat - devenu depuis le Commissariat à l’énergie atomique et aux énergies alternatives - chargé d’assurer la recherche sur l’utilisation de l’énergie nucléaire, tout à la fois dans les domaines de la science, de l’industrie et de la défense nationale, la filière nucléaire française est cependant restée marquée par une culture du secret, propre à la sphère militaire.

a) Une composante essentielle de la sûreté

Après plus d’un demi-siècle, la France est pourtant aujourd’hui considérée, ainsi que vos rapporteurs ont pu l’entendre lors de l’audition du 16 juin 2011, comme l’un des pays les plus avancés - sinon le plus avancé - en matière de transparence nucléaire. Cette profonde évolution résulte d’une prise de conscience progressive mais irreversible du caractère indissociable de la sûreté et de la transparence dans le domaine nucléaire. Cette prise de conscience a conduit le Parlement à traiter ces deux sujets dans le cadre de la loi du 13 juin 2006 sur “la transparence et à la sécurité en matière nucléaire”, dite loi TSN.

Celle-ci définit la transparence en matière nucléaire comme « l’ensemble des dispositions prises pour garantir le droit du public à une information fiable et accessible en matière de sécurité nucléaire ». Elle institue pour tout citoyen un véritable droit à l’information « sur les risques liés aux activités nucléaires et leur impact sur la santé et la sécurité des personnes ainsi que sur l’environnement ».

Cette obligation d’information du public, concerne notamment les exploitants d’installations nucléaires qui sont soumis, également sur ce plan,
au contrôle rigoureux de l’Autorité de sûreté nucléaire. Mais l’ASN ne se borne pas à contrôler l’application effective de la transparence par les exploitants, elle se l’est imposée à elle-même, en publiant sur son site Internet, toutes ses lettres de suite d’inspection, à l’exception de celles relatives à l’inspection du travail dans les centrales nucléaires. Tout citoyen peut ainsi prendre connaissance des constats, positifs ou négatifs, effectués par les inspecteurs de l’ASN lors des contrôles d’installations nucléaire.

La loi du 13 juin 2006 a également donné un cadre législatif plus satisfaisant aux Commissions locales d’information (CLI) jusqu’alors régies par une simple circulaire datant de 1981. La loi dispose qu’auprès « de tout site comprenant une ou plusieurs installations nucléaires ... est instituée une commission locale d'information chargée d’une mission générale de suivi, d'information et de concertation en matière de sûreté nucléaire ». Nommés par le président du Conseil général qui est aussi celui de la CLI, les membres comprennent des élus, des représentants d'associations de protection de l'environnement, des intérêts économiques et d'organisations syndicales et des professions médicales, ainsi que des personnalités qualifiées.

Ce caractère pluraliste permet aux CLI d’assurer leur mission de surveillance avec une particulière acuité, en se plaçant, pour examiner les problèmes locaux, à divers points de vue. Il constitue également, aux yeux du public, une garantie d’indépendance des CLI vis-à-vis de tel ou tel groupe particulier. En cela, il facilite considérablement la communication avec les populations. Lors des différentes visites de sites réalisées dans le cadre de la première partie de la mission, vos rapporteurs ont tenu à rencontrer les représentants de Commissions locales d’information, afin de bénéficier de leur avis de proximité sur les conditions de sûreté des installations nucléaires. A cette occasion, nous avons pu constater l’investissement que nécessitait, au niveau local, l’animation d’une CLI ainsi que l’importance, pour le maintien de la sûreté des installations, d’une vigilance rapprochée, en contact direct avec les populations concernées.

La loi est aussi à l’origine de la création du Haut comité pour la transparence et l’information sur la sécurité nucléaire (HCTISN). C’est une instance d'information, de concertation et de débat sur les risques liés aux activités nucléaires et l'impact de ces activités sur la santé des personnes, sur l'environnement et sur la sécurité nucléaire.
Il comprend des représentants des Commissions locales d’information, d'associations de protection de l'environnement, d'organisations syndicales, d'industriels du nucléaire, de l’ASN et de l’IRSN, ainsi que de scientifiques et de parlementaires. Son caractère pluraliste, loin de constituer un obstacle à son efficacité, lui permet d’assurer une investigation poussée sur des sujets complexes, et de fournir ainsi au public des réponses complètes et crédibles sur des questions relevant de la sûreté nucléaire.

Ainsi, le progrès de la transparence en matière de sûreté nucléaire se fonde sur le double principe de l’indépendance et du pluralisme des instances qui en sont chargées, au niveau national comme au niveau local.

b) Les bonnes pratiques

Si vos rapporteurs considèrent que des progrès importants ont été accomplis, ces vingt dernières années, en matière de transparence, c’est aussi qu’ils ont pu le constater, à plusieurs reprises, au travers de résultats objectifs, par exemple en période de crise, ou encore pour la gestion des matières et déchets radioactifs.

Sur ce premier point, les polémiques survenues concernant les conditions d’information sur la catastrophe de Tchernobyl en 1986, plus particulièrement les critiques relatives à l’opacité sur l’ampleur des retombées radioactives, ont profondément et durablement ébranlé la confiance de la population française. Vingt-cinq années plus tard, ce traumatisme continue à alimenter la méfiance du public vis-à-vis de l’information officielle sur le risque nucléaire, méfiance parfois exploitée à mauvais escient pour contester des faits avérés ou les résultats de mesures scientifiques pourtant rigoureuses.

Conscients de ces difficultés, l’ASN et l’IRSN ont mobilisé, dès l’annonce de la catastrophe de Fukushima-Daiichi, une cellule de crise, afin d’assurer la meilleure information possible, dès le 11 mars, sur le déroulement des événements au Japon, puis, à partir du 26 mars, sur les retombées radioactives en France. Comme l’a rappelé le président de l’ASN, à l’occasion de l’audition du 16 juin 2011, le recueil d’informations sur l’évolution de la situation au Japon n’allait pourtant pas de soi, s’agissant
d’un pays confronté à une crise humanitaire majeure, résultant d’un puissant séisme suivi d’un tsunami, lesquels ont causé plusieurs dizaines de milliers de victimes, dévasté des villes entières et désorganisé les moyens de communication et de transport. Qui plus est, le sinistre ayant détruit l’essentiel des moyens de mesure sur le site de la centrale, l’exploitant TEPCO et l’autorité de sûreté japonaise, accaparés par la gestion de la crise, ne disposaient eux-mêmes que de données parcellaires sur l’état des installations.

Malgré ces obstacles, forts des relations tissées avec leurs homologues étrangers et de leur expertise, l’ASN et l’IRSN ont contribué à une meilleure évaluation de l’ampleur de l’accident nucléaire et de son impact sur l’environnement au Japon et, au-delà, dans l’hémisphère Nord. Ainsi, le reclassement de cet accident par l’ASN, dès le 15 mars, au niveau 5 au niveau 6 de l’échelle INES, ou encore la modélisation de la dispersion des radio-éléments publiée, à partir du 19 mars, par l’IRSN, ont bénéficié d’un large écho dans la presse internationale. Surtout, ces efforts de collecte et d’analyse de l’information disponible, ainsi que de communication à destination des médias et du public ont permis à nos concitoyens de mesurer la gravité de ces événements et de mieux apprécier leurs conséquences radiologiques limitées en France.

Vos rapporteurs souhaitent saluer à ce titre le personnel de l’IRSN qui, par la qualité et la clarté de ses communiqués, ainsi que la précision des réponses qu’il a su apporter lorsque l’honnêteté de son travail a été mise en cause, a contribué à rassurer la population française en faisant démonstration de compétence, de rigueur et de transparence.

Tout comme pour la transparence en période de crise, vos rapporteurs considèrent encourageante la progression de la transparence sur la gestion des déchets radioactifs. L’Office parlementaire a d’ailleurs contribué à cette évolution positive au travers des huit rapports qu’il a consacrés à cette question entre 1990 et 2011.

La loi du 30 décembre 1991 prévoit un suivi de l’avancement de ces recherches par une commission nationale d’évaluation (CNE), constituée d’experts de haut niveau, dont le rapport annuel est transmis au Parlement, lequel en saisi l’Office parlementaire, avant publication. Ce dispositif
original a permis, depuis sa mise en place, un suivi régulier de l’avancement des recherches dans le domaine de la gestion des déchets et, au travers de la publication du rapport annuel de la CNE, une information des associations et du grand public sur un sujet *a priori* ardu, en raison de sa technicité.

Le Plan national de gestion des matières et déchets radioactifs (PNGMDR) vise à dresser, tous les trois ans, un état des lieux des filières de gestion à long terme des matières et déchets radioactifs. Ce plan, élaboré, par un groupe de travail pluraliste, constitué de l’ensemble des acteurs de la filière, est progressivement devenu une référence, pour les associations comme pour le public. L’Office parlementaire étant chargé, au titre de la loi, d’évaluer le PNGMDR pour le compte du Parlement, a émis, dans son rapport paru en janvier 2011, plusieurs recommandations. Celles-ci sont d’ores et déjà mises en oeuvre par le groupe de travail chargé de préparer le PNGMDR 2013-2015.

De la même façon, la procédure d’autorisation, prévue par la loi, du futur centre de stockage géologique profond, comporte, l’organisation préalable, d’une part, d’un débat public destiné à informer les citoyens et à recueillir leurs avis, et, d’autre part, d’un débat parlementaire, avant un nouveau projet de loi.

Mais vos rapporteurs regrettent que l’une des dispositions de la loi, destinée à assurer la transparence du coût des charges de long terme, telles que le démantèlement des installations nucléaires ou la gestion des déchets radioactifs, ait tardé à être mise en oeuvre.

La loi prévoyait en effet, sur l’exemple de la CNE pour la recherche, la constitution d’une *Commission nationale d’évaluation du financement (CNEF)*, dont le premier rapport devait être rendu public en 2008. Or, malgré plusieurs rappels au Gouvernement et de nombreuses polémiques sur le coût du nucléaire, la CNEF ne s’est réunie pour la première fois que trois ans plus tard, le 7 juin 2011.
3. La gestion de crise entre anticipation et adaptation aux situations réelles

Anticiper les situations de crise est évidemment un devoir, même si la probabilité de réalisation du risque est jugée très faible. L’article 1er de la loi relative à la transparence et à la sécurité en matière nucléaire (TSN) prévoit que l’anticipation des actions de sécurité civile à mener en situation accidentelle est partie intégrante de la sécurité nucléaire.

DISPOSITIONS DE LA LOI TSN RELATIVES À LA GESTION ACCIDENTELLE

L’article 1er de la loi TSN\(^1\) dispose que « la sécurité nucléaire comprend la sûreté nucléaire, la radioprotection, la prévention et la lutte contre les actes de malveillance, ainsi que les actions de sécurité civile en cas d’accident ».

L’article 4 de la loi TSN prévoit, en outre, que l’ASN est associée à la gestion des situations d’urgence tant en amont, en apportant son concours à l’élaboration des plans de secours, que lorsque survient une telle situation, en adressant aux autorités compétentes ses recommandations sur les mesures à prendre et en contribuant à l’information du public sur l’état de sûreté de l’installation, les rejets dans l’environnement et les risques pour la santé des personnes.

Votre mission a examiné la gestion de crise nucléaire lors de deux auditions ouvertes à la presse :

- **une première audition consacrée à la gestion post-accidentelle** s’est déroulée le 5 mai 2011 afin de faire le point sur les avancées du comité directeur post-accidentel (CODIRPA) mis en place en juin 2005 pour élaborer la doctrine française et mettre en œuvre les dispositions nécessaires en réponse aux situations post-accidentelles nucléaires ;

- **une seconde audition, consacrée à la gestion locale de crise**, s’est déroulée à la préfecture du Nord (Lille) le 13 mai 2011 : elle a réuni les services locaux qui seraient appelés à intervenir en cas d’accident nucléaire nécessitant la mise en œuvre de mesures de protection de la population et de l’environnement. Le scénario envisagé était celui d’un accident à la centrale nucléaire de Gravelines, hypothèse qui avait d’ailleurs fait l’objet d’un exercice de crise organisé par la préfecture et impliquant la population le 18 janvier 2011.

\(^1\) Loi n° 2006-686 du 13 juin 2006 relative à la transparence et à la sécurité en matière nucléaire.
La loi n° 2004-811 du 13 août 2004 de modernisation de la sécurité civile a réformé la doctrine de planification des secours en créant une troisième génération de plan ORSEC (Organisation de la réponse de sécurité civile). Le dispositif est fondé sur des réponses de sécurité civile communes à tous les types de risques, complétées par des réponses particulières à certains risques tels que ceux associés aux activités nucléaires.

A la suite d’un événement de l’ampleur de celui qui s’est produit au Japon le 11 mars dernier, il paraît légitime de s’interroger sur la capacité des pouvoirs publics français à répondre à une crise de dimension comparable, tout au moins, dans le cadre du présent rapport, en ce qui concerne son volet nucléaire. Au-delà des seuls pouvoirs publics, ce sont tous les acteurs de la filière nucléaire qui pourraient être amenés à repenser leurs dispositifs de crise au regard de l’accident de Fukushima.

La gestion de crise à la suite d’un accident nucléaire appelle la mise en œuvre de réponses planifiées et préalablement testées lors d’exercices à différents niveaux. Cette gestion est fondée sur une répartition préétablie des rôles, et notamment une distinction des fonctions de décision et d’expertise.

a) L’articulation des niveaux d’intervention

Au niveau local, toute crise grave provoque le déclenchement, d’une part, du plan d’urgence interne (PUI) de l’exploitant nucléaire et, d’autre part, des dispositions particulières prévues par le plan particulier d’intervention (PPI) du site nucléaire, dans le cadre plus général du plan ORSEC, sous la responsabilité du préfet du département. Ces deux plans ayant des fonctions distinctes, leurs déclenchements respectifs ne sont pas liés, c’est-à-dire que tout déclenchement du PUI n’entraîne pas automatiquement la mise en œuvre du PPI. L’échelon de la zone de défense et de sécurité est également mobilisé pour la préparation et l’exécution des mesures de sécurité nationale.

Ces dispositifs s’articulent avec une gestion nationale, voire internationale des crises.

En cas de crise grave, les dispositifs locaux déclenchent la mise en place d’organisations nationales de crise au sein des organismes concernés
(exploitant, ASN, IRSN) ainsi qu’au niveau du ministère de l’Intérieur, par l’intermédiaire du centre opérationnel de gestion interministérielle des crises (COGIC) qui prépare et coordonne l'action gouvernementale. Le COGIC informe en permanence le ministre de l’Intérieur et propose des modalités d’intervention.

Le Secrétaire général de la Défense et de la Sécurité Nationale (SGDSN) est chargé de veiller à la cohérence interministérielle. Il assure le secrétariat du comité interministériel aux crises nucléaires et radiologiques (CICNR) et informe, en outre, les plus hautes autorités de l’État (Président de la République et Premier ministre).

L’ensemble de la chaîne d’alerte, d’intervention et d’information est décrite par la directive interministérielle du 7 avril 2005 sur l’action des pouvoirs publics en cas d’événement entraînant une situation d’urgence radiologique, c’est-à-dire une « émission anormale de matières radioactives » ou une « irradiation anormale sans rejet de matières radioactives » de nature à porter atteinte à la santé des populations ou à l’environnement. Hors situation couverte par un plan de secours ou d’intervention (notamment PPI, plan de secours spécialisé pour les transports de matières radioactives, plans Pirate applicables aux menaces terroristes), des modalités d’intervention en réponse à un événement susceptible d’entraîner une situation d’urgence radiologique sont prévues par une circulaire interministérielle du 23 décembre 2005.
L’ORGANISATION LOCALE DE CRISE NUCLÉAIRE

Plan d’Urgence Interne (PUI)
- **Le Directeur du site**
 appuyé par l’Organisation Nationale de Crise EDF (ONC)
- **MISSIONS**
 - Décider et agir à l’intérieur du site
 - Alerter et mobiliser les ressources
 - Maîtriser la situation et limiter les conséquences
 - Protéger, porter secours, informer le personnel
 - Informer et communiquer avec les pouvoirs publics et les médias

Plan Particulier d’Intervention (PPI)
- **Le Préfet**
 conseillé par l’**ASN** appuyé par la **DSC**
 (Direction de la Sécurité Civile)
- **MISSIONS**
 - Décider et agir à l’extérieur du site
 - Alerter et protéger les populations
 - Prévoir les mesures et les moyens de secours à mettre en œuvre pour faire face à l’événement
 - Informer les populations, les médias et les élus locaux
b) Les actions menées par l’exploitant nucléaire

Premier responsable de la sécurité de son installation, l’exploitant nucléaire a le devoir d’anticiper les accidents, de prévoir leurs conséquences, et de mettre en œuvre les moyens nécessaires pour en limiter les effets. En cas de crise, il déclenche son plan d’urgence interne (PUI) dont l’objet est de ramener l’installation à un état sûr et de limiter les conséquences de l’accident. Ce plan précise les modalités de l’interaction avec les pouvoirs publics.

LE PLAN D’URGENCE INTERNE (PUI)

Prévu par l’article L. 1333-6 du code de la santé publique, pour toute activité susceptible de provoquer un incident ou un accident de nature à porter atteinte à la santé des personnes par exposition aux rayonnements ionisants, le PUI est obligatoire pour toutes les installations nucléaires de base (INB). Il doit être transmis par l’exploitant à l’autorité de sûreté, préalablement à la mise en service de l’installation. Il peut être commun à plusieurs INB voisines ayant le même exploitant.

En application du décret du 2 novembre 2007, le PUI définit « les mesures d’organisation, les méthodes d’intervention et les moyens nécessaires que l’exploitant met en œuvre en cas de situation d’urgence pour protéger des rayonnements ionisants le personnel, le public et l’environnement et préserver ou rétablir la sûreté de l’installation ». En outre, il « précise les modalités de mise en œuvre des mesures incombant à l’exploitant en application du plan particulier d’intervention »1.

Par ailleurs, le code de la santé publique précise les conditions de l’intervention des travailleurs en situation d’urgence radiologique. Il dispose notamment que des équipes spéciales d’intervention doivent être préalablement constituées et formées pour faire face à une situation d’urgence radiologique et fixe les limites de doses efficaces susceptibles d’être reçues lors des interventions.

INTERVENANTS EN SITUATION D’URGENCE RADIOLOGIQUE
(STATUT RÉGLEMENTAIRE)

1- Au sens du Code de la santé publique, sont considérés comme « intervenants en situation d’urgence radiologique » :

- les différentes catégories de personnels susceptibles d’être engagés dans la gestion d’une situation d’urgence radiologique ;
- toutes les personnes agissant soit dans le cadre de conventions avec les pouvoirs publics, soit dans le cadre des réquisitions prévues par l’article 17 de la loi n° 2004-811 du 13 août 2004 de modernisation de la sécurité civile, sous l’autorité du directeur des opérations de secours, notamment au titre des plans d’urgence et de secours prévus par cette loi.

En vue de déterminer leurs conditions de sélection, de formation et de surveillance médicale et radiologique, les intervenants sont classés en deux groupes :

- le premier groupe est composé des personnels formant les équipes spéciales d'intervention technique, médicale ou sanitaire préalablement constituées pour faire face à une situation d'urgence radiologique ;
- le second groupe est constitué des personnes n'appartenant pas à des équipes spéciales mais intervenant au titre des missions relevant de leur compétence.

Les femmes enceintes ou allaitant et les personnes âgées de moins de dix-huit ans ne peuvent être intégrées dans les équipes du premier groupe. Lorsque le risque d'exposition aux rayonnements ionisants est avéré, les femmes enceintes ou allaitant et les personnes âgées de moins de dix-huit ans du second groupe sont exclues du périmètre du danger radiologique.

Les personnels appartenant au premier groupe font l'objet d'une surveillance radiologique et d'un contrôle d'aptitude médicale. Ils bénéficient d'une formation portant en particulier sur le risque associé à une exposition aux rayonnements ionisants. Ils disposent d'un équipement adapté à la nature particulière du risque radiologique lorsqu'ils sont engagés en opération.

Les personnes appartenant au second groupe bénéficient d'une information adaptée portant sur le risque associé à une exposition aux rayonnements ionisants.

Pour une intervention en situation d'urgence radiologique identifiée, des niveaux de référence d'exposition individuelle, constituant des repères pratiques, exprimés en termes de dose efficace, sont fixés comme suit :

- la dose efficace(*) susceptible d'être reçue par les personnels du groupe 1, pendant la durée de leurs missions, est de 100 millisieverts. Elle est fixée à 300 millisieverts lorsque l'intervention est destinée à protéger des personnes ;
- la dose efficace susceptible d'être reçue par les personnels du groupe 2 est de 10 millisieverts.

Un dépassement des niveaux de référence peut être admis exceptionnellement, afin de sauver des vies humaines, pour des intervenants volontaires et informés du risque que comporte leur intervention.

La dose efficace intègre l'ensemble des doses reçues par exposition interne et externe. Elle est évaluée selon les modalités définies en application de l'article R. 1333-10.

Les personnels appelés à intervenir doivent bénéficier de protections individuelles et être munis de dispositifs dosimétriques appropriés.

En aucun cas, la dose efficace totalisée sur la vie entière d'un intervenant ne doit dépasser 1 sievert.

2- Le code du travail, dans sa partie relative aux rayonnements ionisants, s'applique dès lors que des travailleurs sont susceptibles d'être exposés à un risque dû aux rayonnements ionisants survenant au cours d'interventions réalisées en situation d'urgence radiologique (sont visés par exemple les travailleurs des exploitants nucléaires).

Seuls les travailleurs volontaires peuvent réaliser les travaux ou les opérations prévues dans les situations d’urgence radiologique. Ils disposent à cet effet des moyens de dosimétrie individuelle adaptés à la situation.

Les travaux ou les opérations exposant aux rayonnements ionisants dans les situations d’urgence radiologique ne peuvent être confiés qu’aux travailleurs :

- appartenant à la catégorie A ;
- ne présentant pas d’inaptitude médicale ;
- ayant été inscrits sur une liste préalablement établie à cet effet ;
- ayant reçu une information appropriée sur les risques et les précautions à prendre pendant les travaux ou l’opération ;
- n’ayant pas reçu, dans les douze mois qui précèdent, une dose supérieure à l’une des valeurs limites annuelles fixées pour les expositions soumises à autorisation spéciale.

Les jeunes travailleurs de moins de dix-huit ans, les jeunes travailleurs âgés de seize à dix-huit ans autorisés lors de leur formation à être occupés à des travaux les exposant aux rayonnements ionisants et les femmes enceintes ne peuvent être affectés à des travaux ou des opérations effectués lors d’une situation d’urgence radiologique.

Il peut être dérogé à cette valeur au cours d’expositions professionnelles de personnes intervenant dans une situation d’urgence radiologique sur la base des niveaux de référence...
d’exposition fixés en application des dispositions précitées du code de la santé publique (cf supra). Un dépassement de ces niveaux de référence peut être admis exceptionnellement dans le cadre d’opérations de secours visant à sauver des vies humaines pour des intervenants volontaires et informés du risque que comporte leur intervention.

(*) Dose efficace (ou dose au corps entier) : somme fictive des différentes doses équivalentes affectant les différents organes.

Dose équivalente (ou équivalent de dose) : l’effet biologique produit par les rayonnements ionisants pour une même dose absorbée varie selon la nature du rayonnement et l’organe considéré. On calcule la dose équivalente en fonction de coefficients affectant l’organe considéré et le rayonnement produit.

Lors de l’audition précitée du 5 mai, trois des principaux exploitants nucléaires français (EDF, Areva et le CEA) ont précisé leur organisation face à l’éventualité d’une crise nucléaire.

Le schéma d’organisation de crise d’**EDF** est fondé sur les principes suivants :

- des équipes « action » distinctes des équipes « expertise » ;
- des équipes d’astreinte immédiate sur chaque site et au plan national spécifiquement formées et entraînées (cf. encadré ci-après) ;
- des locaux et moyens de télécommunications dédiés ;
- une intégration du retour d’expérience issu des exercices et des situations réelles. 300 exercices sont réalisés chaque année sur le parc EDF, soit une quinzaine d’exercices par site.
L’ORGANISATION DE L’ASTREINTE CHEZ EDF

L’astreinte immédiate concerne :

- environ 350 personnes par site nucléaire, réparties par équipes de 70 personnes qui sont d’astreinte une semaine sur cinq. L’équipe de 70 personnes est elle même divisée en plusieurs sous équipes correspondant à des fonctions de l’organisation (direction, sûreté, environnement, analyse technique indépendante, spécialités de maintenance). A noter que la taille de l’équipe est variable selon les sites (nombre de réacteurs, palier technologique...). Cette équipe est présente sur le site dans un délai de 30 mn.

- 300 personnes au niveau national réparties en 6 équipes de 50 personnes. L’équipe de 50 personnes est répartie en deux groupes principaux physiquement séparés (direction d’une part et appuis technique d’autre part, incluant notamment la sûreté, mais aussi l’expertise constructeur ou concepteur). Cette équipe est présente dans les locaux de crise dans un délai d’une heure.

La relève est organisée par les cellules logistiques. L’alerte de mobilisation des personnes d’astreinte est adressée à toutes les personnes qui figurent dans une équipe d’astreinte. Les personnes qui sont au tableau d’astreinte du jour se rendent immédiatement dans les locaux de crise, les autres accusent réception du message et signalent leur disponibilité éventuelle pour une relève à venir. C’est le responsable logistique national qui, à partir des accusés de réceptions du message automatique d’alerte par les personnes qui ne figurent pas dans l’équipe d’alerte immédiate de la semaine, prépare la constitution de l’équipe de relève.

Source : EDF

Le représentant d’EDF a précisé, en outre, que la liste nominative des intervenants en situation de crise ne serait pas improvisée puisque l’exposition d’urgence faisait l’objet d’un cadre réglementaire précis : « les volontaires devront s’être déclarés et auront dû subir un suivi médical particulier avant l’accident1 », l’enregistrement des doses étant également prévu.

Areva gère un spectre de risques plus larges, chimiques et nucléaires, lié à ses activités en amont et en aval du cycle du combustible au sein de ses deux grandes plateformes de La Hague et du Tricastin et à l’usine Melox de fabrication de combustible MOX (Marcoule).

1 M. Dominique Minière, directeur du parc nucléaire à EDF, audition ouverte à la presse du 5 mai 2011.
Areva supervise, par ailleurs, une importante activité de transport. La gestion de crise y est fondée sur une capacité de mobilisation rapide (astreinte) et confortée par le retour d’expérience de situations réelles (Niger, Socatri, Fukushima). Des exercices nationaux et internationaux sont organisés, impliquant les différentes dimensions de l’organisation (technique, personnel, communication, juridique…) ainsi que les relations avec les parties prenantes (autorité de sûreté, politiques, médias).

Entre douze et quinze exercices de niveau national sont effectués chaque année, deux à quatre étant organisés avec l’ASN et l’administration. Un exercice sur 36 heures a été expérimenté en 2010, pour améliorer la gestion de crise dans la durée. Cet exercice s’est efforcé d’intégrer également la dimension politique de l’événement. Afin de gérer les problématiques spécifiques au transport de matières nucléaires, Areva a prévu une organisation de type PUI pour le transport, de même nature que l’organisation prévue pour les installations.

Enfin, le CEA a également présenté son fonctionnement en situation d’urgence, qui s’articule autour d’un centre de coordination en cas de crise (CCC), situé à Saclay, en liaison avec le site en difficulté et l’ensemble des autorités compétentes. Une démarche de simplification des procédures a été réalisée, afin de privilégier l’acquisition de réflexes immédiats et efficaces :

- réduction de la chaîne de responsabilité interne ;
- mise en place de fiches d’information immédiate d’une seule page permettant de faire remonter l’information de manière sécurisée.

L’organisation de la filière nucléaire française est propice à la mutualisation des moyens et diffère en cela de la situation japonaise. La présence d’un opérateur unique des centrales nucléaires en France permet de
mettre en commun des moyens entre centres nucléaires de production électrique (CNPE) en cas d’accident au sein de l’un d’eux. La mutualisation est également possible entre opérateurs, comme en témoigne l’existence du GIE INTRA (groupe d’intervention robotique sur accidents) qui regroupe EDF, Areva et le CEA.

UN EXEMPLE DE MUTUALISATION : LE GIE INTRA

Depuis sa création en 1988, le Groupe d' Intervention Robotique sur Accidents (INTRA) a en charge de concevoir, exploiter et maintenir à disposition 24 h sur 24 h une flotte d'engins robotisés capables d'intervenir, à la place de l'homme, en cas d'accident nucléaire majeur, dans et autour des bâtiments industriels de ses membres. Il assure aussi la formation permanente de pilotes répartis au sein des installations des entreprises membres.

Le Groupe INTRA a été créé pour intervenir en cas d'accident nucléaire majeur dans une des unités de ses maisons mères.

Les équipes et le matériel doivent être prêts à intervenir dans un délai maximum de 24 heures sur l'ensemble du territoire français.

En cas de situation accidentelle majeure, la mobilisation des moyens INTRA peut être déclenchée par :

- le centre national de crise d'un des membres du Groupe INTRA ;
- les pouvoirs publics (direction de la défense et de la sécurité civile) ;
- une société étrangère bénéficiant d'une convention d’assistance.

L'équipe d’intervention, en astreinte 24h/24 est mobilisée immédiatement après l'alerte initiale, et à pied d'œuvre dans les locaux du Groupe INTRA en moins d’une heure.

Source : GIE INTRA

c) **La responsabilité de l’État**

Garant de la sécurité des populations, l’État met en œuvre les dispositifs de protection de la population propres aux installations nucléaires, dans le cadre plus général de l’organisation de la sécurité civile.
• Le cadre ORSEC

 ARTICLE 1ER DE LA LOI DU 13 AOÛT 2004

« La sécurité civile a pour objet la prévention des risques de toute nature, l’information et l’alerte des populations ainsi que la protection des personnes, des biens et de l’environnement contre les accidents, les sinistres et les catastrophes par la préparation et la mise en œuvre de mesures et de moyens appropriés relevant de l’État, des collectivités territoriales et des autres personnes publiques ou privées. »

L’organisation des secours au niveau départemental est déterminée par le plan ORSEC, arrêté par le préfet. Le nouveau dispositif ORSEC ainsi institué est bâti sur trois piliers :

- un recensement et une analyse préalable des risques et de leurs conséquences ;

- un dispositif opérationnel définissant une organisation unique de gestion des événements majeurs ;

- des phases de préparation, d’exercice et d’entraînement illustrant l’aspect pragmatique de la démarche.

Les dispositions générales du plan ORSEC sont applicables en toute circonstance, quelle que soit la cause de l’événement : l’objectif est de mettre en place une organisation opérationnelle permanente et unique de gestion des événements affectant la population, afin de favoriser l’acquisition de réflexes et la maîtrise partagée et pérenne du savoir-faire opérationnel. Les dispositions relatives à l’organisation du commandement s’appliquent, notamment la répartition des compétences entre le centre opérationnel départemental (COD), en préfecture, et le poste de commandement opérationnel (PCO), en sous-préfecture. Lorsque la crise à gérer dépasse le cadre départemental, l’échelon de la zone de défense et de sécurité intervient, notamment pour coordonner les opérations de sécurité civile, l’usage des forces militaires et maritimes, les relations transfrontalières, la circulation routière1

Une organisation spécifique existe pour optimiser l’intervention médicale (plan rouge) et l’accueil des victimes, y compris en grand nombre, au sein des structures hospitalières (plan blanc).

Des dispositions propres à certains risques technologiques sont néanmoins nécessaires ; elles figurent au sein des plans particuliers d’intervention (PPI).

- Les PPI

Obligatoire pour certaines installations et certains ouvrages, le PPI est arrêté par le préfet et révisable tous les cinq ans. Il prévoit les modalités de l’alerte et l’organisation des services en cas d'accident ou de risque d'accident, susceptible d'avoir une incidence sur la population et l'environnement à l'extérieur du site concerné.

1 Décret n° 2010-224 du 4 mars 2010 relatif aux pouvoirs des préfets de zone de défense et de sécurité
INSTALLATIONS NUCLÉAIRES DE BASE DEVANT FAIRE L’OBJET D’UN PPI

D’après le décret du 13 septembre 2005 relatif aux PPI, doivent faire l’objet d’un PPI, outre certaines installations classées pour la protection de l’environnement et certains aménagements hydrauliques, les sites comportant au moins une installation nucléaire de base (INB), qu’elle soit ou non secrète, de type suivant :

- un réacteur nucléaire d’une puissance thermique supérieure à 10 mégawatts ;
- une usine de traitement de combustibles nucléaires irradiés ;
- une usine de séparation des isotopes de combustibles nucléaires ;
- une usine de conversion chimique de combustibles nucléaires ;
- une usine de fabrication de combustibles nucléaires ;
- une unité de production de matières radioactives à usage militaire ;
- une unité de fabrication, d’assemblage ou de mise en œuvre d’éléments intégrant des matières radioactives à usage militaire.

En conséquence de ces dispositions, 39 sites nucléaires sont inclus dans le champ d’un plan particulier d’intervention.

En cas d'accident, le PPI est déclenché par le préfet qui assure alors la direction des opérations de secours et active la chaîne de commandement. Depuis une circulaire du 10 mars 2000, qui a prescrit une révision des PPI relatifs aux INB, le PPI peut être activé selon deux modes :

- Le PPI est activé en mode réflexe lorsque l’accident est à cinétique rapide, c’est-à-dire qu’il risque de conduire à des rejets de radioactivité hors du site avant six heures.

- Le PPI est activé en mode concerté lorsque l’événement est à cinétique lente et qu’une montée en puissance échelonnée de l’organisation de crise est possible.

L’instauration d’un « mode réflexe » dans les PPI est venue en réponse à une lacune car les PPI étaient calibrés pour répondre à un accident majeur sur un réacteur nucléaire, mais prenaient mal en compte le risque de situations accidentelles à cinétique rapide mais aux conséquences moindres, possibles pour quelques situations identifiées sur les réacteurs EDF et plus couramment pour les autres installations nucléaires.
LE DÉCLENCHEMENT DU PPI EN PHASE RÉFLEXE OU EN PHASE CONCERTÉE
L’alerte à destination de la population est fondée sur l’utilisation de moyens d’alerte complémentaires. Le PPI en recense les modalités : sirènes PPI mises en œuvre par l’exploitant sous la responsabilité du préfet dans un rayon de 2 km, système d’appel des populations en phase réflexe (SAPPRE) d’EDF pour ses installations, également sous la responsabilité du préfet, mise en œuvre du réseau national d’alerte (RNA) et d’engins mobiles de diffusion d’alerte (EMA), application de conventions avec les médias (chaînes de radio et télévision). À titre d’exemple, le tableau ci-dessous répertorie les moyens d’alerte prévus par le PPI de Gravelines. Le 18 janvier 2011, lors de l’exercice réalisé autour du centre nucléaire de Gravelines, 6000 abonnés ont été appelés en cinq minutes. L’appel ayant été renouvelé six fois si personne ne décrochait, environ 71 % des appels ont abouti.

MOYENS D’ALERTE DE LA POPULATION PRÉVUS PAR LE PPI DE GRAVELINES

<table>
<thead>
<tr>
<th>Moyens d’alerte</th>
<th>Déclenchés par</th>
<th>À destination de</th>
<th>Couverture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sirène PPI</td>
<td>EDF</td>
<td>Des salariés et de la population résidant à proximité immédiate du site</td>
<td>Rayon de 2 km</td>
</tr>
<tr>
<td>Système SAPPRE</td>
<td>EDF</td>
<td>Message automatique envoyé par téléphone à tous les abonnés au téléphone de Gravelines, Grand-Fort-Philippe et du quartier du Clair Marais de Saint-Folquin ainsi qu’une liste particulière de numéros d’appels. Parmi ces numéros peuvent figurer les numéros des établissements industriels les plus proches de la centrale nucléaire.</td>
<td>Rayon de 2 km</td>
</tr>
<tr>
<td>Sirène RNA</td>
<td>Commune</td>
<td>Des administrés et salariés de la commune</td>
<td>Cf. Plan communal de sauvegarde</td>
</tr>
<tr>
<td>EMA</td>
<td>Commune/SDIS</td>
<td>Des administrés et salariés de la commune</td>
<td>Cf. Plan communal de sauvegarde</td>
</tr>
<tr>
<td>Moyens radiophoniques et audiovisuels</td>
<td>Préfecture (bureau de la communication interministérielle)</td>
<td>La population</td>
<td>Cf. conventions France Bleu Nord, Delta FM, France 3</td>
</tr>
</tbody>
</table>
Les principales actions de protection de la population (« contre-mesures ») prévues par les PPI sont la mise à l’abri, l’évacuation et l’administration d’iode stable :

- Les PPI des centrales nucléaires prévoient les dispositions nécessaires pour une mise à l’abri jusqu’à environ 10 km, et une évacuation jusqu’à environ 5 km, dans le cas de scénarios accidentels « lents ». Dans l’hypothèse d’un scénario à cinétique rapide, une mise à l’abri dans un rayon de 2 km est retenue en phase « réflexe ». On considère que la mise à l’abri réduit d’un facteur 2 la dose efficace par inhalation et d’un facteur 8 à 10 l’exposition externe. Quant à l’évacuation, elle peut être librement effectuée ou à l’aide de cars affrétés par les pouvoirs publics. Le 18 janvier 2011, 55 cars ont ainsi été affrétés dans le cadre de l’exercice autour de la centrale de Gravelines. Une base de données des entreprises de transport et des entreprises des travaux publics permet de joindre celles-ci jour et nuit.

- L’administration d’iode stable, qui protège contre l’iode radioactif, est prévue par les PPI, dans un rayon de 10 km. L’iode stable doit être ingéré deux heures avant l’inhalation pour atteindre une efficacité maximale (98 %). Il n’est plus efficace qu’à 50 % si la prise intervient 6 h après l’exposition. Les habitants du rayon des 10 km reçoivent à titre préventif des pastilles d’iode stable à consommer sur instruction du préfet. Au-delà de ce rayon de 10 km, la prise d’iode devrait être organisée à partir de stocks existants à cet effet, notamment à l’intention des enfants et femmes enceintes qui sont les populations les plus sensibles aux risques causés par l’iode radioactif. Une circulaire est en préparation pour préparer le stockage et la distribution d’iode en complément du système financé par les exploitants sur les zones PPI.

Pour les réacteurs à eau pressurisée (REP) français, ces périmètres ont été fixés à partir de scénarios élaborés par l’Institut de protection et de sûreté nucléaire dans les années 1970 et 1980, qui permettent d’estimer l’évolution, en fonction du temps, des distances auxquelles certains seuils de dose efficace sont reçus par la population, en cas d’accident impliquant la fusion du cœur d’un réacteur conduisant à des rejets différés (diffus autour de l’enceinte de confinement au cours des premières 24 heures, puis massifs au-delà de 24 heures) et filtrés.
Ces seuils de dose efficace sont les suivants :

- 10 mSV pour la mise à l’abri ;
- 50 mSV pour l’évacuation ;
- une « dose équivalente à la thyroïde1 », antérieurement fixée à 100 mSV pour l’administration d’iode stable, abaissée récemment à 50 mSV par l’ASN pour accorder la pratique française à celle des pays limitrophes.

D’autres scénarios de référence ont été élaborés pour fixer le cadre des plans de secours d’autres installations, ou dans l’hypothèse d’un accident de transport.

Dans tous les cas, les périmètres de protection de la population retenus prennent en compte essentiellement les 24 à 48 premières heures d’un accident. Ils ne tiennent pas compte d’éventuels rejets accidentels sur une plus longue durée.

- La gestion post-accidentelle

Au-delà de la réponse de court terme, prévue par le dispositif ORSEC et par les PPI, l’ASN (alors DGSNR) a été chargée par la directive précitée du 7 avril 2005, en relation avec les départements ministériels concernés, d’établir le cadre, de définir, de préparer et de mettre en œuvre les dispositions nécessaires pour répondre à la situation post-accidentelle.

Cette thématique a donné lieu à une réflexion au sein du Comité directeur pour la gestion de la phase post-accidentelle d’une urgence radiologique (CODIRPA), piloté par l’ASN en lien avec de nombreux partenaires.

1 Voir ci-dessus la définition de la dose équivalente, dans l’encadré « Intervenants en situation d’urgence radiologique »
Les actions préconisées en sortie de phase d’urgence impliquent l’établissement d’un zonage du territoire incluant :

- une **zone de protection de la population** (ZPP) où seront engagées des actions de décontamination ;

- une **zone de surveillance renforcée des territoires** (ZST) à l’intérieur de laquelle la consommation et la commercialisation des denrées alimentaires produites seront interdites puis, dans un second temps, soumises à un contrôle libératoire en se basant sur les niveaux de radioactivité maximum admissibles fixés par la Commission européenne ;

- le cas échéant, une **zone d’éloignement des populations**, à l’intérieur de la ZPP, si les niveaux d’exposition externe dus aux dépôts le justifient.

Représentation schématique du zonage post-accidentel

![Représentation schématique du zonage post-accidentel](Source : CODIRPA (Document de travail))
d) Les réponses de proximité

Enfin, la planification est déclinée à l’échelle des communes, au plus près des populations et du terrain. Les communes dotées d'un plan de prévention des risques naturels prévisibles approuvé ou comprises dans le champ d'application d'un PPI ont l’obligation d’élaborer un **plan communal de sauvegarde** (article 13 de la loi précitée du 13 août 2004). Celui-ci détermine les mesures immédiates à prendre et les moyens à mettre en œuvre pour protéger la population, en fonction des risques connus. Il est l’outil opérationnel à la disposition du maire pour l’exercice du pouvoir de police en cas d’événement de sécurité civile, lui permettant d’être le partenaire principal du préfet, directeur des opérations de secours lors de la gestion d’un événement majeur.

La mise en place des plans communaux de sauvegarde (PCS) dans les communes concernées est toutefois lente, et leur contenu est variable. Environ 50 % des communes qui ont l’obligation d’élaborer un plan (soit 17 à 20 % des communes) l’ont effectivement adopté. Les plans devraient être prochainement relancés, d’une part en raison de la modification du zonage sismique, qui fait entrer un grand nombre de communes en zones à risques, et d’autre part en raison du projet de loi relatif au risque de submersion marine, qui dispose que les communes où un plan de prévention des risques de submersion sera prescrit devront mettre en place un PCS.

Par ailleurs, **un recensement des PCS adoptés ou non dans les zones incluses dans un PPI nucléaire est en cours**. Il devrait permettre de rendre compte, d’ici à la fin de l’année, de l’état de préparation des communes confrontées au risque nucléaire.
LE RÔLE DES COMMUNES DANS LE DISPOSITIF ORSEC

Les missions qui relèvent de la compétence des communes dans le cadre ORSEC sont :
- l’alerte et l’information des populations,
- l’appui aux services de secours,
- le soutien des populations (hébergement, ravitaillement…),
- l’information des autorités.

La réalisation d’un PCS est donc fortement conseillée pour toutes les communes, au-delà de celles dans lesquelles elle est obligatoire, pour prendre en compte leurs missions ORSEC.
II.– LES AXES PRIORITAIRES DU RENFORCEMENT DU DISPOSITIF

Comme nous venons de le voir, la sécurité et la sûreté nucléaire sont gérées en France d’une manière très rigoureuse ; toutefois, vos rapporteurs ont identifié des axes d’amélioration possible, notamment la nécessaire meilleure prise en compte des risques aggravés suite à l’accident de Fukushima, ainsi que l’exigence de progrès permanent qui est indissociable du concept de sûreté.

A. – LA PRISE EN COMPTE D’AUTRES FORMES DE RISQUES MAJEURS

Le renforcement des installations nucléaires face aux aléas majeurs nécessite, tout à la fois, d'approfondir les connaissances historiques et paléo-historiques sur ces aléas, de mieux maîtriser les marges d'incertitude sur leur évaluation, et de prendre en compte la possibilité de combinaison de plusieurs d'entre eux. Ce renforcement peut également passer par l'ajout d'une nouvelle ligne de défense, permettant, d'une part, de mobiliser très rapidement des moyens mobiles sur le site et, d'autre part, de piloter à distance certaines fonctions.

1. L'intégration de l'hypothèse de chocs simultanés ou en cascade

Le progrès des connaissances dans le domaine des aléas majeurs est un objectif prioritaire, puisqu’il permet une amélioration continue de la sûreté nucléaire, par le biais des réexams de sûreté. Au cours de ces réexams, l’ASN procède en effet à une revue des protections existantes, compte tenu non seulement des exigences requises lors de la conception de l’installation, mais aussi des connaissances théoriques et retours d’expérience nouveaux, qui sont susceptibles de conduire à demander à l’exploitant de renforcer ses dispositifs de sécurité.

Les accidents nucléaires de Three Mile Island, Tchernobyl et Fukushima nous enseignent que c’est rarement un risque réalisé isolément
qui entraîne des difficultés majeures, mais plutôt des scénarios de combinaison de risques.

Il convient notamment de prendre en compte tous les types d’installations et d’activités, ainsi que les interactions possibles entre sites comportant des industries diverses, comme cela a été mentionné plus haut dans le cas de Gravelines. L’impact d’éventuelles erreurs humaines dans le déroulement d’un accident doit également être pris en considération.

Le développement des études dites probabilistes constitue de ce point de vue un complément utile à l’approche dite déterministe qui prévaut dans le domaine de sûreté nucléaire.

APPROCHES DÉTERMINISTE ET PROBABILISTE

La démonstration de la sûreté des réacteurs nucléaires français repose pour l'essentiel sur une approche déterministe, c'est-à-dire que les dispositions de conception retenues par l'exploitant sont justifiées notamment par l'étude d'un nombre limité d'accidents de dimensionnement et par l'application de règles et critères qui incluent des marges et des conservatismes. Cette approche est complétée par la réalisation des études probabilistes de sûreté (EPS). Les EPS sont une méthode d'évaluation des risques fondée sur une investigation systématique des scénarios accidentels. Elles se composent d'un ensemble d'analyses techniques permettant d'apprécier les risques liés aux installations nucléaires en termes de fréquence des événements redoutés et de leurs conséquences.

Source : ASN (Revue Contrôle n° 155)
2. Une meilleure appréhension des incertitudes

L’accident de Fukushima incite à une vigilance accrue dans la prise en compte des risques, d’autant que l’incertitude n’est pas négligeable, en raison de la fiabilité partielle des données historiques et, plus encore, paléo-historiques.

La poursuite des travaux de recherche est donc souhaitable :

- D’une part, pour évaluer de façon aussi précise que possible les marges d’incertitude et les modalités souhaitables de leur prise en compte dans les installations industrielles, par le système de majorations des risques (séismes majorés de sécurité, crues millénales majorées…) :

 « Les données comportent des incertitudes et ces incertitudes méritent d’être prises en compte tout au long de la démarche de caractérisation de l’aléa sismique. A ce jour, les recommandations françaises en la matière (RFS 2001-01) ne précisent pas explicitement comment ces incertitudes doivent être prises en compte. Des avancées dans ce domaine sont intervenues depuis 2001. La question d’une évolution de la RFS sur ce point est donc clairement posée. Nous avons également noté l’importance des travaux de recherche à mener pour améliorer la fiabilité des données ».

- D’autre part, pour améliorer les connaissances historiques et paléo-historiques, dans le domaine des risques majeurs.

 Un exemple de domaine dans lequel la recherche et la prévention ont progressé au cours des dernières années est celui du risque de tsunami, après celui du 26 décembre 2004 qui a ravagé l’océan Indien.

 En témoigne la création d’un centre d’alerte aux tsunamis pour l’Atlantique nord-est et la Méditerranée occidentale au centre CEA de Bruyères-le-Châtel (Essonne), qui seraopérationnel mi-2012, et jouera

\[1\]

Conclusion du séminaire scientifique international « Risque sismique et sûreté nucléaire », Strasbourg, 17 juin 2009 (ASN).
également un rôle au niveau international puisqu’il sera le centre régional d’alerte aux tsunamis pour tous les pays de la Méditerranée occidentale. En dehors des côtes méditerranéennes, où le risque est avéré mais où n’existe aucune centrale nucléaire française, un tsunami pourrait-il affecter les autres côtes de la métropole ? En 1755, le tremblement de terre de Lisbonne fut suivi quelques dizaines de minutes plus tard par un raz-de-maree destructeur qui s’est étendu jusqu’aux côtes françaises\(^1\). La base de données du Bureau de recherches géologiques et minières (BRGM) recense un certain nombre de tsunamis connus sur les côtes françaises. Comme cela a été évoqué ci-dessus, dans le cadre de la refonte de la RFS « Inondation », l’ASN s’intéresse notamment aux centrales situées sur les côtes: Blayais (Gironde), Flamanville (Manche), Paluel et Penly (Seine-Maritime), Gravelines (Nord).

Il convient, en outre, de conserver en mémoire qu’un tsunami est possible même en l’absence de risque sismique fort, d’une part en raison de la nature du phénomène susceptible de se propager sur des centaines voire des milliers de kilomètres, d’autre part en raison de la possibilité de tsunamis locaux résultant de mouvements de terrain (comme cela s’est produit à Nice après l’effondrement en mer d’une plateforme de l’aéroport le 16 octobre 1979).

L’hypothèse de chocs encore plus violents et destructeurs, notamment du fait de phénomènes naturels extrêmes, susceptibles en plus de se cumuler, amène à s’interroger non seulement sur le renforcement des structures des installations nucléaires, mais aussi sur la mise en place d’une nouvelle ligne de défense d’arrière-garde, à distance des installations.

3. Une nouvelle articulation des moyens disponibles

L’audition ouverte à la presse organisée le 5 mai 2011, ainsi que lors de la visite de la centrale nucléaire de Gravelines, nous invitent à envisager la mise en place d’une sorte de force de réaction rapide, susceptible de fournir des matériels et moyens humains mobilisables dans les 24 h à 48 h à l’échelle d’un site.

Les moyens mobiles d’appoint pour l’électricité et l’eau

L’idée de constituer des moyens de secours mobiles n’est a priori pas très novatrice, car elle est au moins aussi ancienne que cette couleur rouge vif du camion des pompiers qui fascine tant les enfants. Ce qui est moins évident, c’est d’entretenir et de tenir en réserve, continûment, sans rupture budgétaire, une flotte mobilisable très rapidement d’alternateurs et de pompes spécialement adaptés au cas des installations nucléaires.

L'homogénéité et l’étendue du parc nucléaire français constitue plutôt un atout au regard d’un tel besoin, et M. Dominique Minière d’EDF a mentionné au cours de l’audition du 5 mai la disponibilité d’une forte capacité de moyens mobiles de secours par le simple jeu de la solidarité entre sites : si l’un est touché par un sinistre localisé, les autres sites indemnes peuvent lui servir de base arrière pour la fourniture en moyens de secours.

Dans la mesure où le jeu de l’entraide permet d’abaisser la charge de cette fonction de secours ultime, il paraît pertinent de lui donner la base la plus large possible, et l’intérêt d’une coopération internationale en ce domaine ne peut que s’imposer à l’ensemble des exploitants mondiaux. De plus, l’éloignement géographique des sites participant à un tel mécanisme de solidarité constitue une garantie supplémentaire pour la disponibilité, dans tous les cas hormis celui du cataclysme mondial, d’une capacité indemne d’intervention mobile. Il n’est donc pas étonnant qu’une négociation internationale soit en cours pour mettre en place un tel mécanisme de solidarité.

On peut du reste souhaiter que les inspections de sûreté intègrent la surveillance du bon entretien de la capacité, dans chaque site, non seulement à disposer, mais aussi, à projeter, le cas échéant, des moyens de secours.

Cependant la mise en place d’une ligne de défense supplémentaire par la mobilisation rapide de moyens mobiles n’est pas qu’une affaire de disponibilité d’équipements; c’est aussi une affaire de conception, à au moins deux niveaux : l’acheminement et le branchement.
L’acheminement concerne la manière dont on pourra effectivement amener l’équipement sur le site, en considérant que les moyens de communication proches peuvent être, eux aussi, détruits ou désorganisés. En ce cas, des études \textit{a priori}, particulières à chaque site, devraient permettre d’identifier d’avance, voire d’aménager physiquement, plusieurs solutions d’acheminement, selon les scénarios d’impact subi.

Le branchement concerne la mise en service opérationnelle de l’équipement de secours. Dans le cas d’un apport d’électricité, on perçoit bien la nécessité d’établir d’avance, dès la conception du bâti, des circuits redondants d’alimentation de secours, dotés de points d’accès multiples. Dans le cas d’un apport en eau assurant un refroidissement, il semble indispensable d’imaginer à l’avance la circulation des flux de manière à ce que les ruissellements chargés de radionucléides puissent être concentrés, au lieu de contribuer, en se répandant largement, à l’aggravation de la pollution radioactive du site, gênant d’autant les autres formes d’intervention de secours, comme cela s’est passé à Fukushima; cela donne l’idée d’un ensemble de rigoles et de puisards, correctement dimensionnés d’avance pour ce mode de sauvegarde ultime.

La mobilisation efficace de moyens mobiles de secours est donc loin d’être une question triviale.

> Le développement d’une capacité de contrôle à distance

La capacité opérationnelle de la ligne de défense d’arrière-garde sera accrue si elle peut disposer d’instruments de suivi à distance : possibilité de mesurer la radioactivité en différents points, voire capacité à manœuvrer des robots autonomes. Les solutions technologiques allant en ce sens sont encore largement du domaine de la recherche; mais leur développement mérite une attention particulière dans la perspective d’un renforcement des moyens de gestion de crise.

Ainsi, l’audition du 24 mai a permis de découvrir les potentialités, mais aussi les limites, de la fibre optique dans un contexte de pollution radioactive. D’un côté, une capacité à véhiculer de l’information en grande quantité sur de grandes distances, à partir d’une impulsion lumineuse envoyée depuis une base arrière. De l’autre, une fragilité physique dans des
ambiances de température très élevée. En outre, la question du recours à des capteurs passifs, ou activables à partir d’une impulsion lumineuse, reste ouverte.

Néanmoins, l’idée d’exploiter les progrès réalisés dans le domaine des technologies de l’information, au niveau des supports physiques ou hertziens, comme au niveau des algorithmes de traitement du signal, pour essayer de construire des instruments de mesure disponibles même en cas de rupture des alimentations électriques classiques, mérite attention.

Les mêmes technologies de l’information, mais aussi d’autres progrès techniques, sont indispensables pour piloter à distance des robots autonomes, soit installés d’avance à demeure, et activés en cas de crise, soit se déplaçant jusqu’à l’installation à partir d’une base arrière, ce qui suppose de les doter d’une grande capacité à contourner les obstacles. Apparemment, de tels outils ont été testés sur le site de Fukushima pour tenter des opérations de maintenance en zone de forte pollution radioactive, certains de ces outils ayant même été mis à disposition par l’industrie nucléaire française, mais la robotique mobile est un domaine où de nombreux progrès sont encore possibles.

 Une organisation renforcée

L’accident de Fukushima a montré en effet que le regroupement physique, sur le site même à protéger, de l’ensemble des systèmes de secours, constitue en soi une forme de vulnérabilité, puisqu’il suffit un impact majeur ciblé et suffisamment brutal pour, tout à la fois, mettre en péril le cœur nucléaire de l’installation, et désorganiser les dispositifs de sauvegarde.

Lors de cet accident, il est en effet apparu clairement que la réponse à une perte simultanée des sources électriques et de refroidissement avait été mal anticipée par l’exploitant japonais, et que les moyens mobiles à disposition étaient insuffisants ce qui a conduit à des hésitations et à des adaptations, après la mise en œuvre jugée inefficace de premiers moyens de refroidissement héliportés.
La parade consiste à organiser, a priori, une ligne de défense supplémentaire à distance, permettant de conserver une maîtrise partielle, mais effective, de la situation, durant un temps nécessaire pour reconstituer les dispositifs de commande sur place.

Pour la sûreté des installations nucléaires, cette fonction d’arrière-garde revêt potentiellement deux aspects : l’un, déjà plus ou moins couvert, mais qu’il s’agit à l’avenir de consolider, consiste en une capacité de mobiliser rapidement des moyens mobiles pour fournir des ressources d’appoint en eau et en électricité; l’autre, manifestement encore assez hypothétique, si l’on en juge les informations recueillies au cours de l’audition du 24 mai, concerne la disponibilité de technologies permettant de conserver une certaine maîtrise de la situation à distance.

B. – UNE ANTICIPATION PLUS POUSSÉE DES SITUATIONS POSSIBLES

L’accident survenu à Fukushima nous force à repenser les situations que nous aurions à affronter. Ces réévaluations se posent tant pour l’exploitant qui doit encore accroître son effort de sécurisation, pour la puissance publique qui doit, par exemple, mieux intégrer les questions d’urbanisation, que pour la population, qui doit être sensibilisée plus largement aux actions en place par une meilleure scénarisation des exercices de crise.

1. L’optimisation des procédures de commande

Comme nous l’avons vu, le retour d’expérience (I.B.1.b) a pour but d’améliorer constamment la sécurité des installations nucléaires. Une des premières leçons tirée des accidents graves survenus dans le monde est que le facteur humain est dans tous les cas crucial pour la bonne gestion post-accidentelle, et ce, quelle que soit l’origine de l’accident : technique comme à Three Mile Island (TMI), humaine comme à Tchernobyl ou bien naturelle comme à Fukushima. Ainsi, comme le souligne l’IRSN1 dans un dossier sur l’accident de Three Mile Island2, « l’homme est aussi un maillon essentiel de

1 IRSN : Institut de Radioprotection et de Sureté Nucléaire (http://www.irsn.fr)
2 IRSN. Three Mile Island (Etats-Unis) 1979. Institut de radioprotection nucléaire. [Visualisé le 16 juin 2011]
la sûreté ». L’IRSN précise même que « dans une période où les réacteurs de génération III (par exemple EPR\(^1\)) sont souvent mis en exergue par leurs concepteurs pour une fiabilité accrue des systèmes de sûreté et la prise en compte des accidents graves à la conception, il est bon de se souvenir du rôle essentiel de l’homme comme maillon de la sûreté ». En effet, comme dans toute activité humaine, la réponse en temps réel des équipes de pilotage peut tout aussi bien limiter la gravité de l’accident comme l’accentuer ; l’accident de Three Mile Island étant un cas d’école de cette dernière situation. Ainsi, une évolution constante des procédures de pilotage, notamment en mode incidentel, est une absolue nécessité.

L’analyse de l’accident de TMI et le retour d’expérience qui a suivi ont été riches d’instructions. Tout d’abord il a mis en avant le rôle crucial du facteur humain dans la gestion d’un accident sur une centrale nucléaire. Mais aussi, il a démontré la possibilité de l’occurrence concomitante d’événements indépendants. Enfin, cet accident a montré le rôle aggravant des défauts latents.

Cet accident a donc conduit les agences de contrôle à édicter de nouvelles normes de sécurité et les exploitants à revoir leurs procédures de pilotage des réacteurs et de gestion d’un fonctionnement en mode incidentel. En France, ces nouvelles normes ont notamment abouti à l’adoption de « l’approche par états » ; approche qui consiste à adopter une stratégie de pilotage d’une tranche en fonction de son état physique et non en fonction des avaries réelles ou supposées.

Vos rapporteurs vont maintenant présenter les éléments techniques et humains mis en place afin d’assurer l’intégrité des centrales nucléaires en cas d’incident ou d’accident et de limiter au maximum les conséquences de ce genre d’événements.

\(^1\) EPR : European Pressurized Reactor (réacteur pressurisé européen), réacteur de génération III conçu par Areva NP
a) L’effort de sécurisation

Le premier est de limiter le pouvoir aggravant du facteur humain. Ainsi une forme de « redondance humaine » doit être assurée. Cette redondance se matérialise notamment par le travail d’ingénieurs de sûreté chargés de vérifier les choix de pilotage effectués par les opérateurs. Ce travail de vérification doit se faire de manière indépendante grâce à la surveillance d’un certain nombre de paramètres de sûreté. Cette approche vise aussi à supprimer les défauts latents, ou à tout le moins, à en limiter la durée. En effet, ces défauts latents, qui sont des problèmes d’origine humains ou technologiques, peuvent aggraver des accidents par effet de cumul, et ce, même s’ils apparaissent comme mineurs. C’est notamment ce qui s’est passé lors de l’accident de TMI où une vanne de vidange du circuit primaire est restée ouverte et a conduit l’assèchement quasi complet de la cuve réacteur. Ainsi, ce défaut latent a été une des causes principales de la fusion partielle du cœur de la tranche n°2 de TMI.

En France, l’IRSN analyse tous les incidents liés à un défaut latent répertoriés dans les centrales afin d’évaluer leurs conséquences potentielles et de proposer des mesures correctives permettant d’éviter la reproduction de ce type de défaut. L’identification de l’importance de la conséquence de ce type de problèmes a aussi conduit à revoir la fiabilité des informations fournies aux pilotes d’une centrale. En effet, sur la centrale de TMI les voyants n’indiquaient que l’effectivité de l’envoi de l’ordre et non son exécution. Ainsi, la vanne est apparue fermée aux pilotes alors qu’elle était en fait ouverte. Ce qui les a conduits à adopter une mauvaise stratégie de pilotage.

Le second but de ces procédures est de pallier la difficulté de gérer des événements indépendants mais concomitants. L’ensemble des

1 SPI : Surveillance Permanente Incidentelle
2 U : procédures Ultimes
3 SPU : Sortie de la Phase d’Urgence
procédures ultimes (représentées par un acronyme du type Ux) adoptées en 1981 visent à limiter les conséquences d’un accident en adoptant une démarche alors nouvelle. Ces procédures (U1 à U5) permettent en effet de couvrir la totalité des situations potentielles, et ce, indépendamment de leur cause ; c’est ce que l’on dénomme la logique de commande par « états ». À titre d’exemple « la procédure U1 a pour objectif d’éviter la dégradation du cœur ou, en cas de dégradation, de maintenir le cœur dans la cuve, en utilisant tous les moyens d’injection d’eau disponibles ».

b) La logique de « l’approche par états »

La logique de « l’approche par états » doit permettre d’adopter la stratégie de conduite d’une tranche appropriée quel que soit son état (i.e. fonctionnement en mode normal ou en mode incidentel), et ce, indépendamment de son état préalable (notamment indépendamment de l’origine du ou des problèmes ayant conduit à un mode de fonctionnement incidentel).

• Les origines de « l’approche par états »

Précédemment à l’accident de TMI « l’approche événementielle » était utilisée. Cette procédure prévoyait une identification préalable de la ou des sources du problème survenu afin d’adopter la réponse adéquate. Cette procédure, une fois le problème identifié, a l’avantage de permettre une réaction plus rapide et plus efficace. Néanmoins, cette approche présente plusieurs inconvénients majeurs qui ont conduit à l’aggravation de l’accident de Three Mile Island. Le principal problème est lié à la difficulté, voire l’impossibilité, de prévoir tous les problèmes pouvant survenir sur une centrale, notamment dans le cas où plusieurs seraient concomitants mais indépendants.

De plus, le risque d’un mauvais diagnostic ou d’un diagnostic partiel des sources du problème est important, et ce, pour des raisons qui peuvent être d’origine humaine comme technologique (par exemple dans le cas de mauvaises informations fournies aux pilotes). Enfin, cette approche rend très difficile l’évolution de la stratégie de pilotage de la centrale dans le cas où les paramètres physiques de celle-ci n’évolueraient pas comme prévu. L’ensemble de ces problèmes et de leur impact potentiellement très aggravant a donc conduit à l’abandon de cette approche pour l’exploitation des centrales nucléaires françaises.
- « L’approche par états » et son nécessaire approfondissement

Afin de se doter d’une approche permettant de faire face à un grand nombre d’incidents voire d’accidents, et ce, même s’ils interviennent en parallèle, EDF et Areva (alors Framatome) ont donc proposé d’aborder le choix des mesures correctives à mettre en œuvre en situation incidentelle ou accidentelle (quelle qu’elle soit), de manière différente : « l’approche par états ». Contrairement à « l’approche événementielle », « l’approche par états » ne vise pas directement à identifier la ou les causes du problème survenu sur une centrale. En effet, cette approche, en s’appuyant notamment sur l’analyse des paramètres physiques de l’état de refroidissement de la cuve réacteur et de la disponibilité des systèmes de sauvegarde, doit permettre de pallier les problèmes de « l’approche événementielle ». C’est-à-dire que cette approche permet tout à la fois une bien meilleure évolutivité de la stratégie de conduite et une prise en compte d’événements concomitants mais indépendants.

Comme toute approche, « l’approche par états » doit nécessairement prendre en compte le retour d’expérience et doit donc évoluer. Plusieurs axes d’évolution sont à poursuivre. Tout d’abord, il faut constamment améliorer la prise en compte de la mesure de l’état physique de la cuve réacteur et des systèmes de sauvegarde. Ce travail doit tout d’abord viser à améliorer la fiabilité des informations fournies aux pilotes (retour d’expérience de Three Mile Island), mais aussi à garantir une redondance suffisante des instruments de mesures et enfin en ajouter dans le cas où ceux présents ne sont pas suffisants. Sur ces deux derniers points, l’analyse de l’accident de Fukushima sera sans doute riches d’instructions tant le manque d’informations fiables, y compris pour l’opérateur TEPCO, a été apparemment criant. D’autre part, ce travail d’approfondissement doit permettre d’encore améliorer la prévision d’accidents éventuels et donc d’y préparer les pilotes de centrales, et ce, même si et peut être surtout parce que ceux-ci n’y seront jamais confrontés durant toute leur carrière. Cette préparation doit permettre notamment l’acquisition d’automatismes qui, le moment venu, doivent permettre de limiter la survenue d’erreurs humaines. Ce dernier travail est notamment le rôle des simulateurs que vos rapporteurs vont maintenant présenter.
c) Le rôle des simulateurs

Les simulateurs sont aujourd’hui monnaie courante dans nombre d’activités. Ils permettent d’une part de faire des tests virtuels (conception assistée par ordinateur, résistance des matériaux et structures, …) et d’autre part de former des opérateurs sans aucun danger (pilotage d’avion, conduite de train ou de voiture, …). Il en est de même pour les centrales nucléaires. En effet, des simulateurs permettent :

- la conception initiale et la modification des centrales ;
- de mener des études incidentelles et accidentelles ;
- de concevoir et faire évoluer les procédures de contrôle des réacteurs ;
- l’étude du facteur humain ;
- la formation initiale et continue des pilotes de centrale.

Ainsi, comme pour les pilotes d’avions, ces simulateurs permettent, entre autre, de préparer les opérateurs à toutes les éventualités allant du simple incident jusqu’à l’accident grave.

- Présentation et conception des simulateurs

Plusieurs types de simulateurs sont utilisés pour l’étude des centrales d’un point de vue incidentel et accidentel. Les simulateurs dont nous parlons ici sont les simulateurs de pilotages notamment utilisés pour la formation des pilotes de centrales. Vos rapporteurs ont pu visiter un de ses simulateurs lors de la visite du CNPE de Gravelines.

Ces simulateurs se matérialisent sur chaque site de production électronucléaire par une salle de commande surnuméraire exacte réplique des salles de commandes de chaque tranche du site. Cette salle de commande est couplée à un simulateur informatique qui permet de rajouter une tranche virtuelle à laquelle il peut arriver, sans aucun danger, tous les pires accidents imaginables.

Ces simulateurs sont conçus par des sociétés externes à EDF. Corys T.E.S.S.¹ (filiale d’Areva TA et EDF Développement Environnement) et

Atos Origin détiennent actuellement le contrat de simulateurs pour EDF. Ce contrat porte sur la maintenance et la mise à niveau des 19 simulateurs (un par CNPE) et 7 configurations dédiées à la maintenance. Ainsi chacun des 19 CNPE dispose d’un simulateur pour la formation de ses pilotes. Néanmoins seulement 6 configurations existent : une pour chacun des six types de tranches actuellement en fonctionnement en France. Ainsi chaque type de simulateur est configuré pour modéliser la tête de série d’une tranche.

Par exemple, les réacteurs REP 900 MW CP1 sont simulés suivant la configuration de la tranche numéro 1 du Tricastin, et ce, quel que soit le type de source froide (tour aéroréfrigérante par convection, tour aéroréfrigérante à air pulsé ou prélèvement d’eau froide). Ainsi, pour 10 configurations actuellement en fonctionnement seulement 6 simulateurs sont conçus, maintenus et mis à niveau.

- Maintenance et mise à niveau des simulateurs

Dans les faits, ces simulateurs sont pensés et entretenus comme 6 tranches supplémentaires dans le parc nucléaire français. Ainsi, dès qu’une modification est effectuée sur la tranche tête de série, la même modification doit être effectuée sur les simulateurs correspondants. Par conséquent, lorsqu’une modification est effectuée par la Division production nucléaire (DPN) d’EDF, le Centre d’ingénierie du parc nucléaire en exploitation (CIPN) d’EDF, qui a préalablement conçu et validé la modification, transmet le cahier des charges de la modification au prestataire maintenant les simulateurs. Celui-ci conçoit alors une évolution du simulateur qu’il fait valider par EDF. Enfin, le prestataire procède à la mise à jour des simulateurs installés dans les centrales.

En outre, d’après Corys T.E.S.S. « la maintenance des simulateurs et leur rénovation permettent de remédier à l’obsolescence progressive des matériels et logiciels utilisés. Elle prend aussi en compte [...] l’évolution des besoins de formation des personnels. »

1. CP0, CP1, CP2, P4, P’4 et N4
2. Cette division rassemble les 19 centres nucléaires de production d’électricité (CNPE) en fonctionnement, ainsi que deux unités nationales: UTO (Unité Technique Opérationnelle) et UNIE (Unité d’Ingénierie d’Exploitation).
3. Cette unité est responsable de l’ingénierie de la partie nucléaire des centrales (bâtiment réacteur...). Elle assure la conception des modifications ainsi que la préparation et la réalisation des travaux de maintenance lourde sur les gros composants nucléaires (générateurs de vapeur, circuits primaires...). Par la présence d’équipes dédiées sur les sites, le CIPN assure un appui au parc nucléaire en exploitation et contribue au développement de sa durée de fonctionnement.
Utilisation des simulateurs

Comme dit précédemment, ces simulateurs permettent de réaliser de nombreuses fonctions. Les simulateurs grandeur nature sont conçus pour se comporter comme une tranche réelle. Ainsi ils sont suffisamment réalistes pour servir à la conception et à l’optimisation des centrales et des procédures de contrôle et d’exploitation. En outre, ils permettent de procéder à des essais grâce à l’émulation de systèmes réels, et de valider des études de sûreté.

Sur le site de Corys T.E.S.S. deux exemples d’utilisation des simulateurs sont donnés. Le premier concerne le développement avec EDF du premier simulateur de réacteur de type EPR. Celui-ci est actuellement employé en support des études d’ingénierie du projet de construction de la future centrale de Flamanville, notamment pour valider les documents de conception. Son contenu et ses fonctionnalités évoluent régulièrement en fonction de l’avancement de la conception de cette centrale. Ce simulateur servira, en outre, à partir de 2010 d’outil de formation pour les futurs opérateurs de conduite. Le second exemple concerne le développement pour CNPEC (Chine) d’un simulateur de vérification et de validation du contrôle commande-numérique de la centrale REP 1000MW de Lingao II.

Les simulateurs sont aussi et avant tout utilisés comme outils de formation initiale et continue des opérateurs de conduite. Ils participent ainsi à la totalité du cycle de vie d’une centrale nucléaire et peuvent être utilisés pour la validation de nouvelles procédures ou des études d’optimisation. L’approche par état est ainsi apprise pas les pilotes de centrale sur des simulateurs complets. L’évolution de ces procédures est aussi validée sur de tels simulateurs. Ainsi l’approche par état est constamment mise à jour suite au retour d’expérience, qu’il soit en conduite normale, incidentelle ou accidentelle. De plus ces simulateurs permettent d’envisager un grand nombre de scénarios d’accidents et donc de préparer les opérateurs à ces situations.

Lors de notre visite du CNPE, nous avons pu observer pendant quelques minutes une séance de formation sur simulateur. Vos rapporteurs y ont appris que les pilotes passent 10% de leur temps de travail en formation dont 2/3 sur simulateur ; ce qui représente trois semaines par an.
d) Les mécanismes d’arrêt d’urgence

Comme pour tout système complexe, le pilotage d’une centrale nucléaire requiert un mélange d’humains et d’automates. Cette combinaison permet de toute évidence de pallier les limites de chacune des boucles de pilotage (une certaine lenteur pour les humains et une absence d’analyse intelligente pour les automates). On a vu à Fukushima que ce type de contrôle permet aux centrales de se mettre en arrêt d’urgence en quelques secondes ; des temps d’arrêts qui seraient inenvisageables si cet arrêt devait être effectué à la suite d’un ordre humain. Ainsi un ensemble de dispositifs actifs de protection – pompes, générateurs – sont activés de façon automatique dans le but de garantir ou de rétablir la sûreté des installations dans un délai qui ne laisserait pas à l’homme le temps d’agir. Lors d’une audition publique M. Jean-Marc Miraucourt, directeur de l’ingénierie nucléaire d’EDF, a indiqué à la mission qu’« il en va notamment ainsi de l’arrêt automatique de la réaction nucléaire, des soupapes de sécurité, de l’injection d’eau de secours dans le circuit du cœur du réacteur ainsi que dans le générateur de vapeur, de l’aspersion de l’enceinte et du démarrage, en dix secondes, des générateurs diesel de secours ».

Par ailleurs, ces systèmes d’arrêt d’urgence permettent la mise à l’arrêt automatique en cas d’anomalie sur n’importe quel paramètre affectant la sûreté. Ainsi, dans la réponse à une question d’un de vos rapporteurs, lors de l’audition du 24 mai 2011 concernant la vulnérabilité d’un réacteur à une prise de contrôle mal intentionnée - par exemple dans un accès de démence d’un des pilotes - du poste de pilotage, nous avons appris que « cette procédure d’arrêt d’urgence s’engage aussi bien pour des défaillances matérielles que pour des causes humaines. Un arrêt d’urgence du réacteur se produit ainsi en cas d’action inappropriée : une cinquantaine de cas sont enregistrés chaque année en France ».

À la suite de l’accident de Fukushima, qui a notamment provoqué une contamination au césium, l’ASN a adopté un cahier des charges le 5 mai dernier qui prévoit les procédures de contrôle de l’ensemble des systèmes de sauvegarde.
2. L’adaptation des plans de sécurité civile

Après l’accident de Fukushima, exploitants et pouvoirs publics ont engagé une réflexion sur les réponses possibles à des événements improbables voire imprévisibles, sans préjuger des causes qui pourraient provoquer de tels événements.

a) Les problématiques en jeu

« Fukushima, après AZF, nous enseigne aussi qu’il faut prendre en compte les risques à infime probabilité d’occurrence. Voilà non pas une prémonition du risque, mais bien notre hypothèse de travail, afin de nous hausser à un très haut niveau d’anticipation. » déclare le préfet du Nord, préfet de la région Nord-Pas-de-Calais lors de l’audition ouverte à la presse du 13 mai 2011.

Les measures de protection de la population, prises dans les jours qui ont suivi l’accident de Fukushima, sont à due proportion de la crise traversée, qui est directement liée à l’exposition du territoire japonais à des risques naturels de grande ampleur, que nous ne rencontrons pas dans les mêmes proportions en France, du moins sur le territoire métropolitain, où sont implantées nos installations nucléaires. Les mesures prises par les autorités japonaises pour faire face à la crise nucléaire ne devraient-elles toutefois pas inciter les pouvoirs publics français à engager un réexamen, non seulement de la sécurité des centrales nucléaires, mais aussi des réponses de sécurité civile telles qu’elles sont planifiées en France. Il pourrait s’agir, tout au moins, de mettre en œuvre des tests de notre capacité à répondre à une échelle croissante de difficultés, ce qui rejoint la question, abordée ci-après, du dimensionnement des exercices réalisés pour tester les dispositifs existants.

- La maîtrise de l’urbanisation

Anticiper la protection des populations en cas de crise nucléaire pose la question de la maîtrise de l’urbanisation aux abords des installations nucléaires.
La loi permet en effet aux pouvoirs publics d’instaurer des servitudes d’utilité publique limitant ou interdisant les nouvelles constructions à proximité des installations nucléaires.

Or l’ASN souligne qu’au cours de ces dernières années, les projets d’urbanisation autour des sites nucléaires se sont multipliés. Un guide sur la maîtrise de l’urbanisation est en cours d’élaboration par l’autorité, afin notamment de préserver l’opérabilité des plans de secours.

L’enjeu serait à terme que les documents d’urbanisme prennent en compte les risques générés par les installations nucléaires.

- L’ampleur des mesures de protection de la population planifiées

Si l’on considère, à l’avenir, l’accident de Fukushima comme une hypothèse de travail, c’est-à-dire un scénario extrême de référence, notre planification accidentelle et post-accidentelle risque de paraître sous-dimensionnée.

Elle se fonde en effet sur des scénarios prenant peu en compte le risque de cumul de difficultés, ainsi que l’a souligné le sous-préfet de Dunkerque lors de l’audition du 13 mai 2001 : « aucun système national n’anticipe les effets cumulés car cela coûte trop cher. ».

La catastrophe japonaise se caractérise :

- d’une part, par l’occurrence simultanée de plusieurs types de risques naturels (séisme, tsunami) et technologiques (en conséquence des premiers) ;

- d’autre part, par la concomitance de plusieurs accidents nucléaires, puisque des difficultés ont été rencontrées sur plusieurs réacteurs, ainsi que sur les piscines d’entreposage du combustible. On a même craint, immédiatement après la catastrophe du 11 mars, que plusieurs centrales nucléaires japonaises ne soient accidentées.

1 Rapport de l’ASN sur l’état de la sûreté nucléaire et de la radioprotection en France en 2010.
En conséquence de cette crise d’ampleur exceptionnelle, des mesures de protection de la population elles-mêmes exceptionnelles ont été prises, immédiatement après l’accident.

Elles ont concerné un vaste périmètre (20 km pour l’évacuation, 30 km pour la mise à l’abri), trois fois supérieur au périmètre des mesures envisagées dans les PPI de nos réacteurs à eau pressurisée (10 km pour la mise à l’abri et l’ingestion d’iode stable, 5 km pour l’évacuation).
LES MESURES DE PROTECTION DE LA POPULATION PRISE PAR LE GOUVERNEMENT JAPONAIS À LA SUITE DE L’ACCIDENT DE LA CENTRALE NUCLÉAIRE DE FUKUSHIMA

A la suite du séisme et du tsunami du 11 mars 2011, le gouvernement japonais a évacué la population dans un rayon de 20 km autour de la centrale de Fukushima et demandé la mise à l’abri de la population présente dans le rayon entre 20 et 30 km. Il a ensuite étendu partiellement la zone d’exclusion à une liste de communes situées entre 20 et 30 km dont la contamination radiologique pourrait conduire à une exposition supérieure à 20 mSv sur un an.

Puis les autorités japonaises ont mis en place 3 zones afin de limiter l’exposition des populations : une zone « interdite d’accès », une zone d’évacuation planifiée et une zone d’évacuation préparée.

La zone « interdite d’accès » est la zone de 20 km évacuée dès le début de la crise. Les 78 000 personnes qui résidaient dans cette zone auront la possibilité de revenir temporairement à leur domicile pour une durée maximum de 2 h. Elles devront porter une combinaison, un dosimètre, et subiront un contrôle de radiation en ressortant de la zone. Les 6 000 personnes résidant dans un rayon de 3 km autour de la centrale ne bénéficieront pas de cette mesure à cause des débits de dose trop élevés.

La zone d’évacuation planifiée comprend les territoires au-delà des 20 km où la dose dépasserait 20 mSv pour les douze mois à venir du fait de l’exposition externe aux substances radioactives déposées dans l’environnement. La mise en œuvre de cette évacuation est encore en cours.

La zone d’évacuation préparée correspond aux territoires compris entre 20 et 30 km non concernés par la zone d’évacuation planifiée ; les habitants de cette zone doivent être préparés à une évacuation en cas d’urgence. Les enfants, femmes enceintes, malades ne doivent pas rester dans cette zone, les établissements scolaires sont fermés.

Le 26 avril, il a été décidé que les animaux d’élevage présents dans la zone des 20 km seraient abattus.
L’expérience japonaise pose nécessairement la question du périmètre des PPI. Certes, les pouvoirs publics peuvent toujours adapter les mesures planifiées en fonction des situations réelles, mais avec les risques qu’implique une action sans planification préalable.

La question du périmètre d’administration de l’iode stable a été posée avant l’accident de Fukushima dans le contexte de l’abaissement du seuil d’intervention de 100 mSV à 50 mSV. L’IRSN considère que l’évolution des connaissances remet en cause les scénarios de référence initialement retenus pour la définition des PPI:
« L’évolution des connaissances depuis les années 80 conduit aujourd’hui à considérer qu’en l’absence de protection, (…), une dose à la thyroïde supérieure à 100 mSV pourrait être reçue jusqu’à une distance de l’ordre de 18 km de la centrale accidentée ; dans les mêmes conditions, une dose à la thyroïde supérieure à 50 mSV pourrait être reçue jusqu’à une distance de 25 à 30 km de la centrale accidentée. Dès lors, le choix d’une valeur de 50 mSV à la thyroïde impliquerait de vérifier que les mesures déjà prises (prédistribution, constitution de stocks) permettraient d’assurer une protection convenable jusqu’aux distances considérées, sachant que la cinétique des situations accidentelles (…) laisse un délai de l’ordre de 24 heures avant le rejet massif. ». Par ailleurs, l’IRSN note que des investigations nouvelles « devraient montrer que la valeur de 50 mSV à la thyroïde pourrait être dépassée en quelques heures pour certains scénarios considérés pour la phase réfléxe des PPI, et sur une distance plus grande que l’actuel rayon de 2 km retenu pour cette phase réfléxe. »

La circulaire en préparation sur l’administration d’iode stable devrait permettre la mobilisation de 110 millions de comprimés d’iode dans un délai de 24 à 36 heures après un accident : 60 millions de comprimés seront disponibles dans une centaine de plateformes, sous la responsabilité de l’EPRUS2 et 50 millions de comprimés supplémentaires seront stockés dans des plateformes à l’échelon zonal.

On voit qu’en ce qui concerne la distribution d’iode, l’outil PPI est quelque peu dépassé.

Une réévaluation plus générale de cet outil est nécessaire :

- d’une part, les réflexions de l’IRSN sur la remise en cause des scénarios de référence initialement retenus pour la définition des PPI posent la question de leur dimensionnement notamment au regard des périmètres prévus pour la protection des populations ;

1 Avis de l’IRSN sur le projet de décision concernant le niveau d’intervention relatif à l’administration d’iode stable en situation d’urgence radiologique.
2 L’établissement de Préparation et de Réponse aux Urgences Sanitaires (EPRUS), établissement public administratif créé par la loi du 5 mars 2007, est chargé de mettre en place un corps de réserve sanitaire et de gérer les stocks et la logistique d'approvisionnement des produits pharmaceutiques nécessaires en vue de répondre aux situations de catastrophe, d'urgence ou de menace sanitaires graves sur le territoire national ou à l'étranger.
- d’autre part, les mesures prises par les autorités japonaises après l’accident de Fukushima, dans des périmètres plus vastes que ceux prévus par les PPI français, constituent un retour d’expérience à méditer.

b) La protection radiologique des intervenants

L’accident de Fukushima incite à s’interroger sur les conditions de mise en œuvre des dispositions réglementaires précitées relatives aux interventions en situation d’accident, concernant notamment les « équipes spéciales d'intervention technique, médicale ou sanitaire préalablement constituées pour faire face à une situation d'urgence radiologique ».

Peu après l’accident de Fukushima, le directeur de la centrale nucléaire de Nogent déclarait, à propos de l’appel à des volontaires au sein du personnel en cas de conditions de travail très dégradées : « Il n’y a pas de liste préétablie (...). En général, le professionnalisme des gens fait qu’on trouve des volontaires. »

Or comme il a été indiqué plus haut, lors de l’audition du 5 mai 2011, le représentant d’EDF a indiqué à votre mission : « les volontaires devront s’être déclarés et auront dû subir un suivi médical particulier avant l’accident ». En réalité, comme cela a été confirmé à votre mission lors de son déplacement à Fessenheim, les volontaires se déclarent auprès du médecin du travail, mais le directeur de la Centrale n’a pas connaissance du nombre ni a fortiori de la liste des salariés qu’il aurait à sa disposition en cas d’accident.

L’obligation de formation et de suivi d’équipes préconstituées pour intervenir en situation d’urgence radiologique n’incombe évidemment pas qu’à EDF mais aussi aux autres exploitants et aux pouvoirs publics pour ce qui est de la constitution d’équipes médicales et de secours. De façon générale, l’accident de Fukushima doit inciter à préciser les modalités concrètes de formation et de mobilisation des personnels susceptibles de travailler dans des conditions dégradées – voire d’ailleurs, lorsque c’est possible, d’utilisation de robots.

1 L’Est-éclair, 19 mars 2011.
Il importe que les conditions de mise en œuvre du volontariat en situation d’urgence soient testées lors d’exercices, car il s’agit évidemment de l’un des points clefs de la gestion d’une crise nucléaire.

c) La pertinence des mesures planifiées

Ce n’est pas seulement l’ampleur, mais aussi la pertinence des mesures prévues qui doit être évaluée.

- Les nouvelles technologies modifient les conditions de l’alerte et, au-delà, de la communication de crise, par rapport à ce qu’elle a pu être après l’accident de Tchernobyl. L’émergence d’une information très décentralisée et mutualisée transforme le contexte d’une éventuelle crise. Il n’est pas certain, par exemple, que les sites Internet de l’ensemble des autorités et organismes appelés à intervenir en cas de crise en France soient dimensionnés pour faire face à un événement majeur. L’IRSN a connu des difficultés informatiques, au plus fort de la crise de Fukushima, qui se déroulait pourtant à 10.000 km, car son site a atteint 1,5 million de connexions par jour contre quelques dizaines de milliers habituellement. Ces difficultés ont certes été résolues en quelques heures. A cet égard, les moyens d’alerte par le biais du téléphone filaire, des chaînes radiophoniques et de télévision, des sirènes et engins mobiles demeurent bien sûr indispensables car ils garantissent une information au plus près des populations concernées, et sont peu susceptibles de saturation comme peuvent l’être les réseaux Internet et mobiles.

Néanmoins, des conventions avec les opérateurs de téléphonie mobile, ainsi qu’une stratégie de communication sur internet et les réseaux sociaux, seraient des compléments utiles aux dispositifs décrits à votre mission.

Internet a aujourd’hui un rôle majeur à jouer, en cas de crise, pour conforter la crédibilité de la parole des autorités publiques. Cette parole doit être coordonnée, car il faut communiquer de façon cohérente pour que le recouplement des sources publiques et privées soit un facteur de pédagogie et permette la construction d’un « capital de confiance collectif »

1 M. Jacques Repussard, directeur général de l’IRSN (audition ouverte à la presse du 5 mai 2011).
Cette nécessité est reconnue par l’exploitant, par exemple à Gravelines : « Avec 1700 salariés et plus de 2000 prestataires à certaines périodes de l’année qui disposent de téléphones intelligents, de Twitter et de Facebook, comment imaginer que l’information reste maintenue derrière des barbelés ? Ce temps est révolu. »

La mise en place d’une force d’intervention, chargée de gérer la communication et d’anticiper les réponses à apporter aux rumeurs doit être envisagée.

Les mesures de protection de la population soulèvent également quelques interrogations :

- On considère généralement que la mise à l’abri est impossible au-delà de 48 heures tant pour des raisons psychologiques que parce que son efficacité tend à diminuer au fur et à mesure des rejets radiologiques. La population est mal préparée à cette consigne de mise à l’abri, comme l’a montré l’incident récent consistant en un déclenchement intempestif de l’alarme de la centrale de Golfech, qui a suscité l’incompréhension. Par ailleurs, comme cela a été mentionné par les services préfectoraux lors de l’audition du 13 mai 2011, on peut douter du respect de la consigne invitant les parents à ne pas venir chercher leur enfant à l’école.

- Dans l’hypothèse d’une évacuation, les exercices montrent que la population tend à partir spontanément, l’action des pouvoirs publics consistant alors à accompagner les flux, ce qui se révélerait complexe dans des zones densément peuplées, si les voies sont bloquées par un trafic dense, éventuellement associé à une catastrophe naturelle. Les évacuations en car concernent pour l’essentiel les publics « captifs » (écoles, foyers...) ou les personnes âgées ou dépourvues de moyens de transport. La question des refus d’évacuation, qui s’est posée autour de Fukushima, est, par ailleurs, mal appréhendée.

1 M. Jean-Michel Quilichini, directeur du CNPE de Gravelines (audition ouverte à la presse du 13 mai 2011).
3. La sensibilisation des populations

a) Les exercices de crise

En matière nucléaire, 12 exercices nationaux sont organisés en théorie chaque année, en application d’une circulaire annuelle qui fixe les objectifs et le programme de ces exercices. Sur les 12 exercices prévus par la circulaire de 2010, dix ont pu être réalisés et la population a participé à huit d’entre eux. Il est essentiel, pour que ces exercices soient utiles, que la population et les élus locaux y soient étroitement associés. Alors qu’un certain désintérêt de la population pour les exercices a pu être observé, par exemple lors de l’exercice autour de la centrale de Gravelines le 18 janvier dernier, il est probable qu’après Fukushima ces exercices seront davantage ressentis comme étant indispensables, tout au moins pendant quelques années.

L’accident de Fukushima appelle l’attention sur certains aspects qu’il serait utile de tester lors des exercices. Certaines thématiques figuraient d’ailleurs déjà parmi les objectifs des exercices pour l’année 2010 : organisation d’exercices inopinés, gestion post-accidentelle, forte pression médiatique, volet sanitaire important et volet mesures de radioactivité important.

- **L’organisation d’exercices inopinés** : il serait contre-productif, voire dangereux, d’organiser des exercices inopinés impliquant la population ; toutefois il serait utile de tester la réactivité des organisations de crise par des exercices inopinés impliquant exploitants et pouvoirs publics.

- **L’organisation d’exercices plus longs**, incluant la gestion post-accidentelle, est souhaitable ;

- **La pression politique et médiatique, nationale et internationale, la résistance des sites Internet** doivent aussi être testées. Il est nécessaire de répondre de façon crédible à la demande d’information, sans préjudicier à l’organisation de crise.
Enfin les exercices doivent s’accompagner de l’instauration d’une véritable culture de la sécurité, grâce à une formation au risque nucléaire, via l’école et les médias, tout en parant au phénomène d’accoutumance au risque qui pourrait rendre la population moins vigilante. Il s’agit de favoriser l’acquisition de réflexes, par le biais de l’éducation aux risques majeurs, dont le développement a déjà été préconisé par plusieurs rapports parlementaires, notamment issus de l’Office\(^1\). Cette éducation consisterait en une sensibilisation de l’ensemble de la population, au niveau national, complétée par une information ciblée à l’intention des populations situées à proximité d’une centrale nucléaire.

- **Exercices inopinés d’alerte en centrales nucléaires : exemple du déclenchement intempestif de la sirène PPI du CNPE de Golfech**

Des exercices d’alertes sont régulièrement organisés sur les sites de centrales nucléaires et sont généralement des réussites. Ces exercices sont annoncés à l’avance et les riverains sont donc préparés à la survenue de ceux-ci, même si le scénario précis n’est pas dévoilé à l’avance. On peut donc se demander si ces exercices sont vraiment représentatifs de la réaction qu’aurait la population en cas d’accident.

Le 2 mai 2011 en soirée la sirène d’alerte du PPI du CNPE de Golfech s’est déclenchée de manière intempestive durant près d’un quart d’heure. Ce déclenchement imprévu, même s’il s’agit d’un cas isolé, peut sans doute permettre d’approcher de manière un peu plus réaliste la réaction de la population face à un accident réel. La sirène d’alerte est normalement enclenchée en cas d’accident sur la centrale et est prévue pour être entendue à 2 km à la ronde. Elle peut être activée par le directeur du CNPE ou le préfet suivant la cinétique de l’accident. La réaction de la population face à cet incident a été pour le moins inattendue. En effet, malgré les consignes de confinement connues de la population et appliquées tous les trois ans lors d’un exercice d’alerte, la population est en grande majorité sortie de chez elle pour, comme le dit le maire de Golfech, « voir ce qui se passait ». Ainsi la réaction de la population a été l’exact opposé de ce qui était attendu d’elle.

\(^1\) Voir notamment « Tsunamis sur les côtes françaises : un risque certain, une impréparation manifeste », rapport de M. Roland Courteau n°488 (AN) et n° 117 (Sénat) du 7 décembre 2007.
Il est intéressant de voir plus précisément ce qui s’est passé ce soir du 2 mai pour apprendre de cet incident et améliorer nos procédures d’alerte. Pour cela, vos rapporteurs se basent sur quelques articles de presse et une retranscription d’entretiens téléphoniques avec M. Alexis Calafat, maire de Golfech, et avec Mme Meyer, directrice des services du cabinet du préfet du Tarn et Garonne.

T+0 (environ 20h30) : l’alarme du PPI du CNPE de Golfech se déclenche. Elle a été entendue dans quelques villages environnant Golfech. Dans ces villages, la plupart des personnes ayant entendu la sirène sortent « pour voir ce qui se passe à la centrale » plutôt que de rester calfeutrées chez eux.

T+10 : le maire de Golfech doit appeler lui-même la centrale EDF pour savoir ce qui s’y passe ; l’incident se déroulant juste après la prise de service des équipes de nuit la chaîne d’information n’a, semble-t-il, pas très bien fonctionné. M. le Maire demande le déclenchement du système d’alerte téléphonique SAPPRE, ce qui lui est logiquement refusé puisque seul le préfet a autorité pour cela (le directeur du CNPE ayant délégation seulement en cas d’accident à cinétique rapide).

T+15 : arrêt de l’alarme. M. le Maire appelle le préfet notamment pour lui demander l’activation du système SAPPRE. Cette demande ne peut pas être exaucée car l’utilisation de ce système n’est prévue qu’en cas d’accident réel ou d’exercice.

T+20 : M. le Maire fait utiliser le système d’alerte de la mairie pour avertir la population que le retentissement de la sirène était une fausse alerte.

1 3 mai 2011 – LibéToulouse : Golfech : le déclenchement "intempestif" d’une alarme affole la population

2 3 mai 2011 – SudOuest : Fausse alerte à la centrale nucléaire de Golfech (82)
http://www.sudouest.fr/2011/05/03/fausse-alerte-a-la-centrale-nucleaire-de-golfech-82-387786-3.php

3 3 mai 2011 – France3 : Alarme impromptue à Golfech

4 4 mai 2011 – SudOuest : Contaminés au ras-le-bol
Par ailleurs, il est à noter que la sirène d’alerte n’a pas été entendue dans tout le périmètre de sécurité de deux kilomètres. Un élément positif peut tout de même être souligné, malgré sa réaction tout à fait inadéquate la population n’a pas été prise d’un mouvement de panique. Néanmoins la séquence de cet incident peut nous laisser perplexe quant à l’intégration des consignes de sécurité par les populations voisines d’un CNPE et quant au suivi des consignes par ces populations en cas d’accident réel.

De plus, un examen des procédures d’alerte de la population et de la chaîne d’information en temps de crise est incontestablement à réaliser. Ainsi, il faut se poser la question du séquençage de l’alerte des populations, d’abord l’alerte par sirène puis le système d’appel.

En outre, il faudrait envisager la possibilité d’utiliser le système d’alerte téléphonique pour informer la population en cas de fausse alerte. Dans cet exemple on peut aussi voir que, malgré les exercices, la population n’a pas totalement intégré les procédures d’alerte et les consignes de sécurité, ainsi un effort supplémentaire de formation est absolument nécessaire. De plus, d’après M. le Maire, pour une bonne part de ses administrés, le risque d’accident est considéré comme nul. Ce sentiment d’absence de risque est sans doute une des raisons de la mauvaise intégration des consignes de sécurité par la population. Aussi, sans provoquer un mouvement de panique des populations, il faut néanmoins que celles-ci reprennent conscience de l’importance du respect de ces mesures d’urgence.

Enfin, une dernière question reste en suspens : comment réagirait vraiment la population en cas d’alerte réelle ? Les parents ne se précipiteraient-ils pas chercher leurs enfants ? La population n’essaierait-elle pas de quitter les lieux sans aucune protection ? Pour répondre à cela des schémas d’évacuation plus profonds et plus intégrés par la population semblent nécessaires.
b) Des scénarios plus complets

- Les plans de secours traitent des 24 à 48 premières heures mais, au-delà, il faut préciser comment seront assurés l’hébergement et l’approvisionnement des populations, surtout dans le cadre d’une crise longue. Certes un plan départemental d’hébergement prévoit un accueil dans d’autres communes mais il n’est pas certain que les maires, à qui la loi de modernisation de la sécurité civile confie la charge de subvenir aux besoins des habitants, en lien avec les indispensables associations de secourisme, aient les moyens suffisants pour réaliser cette tâche. La question des bases arrière de la planification de crise se pose.

- En fonction de la gravité de l’accident, les capacités d’accueil médical pourraient être mises à l’épreuve, notamment la capacité à accueillir de manière simultanée de nombreuses victimes d’un accident de type nucléaire.

- Au-delà des conséquences à court terme d’un événement, l’accident de Fukushima nous rappelle qu’il convient de tenir compte des conséquences d’éventuels rejets de plus longue durée. A ce titre, il est probable que les réflexions en cours, pilotées par l’ASN, sur la gestion post-accidentelle des crises nucléaires, connaîtront des développements nouveaux au regard du retour d’expérience japonais. Cette gestion post-accidentelle nécessite une préparation qui n’est pas forcément une planification coûteuse, mais qui peut consister en des dispositions opérationnelles. A titre d’exemple, la direction de la sécurité civile fait valoir l’intérêt d’instaurer un seuil de libération des déchets puisque la question s’est posée à Fukushima de matériels envoyés par la France qui ont dû être laissés sur place en l’absence de mise en œuvre d’un tel seuil. L’ASN y est toutefois opposée. La politique de « zonage » ne permet de libérer que des déchets provenant de zones historiquement exemptes d’activité nucléaire afin de ségrégérer avec certitude l’ensemble des déchets nucléaires et éviter toute erreur humaine.

1 La « libération » des déchets signifie leur sortie du domaine réglementé des usages de la radioactivité. Différentes approches existent, selon les pays. Les seuils de libération, exprimés en activité massique (Bq/g), sont soit universels, soit dépendant du matériau, de son origine et de sa destination.
C. – LA SÉCURITÉ N’A PAS DE PRIX

Si la filière nucléaire française a su fermement conserver sa position de premier rang mondial acquise voici plus un tiers de siècle, c’est avant tout le fruit de la détermination de la Nation, au sortir de la seconde guerre mondiale, à se doter des moyens de son indépendance, le résultat du dévouement de deux générations d’ouvriers et d’ingénieurs ainsi que d’un effort collectif des citoyens de notre pays.

1. Le maintien dans le giron de l’État

L’industrie nucléaire fonde en effet son développement sur des décisions au long cours, à l’échelle du demi-siècle. Cet engagement sur le long terme constitue également, aux yeux de vos rapporteurs, la meilleure garantie du maintien de la sûreté des installations nucléaires.

En effet, si pour une entreprise banale la recherche prioritaire du profit est un objectif naturel, celle-ci conduit inexorablement à vouloir, par tous moyens, la réduction des coûts. Dans ce cadre, la sûreté apparaît essentiellement comme une source de coûts, ne procurant aucun avantage concurrentiel immédiat, sur laquelle toute économie serait bonne à prendre. Aussi, vos rapporteurs considèrent-ils que l’industrie nucléaire ne peut se développer dans un tel contexte, pas plus qu’elle ne saurait se plier aux aléas de la concurrence internationale, sans de graves inconvénients sur le plan de la sûreté des installations.

En conséquence, nous recommandons que l’État prenne toutes les dispositions qui apparaîtront nécessaires pour, d’une part, conserver sur le long terme une complète maîtrise des entreprises de la filière nucléaire française et, d’autre part, faire reconnaître au niveau européen, le caractère spécifique de la filière nucléaire qui ne peut répondre à l’exigence de concurrence imposée dans le secteur de l’énergie par les traités. Ce raisonnement doit s’imposer au moment où l’énergie nucléaire concerne la France plus que son environnement européen.
2. Un renforcement ciblé des moyens

Lors de chacune des visites réalisées sur les sites nucléaires, vos rapporteurs ont mesuré la prééminence du rôle de l’Autorité de sûreté nucléaire en matière de contrôle de la sûreté des installations.

a) La consolidation des instances de contrôle

Pour assurer le maintien d’un suivi et d’un contrôle rigoureux de la sûreté des installations nucléaires, vos rapporteurs considèrent essentiel de donner à l’Autorité de sûreté les moyens humains et financiers indispensables à l’efficacité de son action et à la garantie de son indépendance. A ce titre, nous demandons au Gouvernement de mettre en place un régime d’astreintes permettant d’assurer, en toutes circonstances, une parfaite réactivité de l’ASN en cas de crise, et de procéder à une remise en cohérence des ressources budgétaires affectées à l’ASN ainsi que de leur financement, afin de simplifier la gestion de ses activités.

Concernant le régime des astreintes, faute de disposition adéquate, l’organisation actuelle repose sur le seul principe du volontariat, lequel peut être mis en défaut en période de congés. La mise en place d’un système plus approprié se heurte à un problème d’ordre réglementaire, dont la résolution relèverait d’un simple arrêté. Après signature d’au moins l’un des ministres compétents, par exemple celui en charge de l’écologie, cet arrêté doit être approuvé par le comité technique paritaire du ministère, au sein duquel l’ASN n’est malheureusement pas représentée. La mise en place d’un véritable système d’astreinte semble également se heurter à des réticences du ministère chargé de la fonction publique, lequel conteste le mode et le montant de l’indemnité prévue. Vos rapporteurs estiment qu’en toutes circonstances l’ASN doit être à même de faire face à une crise éventuelle.

La deuxième difficulté porte sur la structure du budget de l’ASN, aujourd’hui réparti entre quatre programmes distincts. Cet éclatement induit des difficultés en matière de préparation, d’arbitrage et d’exécution budgétaire. Il conduit également à des incohérences dans la gestion des crédits et des personnels affectés à l’ASN. Il constitue enfin un obstacle à la
transparence nécessaire à l’exercice du contrôle parlementaire et à l’information de nos concitoyens sur l’adéquation des moyens affectés au contrôle de la sûreté nucléaire.

Aussi, vos rapporteurs demandent au Gouvernement de regrouper ces quatre programmes en un seul, qui pourrait être intitulé « Contrôle de la sûreté nucléaire et de la radioprotection ».

b) Une dimension nouvelle pour la transparence

A l’occasion de leurs rencontres avec les représentants des Commissions locales d’information, vos rapporteurs ont pu mesurer l’importance des missions de suivi et d’information assurées par ces instances pluralistes de proximité. Plusieurs de nos interlocuteurs nous ont pourtant fait part des obstacles qu’ils rencontraient, du fait de l’insuffisance des moyens financiers. Le président de l’Association nationale des comités et commissions locales d’information (ANCCLI) a confirmé, à l’occasion de son audition, le caractère général de ce problème de financement et ses conséquences néfastes sur l’activité des CLI.

La loi du 13 juin 2006 prévoit trois modes de financement des CLI: par l’Etat, par les collectivités territoriales et par prélèvement d’une partie du produit de la taxe sur les installations nucléaires de base. Comme pour l’Autorité de sûreté nucléaire, vos rapporteurs estiment que ce dernier mode de financement, directement lié à l’activité des installations nucléaires, est celui qui présente la meilleure cohérence et la plus grande garantie d’indépendance des instances concernées. Compte tenu du rôle des CLI dans la promotion de la transparence, donc de la sûreté des installations, vos rapporteurs demandent au Gouvernement de prendre les mesures nécessaires à la mise en œuvre de ce mode de financement prévu de longue date par la loi.

Mais ce renforcement des moyens accordés aux CLI resterait insuffisant pour assurer leur indépendance si celles-ci ne peuvent avoir accès à une expertise elle-même pluraliste. A ce sujet, si la rigueur et la compétence de l’IRSN ne sauraient être remises en cause, il n’en reste pas moins que l’absence d’instance alternative pour l’évaluation scientifique du risque nucléaire constitue une limite du dispositif existant.
Vos rapporteurs considèrent que le renforcement de la recherche universitaire en matière de sécurité nucléaire peut contribuer à résoudre cette difficulté en ouvrant une voie alternative pour l’expertise scientifique en ce domaine, sous réserve de la mise en place d’un cahier des charges et d’un suivi des travaux par des institutions tierces.

3. Un besoin d’implication encore accru des personnels

Lors de leurs visites de différents sites nucléaires, vos rapporteurs ont tenté de ménager le temps nécessaire au dialogue avec les personnels et leurs représentants syndicaux. Ces derniers ont unanimement exprimé leur inquiétude à l’égard de la pratique de la sous-traitance. Au travers de ces entretiens, vos rapporteurs ont aussi compris que la capacité à recruter des personnels compétents constitue l’une des conditions essentielles au maintien de la sûreté des installations nucléaires.

a) L’anticipation des besoins de formation

D’après les informations recueillies, au sein de filière nucléaire, comme dans une bonne part de l’industrie, le vieillissement de la population conduira, dans les prochaines années, au départ en retraite de nombreux personnels spécialisés. Ainsi, EDF estime à 22 000 le nombre de ses employés appelés à prendre leur retraite entre 2010 et 2015.

Le remplacement de ces personnels pose une double difficulté. D’une part, l’offre de formation aux métiers du nucléaire reste très insuffisante en regard des besoins, malgré quelques initiatives notables, comme celle initiée en 2006 par EDF pour la mise en place d’une filière “environnement nucléaire” au niveau du Bac professionnel, puis du BTS. D’autre part, le caractère très spécialisé de certains de ces métiers nécessite de prolonger la formation initiale par un compagnonnage sur plusieurs années, permettant d'acquérir une parfaite maîtrise des gestes techniques et une complète connaissance des matériels. De ce fait, le remplacement d’un salarié devra, pour certains métiers, être préparé plusieurs années à l’avance, afin que le remplaçant puisse être parfaitement opérationnel et autonome le moment venu.
A cet égard, l’appel à la sous-traitance constitue un facteur de risque supplémentaire, dans la mesure où il rend plus difficile l’appréciation de l’ampleur des besoins de recrutement dans l’ensemble de la filière. Qui plus est, des sous-traitants confrontés à des difficultés de recrutement seront tentés d’y palier par la sous-traitance en cascade, voire en délégant des personnels insuffisamment formés. Aussi, apparaît-il indispensable de mettre en place des formations initiales et continues destinées spécifiquement aux sous-traitants dans les bassins d’emploi.

Ce problème se trouverait considérablement aggravé si des incertitudes devaient se faire jour sur l’avenir de la filière nucléaire en France. En effet, il deviendrait alors beaucoup plus difficile - voire impossible - de développer de nouvelles filières de formation sans perspective de carrière à long terme. Dans ces circonstances, la filière pourrait être confrontée à une véritable pénurie de compétences susceptible de dégrader significativement les conditions de maintenance et d’exploitation des installations, donc leur sûreté.

b) La nécessaire remise à plat des pratiques de sous-traitance

Sur tous les sites qu’ils ont eu l’occasion de visiter, vos rapporteurs se sont heurtés à la question de la sous-traitance des activités de maintenance et d’exploitation des installations nucléaires.

Bien qu’elle ne revienne pas à soustraire au contrôle direct de l’Etat les activités sous-traitées, et que le contrôle comme la préparation restent sous la maitrise de l’exploitant et soumises au contrôle de l’ASN, cette externalisation, qui a pour origine des erreurs affectant gravement la sûreté faites par des employés d’EDF, pose un certain nombre de problèmes de principe.

Les représentants des directions d’Areva et d’EDF rencontrés ont tous assuré limiter l’appel à la sous-traitance à des cas pour lesquels elle apparaît a priori justifiée, telles des interventions ponctuelles, nécessitant des compétences très spécialisées, ou encore des activités de maintenance à caractère saisonnier. De plus, à l'occasion de la visite de la centrale de Belleville-sur-Loire, le directeur en charge du dossier prestataires à la Division production Nucléaire d'EDF a présenté en détail les conditions
d'organisation de la sous-traitance ainsi que d'accueil des intervenants sur le site. Vos rapporteurs sont bien conscients que la sous-traitance est parfois nécessaire ; par exemple pour changer un générateur de vapeur, il est préférable de laisser le constructeur, c'est-à-dire Areva, s'en charger, plutôt que de le réaliser avec des ressources internes. Néanmoins, nous n'avons pas été complètement convaincus par l'argumentation des exploitants.

D’autre part, nos interlocuteurs ont souligné les rigidités résultant des contraintes réglementaires européennes, lesquelles imposent une procédure de mise en concurrence équivalente à celle employée par les administrations. Une procédure de ce type offre, en général, peu de marges de manœuvre au donneur d’ordre. Elle peut le contraindre à diviser une opération en plusieurs marchés indépendants, susceptibles de poser des problèmes de coordination, voire à retenir une entreprise dans laquelle il n’aurait pas une grande confiance. Sur ce point, EDF a mis en œuvre des dispositions permettant de privilégier les entreprises mieux-disantes, notamment en terme de conditions de travail de leurs personnels, plutôt que simplement celles proposant les prix les plus bas. Il serait judicieux que la prééminence du mieux-disant sur le moins-disant soit inscrite dans la réglementation européenne en matière d’appels d’offres dès lors que ceux-ci concernent l’industrie nucléaire ou toute autre industrie jugée sensible.

L’opacité de procédures de mise en concurrence peut également conduire à des cascades de sous-traitants : un prestataire retenu sur appel d’offres, alors même qu’il ne dispose pas des effectifs nécessaires, peut être tenté, dans l’urgence, de faire appel aux personnels de l’un de ses confrères. D’après les informations qui nous sont parvenues à l’occasion de nos visites de sites, dans certains cas extrêmes, jusqu’à huit niveaux de sous-traitants peuvent ainsi se superposer. Une telle situation s’avère particulièrement préoccupante, en terme de sûreté, puisqu’elle conduit à une dilution extrême des responsabilités et s’avère difficile à identifier.

Ensuite, l’externalisation peut être source de lourdeurs supplémentaires dans l’organisation des interventions. En effet, l’activité du sous-traitant, responsable du suivi qualité de ses prestations, doit faire l’objet d’un contrôle par le donneur d’ordre, ce qui ajoute un acteur, chargé du suivi du prestataire, dans l’organisation. Symétriquement, cette personne affectée au contrôle du prestataire, n’est, en principe, pas habilitée à
s’adresser directement aux intervenants du sous-traitant, mais uniquement à leur chef d’équipe, chargé du pilotage du marché. Ce sont donc deux niveaux qui se rajoutent à l’organisation existante. Celle-ci s’avère donc tout à la fois plus lourde et plus sujette à erreurs, l’empilement des intermédiaires étant source d’incompréhensions.

Enfin, l’externalisation pose le problème de la traçabilité du suivi radiologique des intervenants de l’entreprise sous-traitante, notamment lorsqu’il s’agit de travailleurs se déplaçant de site en site. En effet, alors que les personnels EDF ou Areva sont soumis au contrôle du médecin du travail de leur établissement, ceux des sous-traitants dépendent, sauf exception, pour leur suivi médical, d’un médecin du travail basé dans leur lieu d’origine, ce qui peut constituer un obstacle majeur à un contrôle radiologique efficace. Aussi, vos rapporteurs estiment nécessaire la mise en place d’un correspondant-référant de la médecine du travail pour chaque site, chargé de la vérification du dossier de santé des intervenants.

Si vos rapporteurs estiment que ces multiples difficultés résultant de la pratique de la sous-traitance devraient conduire à s’interroger sur la possibilité d’en réduire l’étendue, ils considèrent que la précaution la plus urgente concerne la limitation de la sous-traitance en cascade, dans la mesure où celle-ci aboutit à une opacité, potentiellement dommageable pour la sûreté des installations aussi bien que pour les conditions de travail des intervenants.

4. La nécessité d’un effort permanent de recherche

Vos rapporteurs souhaitent à présent souligner l’intérêt de fournir un effort permanent de recherche, afin de pouvoir faire évoluer le référentiel d’exigences de sûreté des installations au regard du gain pour la sûreté pouvant résulter de ces travaux fondamentaux.

a) La relation complexe entre sûreté et innovation

L’intégration d’une innovation est un processus long et non trivial.
D’une part, l’exigence de sûreté suppose que toute innovation soit intégrée dès que possible dans chaque réacteur pour qu’il bénéficie toujours de la meilleure technologie disponible. D’autre part, pour des raisons de fiabilité, seul un dispositif éprouvé et bien rodé peut être candidat au remplacement d’un dispositif existant ou à l’ajout d’un composant de sûreté.

La sûreté suppose des améliorations constantes

Les réexamsens de sûreté sont une étape périodique de la vie des centrales françaises : ils visent à se réinterroger sur la sûreté de façon approfondie, et permettent de définir les améliorations des installations afin de rehausser leur sûreté à un niveau proche, à défaut d’être équivalent, de celui des installations les plus récentes.

Ils complètent ainsi le processus continu d’amélioration de la sûreté que constitue l’examen du retour d’expérience de l’exploitation quotidienne des réacteurs.

Seule l’ASN, par ses contrôles périodiques et par ses visites décennales, est à même de dire si un réacteur doit être fermé pour des raisons de sûreté.

Elle vérifie en effet régulièrement la mise en œuvre de parades ou d’actions de surveillance et de maintenance adaptées à la maîtrise du vieillissement des installations et est qualifiée pour dire si l’autorisation d’exploiter une installation peut être prolongée pour une période supplémentaire de 10 ans dans des conditions de sûreté satisfaisantes, sous réserve du résultat de tout nouveau contrôle au cours de cette période.

La sûreté ne peut intégrer que des dispositifs et procédés éprouvés

L’exigence de sûreté pourrait supposer qu’à chaque instant un réacteur nucléaire dispose de la meilleure technologie disponible.

Deux raisons s’opposent à cette vision des choses. D’une part, on peut se poser la question de l’utilité du remplacement d’un dispositif ou d’un procédé éprouvé n’ayant jamais causé de problème et dont les équipes
opérationnelles, ainsi que l’ASN, sont satisfaites. D’autre part, pour des raisons de fiabilité, seules les technologies éprouvées peuvent être effectivement intégrées, ce qui impose une sorte de sas temporel entre le développement d’une innovation et sa mise en place sur le parc existant.

Un exemple de technologie améliorant la sûreté de nos centrales et ayant mis une dizaine d'années à être qualifiée est le recombineur d’hydrogène. Son principe était connu depuis longtemps, le platine ayant la propriété de catalyser la réaction de combustion H2 + O2. Il a toutefois été nécessaire de développer un concept passif, utilisant la chaleur dégagée par la réaction pour constituer une boucle de convection naturelle.

Après que le procédé a été testé au début des années 90, en fonctionnement normal, dans l’installation Kali1 par le CEA et dans l’installation H2PAR2 par l’IRSN et EDF, EDF a envisagé d’implanter des recombineurs auto-catalytiques passifs d’hydrogène sur les réacteurs des paliers P4 (réacteurs de 1300 MW) et N4 (réacteurs de 1450 MW). La décision a été prise par l’ASN en 1997 pour une mise en place sur la totalité du parc, et confirmée après des tests de dimensionnement par l’IRSN au début des années 2000.

Un autre exemple est l’informatisation du contrôle-commande : alors que la technologie était disponible depuis longtemps, cette mise à niveau n’a été mise en œuvre que sur le palier N4, et avec initialement beaucoup de précautions.

b) La recherche, gage de crédibilité et de transparence

La recherche en matière d’énergie nucléaire offre une dynamique importante, lui permettant de toujours se situer en pointe des technologies pour la production d’électricité, et lui apportant une ouverture différente sur

1 Enceintes de 15m3 destinées à mesurer l’efficacité de recombineurs catalytiques d’hydrogène.
2 Programme permettant d’évaluer l’efficacité des recombineurs en présence de matériaux simulant les produits émis lors de l’endommagement d’un cœur de réacteur sous forme de vapeurs et d’aérosols.
la société civile, par les questions qu’elle oblige à se poser, tant d’un point de vue économique que sociétal.

➢ Un exemple : la dimension temporelle des déchets nucléaires

La question de la gestion des déchets nucléaires, notamment ceux à vie longue, étudiée à l’Office dès 1989, a été à l’origine de la loi du 30 décembre 1991. Elle pose des questions de société tout à fondamentales, notamment au regard de la durée.

Le choix d’un site de stockage suivra le vote, en 2015, d’une nouvelle loi sur la réversibilité du stockage. La question du stockage en couche géologique profonde, incluant la notion de réversibilité1, écarter les affirmations par trop définitives de certains milieux scientifiques ou économiques et laisse ouverte la porte de l’évolution de la recherche et des avancées scientifiques qui est le propre de notre culture humaniste. Cette approche ouvre le champ des possibles et ne préjuge en rien des progrès de la science à un, voire plusieurs siècles devant nous.

La question des déchets radioactifs ayant été très peu abordée dans la première partie de notre mission, elle sera approfondie dans la deuxième.

➢ L’énergie nucléaire : une technologie de pointe

L’énergie nucléaire s’appuie sur un ensemble technologique complexe et exigeant.

• Complexe par la diversité des corps de métiers, la transversalité des recherches sur lesquelles elle s’appuie

Ces efforts de recherche concernent les matériaux des équipements sous pression, les logiciels de commande, les bétons, mais aussi les moyens de surveillance et de mesure, l’opérateur japonais Tepco s’étant trouvé, après

1 On pourra se référer au compte-rendu de la conférence internationale de Reims organisée par l’Agence de l’Energie Nucléaire en décembre dernier sur les questions de réversibilité et de récupérabilité, et tout particulièrement aux interventions du président Claude Birraux.
le séisme et le tsunami, presque aussi aveugle sur la situation à l’intérieur de ses installations que l’exploitant américain de la centrale de Three Mile Island en 1979.

Ainsi, une question fondamentale des années à venir et sur laquelle les recherches doivent aller plus vite réside dans les moyens que nous pouvons mettre en œuvre pour pouvoir piloter, obtenir des informations, et garder la maîtrise d’une installation, depuis un poste distant, à tout moment, en cas d’accident nucléaire grave.

Par exemple, l’utilisation de fibre optique pour la surveillance, la sécurité et la sûreté des matériaux et des structures, comme il l’a été présenté à vos rapporteurs lors de l’audition publique du 24 mai sur la protection des réacteurs nucléaires, est une piste à approfondir car elle présente de nombreux avantages évidents par rapport aux capteurs traditionnels : diamètre non intrusif, immunité électromagnétique, coût faible.

En situation normale, la fibre optique peut assurer la surveillance de l’enceinte de confinement, des piscines ou des conduites de vapeur. En situation accidentelle ou post-accidentelle, elle peut permettre la détection du percement de la cuve du réacteur, le suivi de l’avancée du corium, la surveillance des conduites de vapeur et autres circuits primaires, la détection d’incendie dans le bâtiment ou la surveillance radiologique de l’enceinte par dosimétrie. Autant d’informations essentielles en situation post-accidentelle.

La recherche se base également sur la modélisation, les simulations numériques, mais également les expérimentations en laboratoire. Ainsi, de nombreuses études sont menées par le CEA en recherche et développement en collaboration avec EDF, Areva ou l’IRSN, soit via des partenariats internationaux, comme le projet SERENA de l’OCDE. La R&D mobilise, à l’IRSN, l’équivalent de 280 personnes à plein-temps, pour un budget annuel de l’ordre de 90 millions d’euros, sur les questions les plus poussées : consolider les connaissances sur le déroulement des accidents de fusion de cœur et de dénoyage de piscines ; acquérir des connaissances sur les mécanismes et dispositions qui permettraient d’arrêter la progression de l’accident et de limiter les rejets dans l’environnement ; compléter nos connaissances du comportement du combustible en situation accidentelle.
Exigeant par la rigueur et l’excellence qu’elle impose à tous les niveaux de la chaîne de valeur

- à la conception pour intégrer les meilleures options de sûreté ;
- à la construction, sur le chantier, par la réalisation technique d’ensembles nécessitant un savoir-faire important ;
- à la formation, par des cursus théoriques adéquats, y compris à destination de cadres expérimentés pour un effort permanent de mise à niveau ;
- à l’exploitation, en fonctionnement, qui impose rigueur, sang-froid, et maîtrise de l’outil pour l’exploitant, vigilance et exigence pour l’autorité de contrôle ;
- au démantèlement des installations, qui nécessite également un savoir-faire transversal de bonne gestion d’un chantier, tout en mettant en œuvre des opérations spécifiques pour traiter la dimension proprement nucléaire.

La bonne maîtrise d’une technologie aussi avancée pousse notre pays à rester dans le peloton tête des pays industriels. Elle exige sans détourn que nous ayons les meilleurs laboratoires, les meilleurs ingénieurs, les meilleurs techniciens.

Cette excellence ne peut pas s’acquérir en un jour : elle résulte d’une expérience que nous garantit l’ancienneté de notre engagement dans la filière, mais exige également un transfert de connaissance et de savoir-faire qu’il faut encourager, comme nous le verrons pour le cas particulier du chantier de l’EPR.

5. L’EPR

Lancé en 1992, dans un souci d’utiliser toute l’expérience acquise sur les modèles français N4 et allemand Konvoi, le projet de réacteur à eau pressurisée européen EPR, d’une puissance de 1600MW, de troisième génération, a pour ambition de constituer la gamme de réacteurs qui remplacera les réacteurs actuels lorsqu’ils arriveront au terme de leur vie.
D’un point de vue strictement économique, la conception générale a été revue de façon à accroître la disponibilité, notamment par l’augmentation de la redondance de certains équipements, afin de pouvoir en assurer la maintenance sans avoir à arrêter l’exploitation du réacteur, et par une durée de vie à la conception de 60 ans.

a) Le retour d’expérience de la IIème génération

Développée après les accidents de Three Mile Island et de Tchernobyl, la troisième génération a pour principal atout de se fixer, dès sa conception, des objectifs de sûreté et de sécurité ambitieux tels qu’une réduction du risque d’accident majeur avec fusion du cœur, une réduction de l’impact sur l’environnement en cas d’accident grave et la capacité à résister à des agressions externes.

➢ Caractéristiques générales

Le réacteur EPR se distingue des autres réacteurs par l’ajout d’un certain nombre de sécurités clés passives, ne nécessitant aucune intervention extérieure.

- Les dispositifs de sûreté face à la fonte du cœur

Le récupérateur de corium, magma résultant de la fusion des éléments du cœur, constitué du combustible nucléaire, des éléments de l’assemblage et d’autres éléments du cœur, permet, en cas de percement de l’enceinte de confinement, l’étalement du cœur et donc son refroidissement. De plus, sans intervention humaine, la chaleur induite par la libération du corium fait fondre des soudures se trouvant autour du récupérateur de corium qui libèrent une réserve d’eau, noyant ainsi le réacteur et accélérant son refroidissement.

Le confinement est assuré par une double enceinte : une enceinte interne en béton précontraint, avec peau d’étanchéité métallique appelée liner, conçue pour résister aux conditions de pression et de température internes, et une enceinte externe en béton armé conçue pour résister aux agressions externes.
Les systèmes d'injection de sécurité ont été renforcés et l'adoption d'une organisation dite « 4 fois 100 % » présente un niveau de fiabilité qui est considéré comme plus important que le système actuel tout en facilitant la maintenance en service. L’organisation « 4 fois 100% » signifie qu’il existe 4 systèmes de refroidissement totalement indépendants pouvant chacun assurer 100% du refroidissement du réacteur.

Ces 4 trains sont installés dans 4 divisions de sauvegarde séparées physiquement, de façon à protéger la fonction de sûreté des agressions internes et externes. Chaque division est alimentée, en plus des alimentations électriques normales, par un diesel principal de secours. Les divisions 1 et 4 possèdent en plus chacune un moteur diesel supplémentaire.

L’EPR dispose également d’une cinquantaine de recombineurs d’hydrogène, dont l’importance cruciale ne fait aucun doute, notamment suite à la catastrophe de Fukushima, où l’on a vu spectaculairement les explosions successives d’hydrogène, avec des conséquences sur les structures et sur les émissions de radioactivité.

Le risque de chute d’avion

Depuis les attentats du 11 septembre 2001 aux États-Unis, l’agression avec un avion de ligne, ou sa chute accidentelle, est entrée dans les considérations pour la sûreté des réacteurs. Le réacteur EPR intègre, dès sa conception, la prise en compte de ce risque externe majeur puisqu’il dispose d’une coque externe en béton, dite « coque avion », susceptible de résister à la chute d’un avion.

En effet, lors de son développement dans les années 90, les autorités allemandes ont voulu se préserver contre la chute, sur un réacteur nucléaire, d’un F-104 Starfighter, dont la fiabilité en vol ne leur inspirait guère confiance (292 des 916 F-104 allemands s'écrasèrent, causant la mort de 116 pilotes, ce qui leur valu le nom macabre de « widow maker », ou « faiseur de veuve »).
Ainsi que cela a été présenté lors de l’audition du 24 mai, la recherche sur les matériaux a d’ores et déjà permis de développer des bétons de caractéristiques particulièrement bien adaptés aux contraintes de l’industrie nucléaire. Certains ont d’ailleurs déjà été mis en œuvre dans des installations du parc nucléaire français.

b) Le cas de l’EPR de Flamanville

Le 20 mai dernier sur le chantier du réacteur EPR Flamanville 3, nous avons pu constater l’évolution des travaux, et interroger l’exploitant EDF, Areva, les différents syndicats, ainsi que l’ASN.

➢ Le déroulement du chantier, indicateur d’une perte de savoir faire

Un certain nombre d’intervenants, dont l’ASN, ont fait part de la perte de savoir-faire dans la construction de réacteurs, notamment chez les fournisseurs, sur des points très techniques tels que des soudures au niveau du *liner* et des adaptateurs du couvercle de la cuve.

Cette perte de savoir-faire s’explique principalement par le fait qu’aucun réacteur nucléaire n’a été construit depuis plus de 10 ans en France. Ce problème ne touche pas uniquement EDF, mais l’ensemble de la chaîne de fournisseurs et fabricants.

Les filières de formation n’ont pas été maintenues, et il a même parfois été nécessaire de faire appel à des employés retraités ayant travaillé sur les précédents réacteurs afin qu’ils encadrent et forment les employés actuels.
Les propos tenus par M. André-Claude Lacoste lors d’une audition au Parlement confirment ce point : « Il n’est absolument pas étonnant que l’on rencontre des difficultés pour le construire en France ou en Finlande car on n’y a plus construit de réacteurs depuis 20 ans. Ainsi, Bouygues ne sait plus bétonner à la qualité nucléaire ; de nombreux fabricants ne sont plus au niveau ; EDF a perdu son aptitude à diriger les chantiers »\(^1\).

>> Caractéristiques face aux risques naturels

Le réacteur EPR en construction à Flamanville bénéficie, dès sa conception, d’innovations suite aux retours d’expérience des accidents de Three Mile Island et de Tchernobyl, mais également d’incidents importants tels que les effets de la tempête de 1999 au Blayais.

- **La prise en compte du risque de séisme**

Le risque de séisme est pris en compte dès la conception par l’étude sur 1000 ans du séisme le plus important de la région. Celui-ci est ensuite transféré sur le lieu sous la centrale, et cette dernière est dimensionnée en majorant ce Séisme Maximal Historiquement Vraisemblable (SMHV) de 0.5 sur l’échelle de Richter.

Le réacteur EPR de Flamanville est ainsi dimensionné pour un séisme de magnitude 5,7.

Pour le site de Flamanville, le séisme de référence, c’est-à-dire le plus fort séisme imaginable, majoré d’une marge de sécurité (« séisme majoré de sécurité »), correspond à un séisme dont l’accélération horizontale serait de 0,11 g. La partie nucléaire des installations est dimensionnée pour résister à une accélération horizontale de 0,25g.

- **La prise en compte du risque d’inondation**

\(^1\) Audition, ouverte à la presse, de M. André-Claude Lacoste, président de l’Autorité de sûreté nucléaire (ASN) ; Commission des affaires économiques, Mercredi 2 février 2011 ; http://www.assemblee-nationale.fr/13/cr-eco/10-11/c1011041.asp
L’examen de la configuration géologique autour du site de Flamanville permet à l’exploitant d’affirmer qu’il n’y a aucun risque de chute de falaise ou autre glissement de terrain côtier induisant un tsunami.

Le dimensionnement des digues se fonde sur la Côte Majorée de Sécurité, qui prend en compte tous les aléas potentiels en les cumulant. La CMS est évaluée à 8.73m pour le site de l’EPR, et la plateforme se situe à 12.40m. La digue, quant à elle, atteint la hauteur de 15 mètres.

c) La sécurité n’a pas de prix, mais son coût manque de transparence

Vos rapporteurs ont pour habitude de rappeler que la sécurité n’a pas de prix, qu’elle a uniquement un coût, c'est-à-dire qu’elle n’est pas en option : son coût fait ainsi partie des dépenses absolument incompressibles.

La catastrophe de Fukushima nous rappelle sans détour que l’on ne négocie pas avec la sécurité d’une centrale. C’est d’ailleurs une position constante de l’Office parlementaire, sur laquelle nous ne saurions transiger. Déjà, en janvier dernier, un rapport de l’Office sur l’évaluation du Plan National de Gestion des Matières et Déchets Radioactifs fustigeait toute idée de réacteur low-cost (bon marché) ou de vente à des pays n’étant pas « en mesure d’effectuer un investissement matériel et humain considérable (...) d’en maîtriser suffisamment les conditions de sûreté pour la déployer. »

Toutefois, il arrive un moment où il devient nécessaire de chiffrer ce coût. Or, il nous a été impossible d’obtenir une évaluation crédible du coût de la sécurité dans l’EPR. Vos rapporteurs en ont notamment fait la demande directe lors de sa visite du chantier de Flamanville, sans qu’une réponse satisfaisante leur soit apportée.

Le prix du réacteur EPR de Flamanville 3, annoncé à 3 milliards d’euros (base 2003), puis 4 milliards d’euros (base 2008), est aujourd’hui évalué à 5 milliards d’euros (base 2008), si ce n’est plus, soit de l’ordre de 50% d’augmentation. Néanmoins, il faut prendre en considération que le surcoût d’une tête de série est évalué à 30% (Etude DGEMP – DIDE, 2003).

Dans le cadre de son audit de la filière nucléaire, la Cour des Comptes pourra se saisir de la question de l’évolution du prix de l’EPR au kW et du prix du MWh à la production en sortie de l’EPR de Flamanville 3. Ces deux informations permettent d’une part de comparer le prix de l’EPR aux autres réacteurs de même génération, et d’autre part d’obtenir une indication de la disponibilité effective de l’EPR.

A titre indicatif, nous avons regroupé sous la forme d’un tableau les prix au kW que nous avons pu trouver pour certains réacteurs de troisième génération. Ce tableau ne peut évidemment pas être considéré comme étant totalement exhaustif, puisque les prix sont constamment réévalués, selon la phase et l’avancement du projet.

<table>
<thead>
<tr>
<th>Réacteur</th>
<th>Origine</th>
<th>€/kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPR</td>
<td>Areva, France</td>
<td>2500 à 3125</td>
</tr>
<tr>
<td>AP 1000</td>
<td>Westinghouse, USA</td>
<td>2500 à 3300</td>
</tr>
<tr>
<td>APR - 1400</td>
<td>KHNP, Corée du Sud</td>
<td>1800 à 2600</td>
</tr>
<tr>
<td>ACR-1000</td>
<td>Energie atomique du Canada limitée (EACL), Canada</td>
<td>> 2000 (prix d’annonce)</td>
</tr>
</tbody>
</table>

Source : world-nuclear.org/

Le problème du coût de la sûreté doit être posé. L’énergie nucléaire permet en effet aujourd’hui de produire de l’électricité moins chère que les énergies concurrentes, à l’exception de l’énergie hydroélectrique. Mais une sûreté renforcée a une incidence sur les coûts. Ce problème renvoie à la question de l’avenir de la filière nucléaire, qui sera au cœur de la deuxième partie de la mission.
CONCLUSION DU RAPPORT D’ÉTAPE

Sous réserve des difficultés qui ont pu être constatées au cours de la mission pour recueillir des informations financières ou de comparaison internationale, la France est un des pays nucléaires où la gestion de la sûreté est à la fois la plus exigeante (l’indépendance de l’Autorité de sûreté constitue le meilleur garant de cette exigence) et la plus transparente (le PNGMDR est notoirement reconnu comme une bonne pratique au niveau européen, implicitement proposé comme modèle dans une proposition de directive en cours de négociation).

Néanmoins, les efforts de sûreté les plus rigoureux, les efforts d’anticipation les plus imaginatifs, ne sauraient préserver aucun pays contre tout accident naturel, comme on en a vu la survenance à Fukushima.

C’est pourquoi l’industrie nucléaire française doit pousser d’un cran encore son investissement dans la sûreté, en imaginant des événements d’une intensité encore plus grande, et qui plus est, dans un schéma accidentel pouvant fonctionner en cascades, avec des interactions possibles entre sites industriels voisins.

Cet investissement doit être conduit en plaçant les impératifs de sûreté au dessus de toute considération économique, et dans le respect absolu des prescriptions des instances publiques en charge du contrôle de la sûreté.

L’industrie nucléaire n’est du reste pas une industrie comme les autres, et seule la puissance publique peut apporter des garanties solennelles à une population inquiète. A cet égard, l’État et le Gouvernement doivent conserver la maîtrise de cette industrie.

L’indispensable effort pour aller plus loin doit être l’occasion de porter une attention renouvelée à deux dimensions essentielles de la politique de sûreté :

- d’une part, l’implication des personnels, notamment à travers l’approfondissement de la formation et un recours responsabilisant, non purement mercantile, à la sous-traitance;
d’autre part, la poursuite de la recherche, qui crédibilise toute la filière, en préparant en permanence les futures innovations de sûreté, et en consolidant la place de technologie avancée de l’énergie nucléaire.

Il faut aussi avancer résolument sur des normes mondiales pour prévenir en priorité les risques dans les installations les moins sécurisées existantes, et élever le niveau d’exigence de sûreté dans les chantiers en projet ou en cours.

De ce point de vue, un accord de base entre les pays européens et les pays d’Amérique du Nord pourrait lancer une dynamique réciproque de définition internationale de normes de sûreté.

Ces analyses conduisent à regrouper nos recommandations autour de sept orientations :

1. Gérer de façon plus sûre les conditions de la sous-traitance
2. Ajouter une arrière-garde à la défense en profondeur
3. Améliorer la performance de la gestion de crise
4. Consolider la maîtrise publique du contrôle de sûreté
5. Garantir la cohérence internationale des évaluations de sûreté
6. Assurer une meilleure transparence sur les coûts de la filière
7. Renforcer la recherche universitaire sur la sécurité nucléaire
1. **GÉRER DE FAÇON PLUS SÛRE LES CONDITIONS DE LA SOUS-TRAITANCE**

 - Le Gouvernement transmet à la mission parlementaire, d’ici la fin de ses travaux, une étude sur les possibilités juridiques et les dispositifs permettant de réduire ou d’éliminer le recours aux cascades de sous-traitance. Ce document sera publié en annexe du rapport final.

 - Le Gouvernement, d’ici la fin de l’année 2011, prend les dispositions instituant, pour chaque site, un correspondant-référant de la médecine du travail, chargé du suivi radiologique de tout travailleur intervenant sur le site.

2. **AJOUTER UNE ARRIÈRE-GARDE À LA DÉFENSE EN PROFONDEUR**

 - L’ASN transmet à la mission parlementaire, d’ici la fin de ses travaux, une évaluation du renforcement en cours des dispositifs mobiles d’approvisionnement de secours en eau et en électricité.

 - L’IRSN et le CEA engagent conjointement un projet de recherche sur les techniques permettant d’effectuer à distance, dans des installations situées dans des zones inaccessibles, d’une part, des mesures radiologiques, et d’autre part, des pilotages d’équipements.

3. **AMÉLIORER LA PERFORMANCE DE LA GESTION DE CRISE**

 - Les autorités publiques en charge des dispositifs d’alerte et de communication intègrent à ceux-ci les nouvelles technologies (téléphonie mobile, Internet, réseaux sociaux), en tenant compte de la nécessité opérationnelle de faire face à des demandes massives d’information.
Le Gouvernement réévalue les plans de secours au regard des connaissances nouvelles et du retour d’expérience de Fukushima, notamment quant à la profondeur territoriale des dispositifs.

Le Gouvernement veille à ce que les services de sécurité civile et les exploitants nucléaires précisent les modalités de formation et de mobilisation du personnel appelé à intervenir en cas de crise, et testent les conditions de mise en œuvre du volontariat lors d’exercices.

Le Gouvernement renforce les moyens de l’IFFO-RMe, dans le cadre de l’adoption de la loi de finances initiale pour 2012, pour qu’il puisse développer son action d’instruction civique sur les risques majeurs.

4. CONSOLIDER LA MAÎTRISE PUBLIQUE DU CONTRÔLE DE SÛRETÉ

Le Gouvernement, dans le cadre de l’adoption de la loi de finances initiale pour 2012, unifie les moyens budgétaires de l’ASN.

Le Gouvernement, d’ici la fin de l’année 2011, donne une base réglementaire et financière au système des astreintes de l’ASN, pour garantir en toutes circonstances sa pleine réactivité.

5. GARANTIR LA COHÉRENCE INTERNATIONALE DES ÉVALUATIONS DE SÛRETÉ

Le Gouvernement et l’ASN veillent, notamment en s’assurant du caractère incontestable des revues par les pairs, à l’uniformité du degré d’exigence des évaluations européennes de sûreté dans les pays membres.

Le Gouvernement et l’ASN veillent à ce que les conséquences tirées des évaluations européennes de sûreté soient fondées sur des bases homogènes, conduisant à appliquer les mesures les plus rigoureuses aux réacteurs les plus mal classés au niveau européen.

Le Gouvernement prend toute initiative pouvant contribuer à ce que les normes de sûreté retenues au niveau européen soient intégrées dans les standards de l’AIEA.
6. **Assurer une meilleure transparence sur les coûts de la filière**

 - L’ASN établit dans son rapport annuel d’activité un bilan de l’ensemble des coûts supportés par les exploitants au titre du renforcement de la sûreté nucléaire.

7. **Renforcer la recherche universitaire sur la sécurité nucléaire**

 - Le gouvernement, d’ici la fin de la législature, institue un fonds abondé par les exploitants nucléaires, géré par l’ANR, dédié à la recherche universitaire sur les risques naturels majeurs, leur impact sur les installations nucléaires et les moyens d’y faire face, sur la base d’un cahier des charges défini par l’ASN.

 - L’ASN rend compte, dans son rapport d’activité annuel, de l’avancement de ces recherches.

 - Le Gouvernement, d’ici la fin de la législature, institue un fonds financé à partir de la taxe INB, géré par l’ANR, permettant de répondre à des demandes d’expertise scientifique des CLI, sur la base d’un cahier des charge défini par le HCTISN.

 - Le HCTISN rend compte, dans son rapport d’activité qui sera évalué chaque année par l’OPECST, des expertises réalisées dans ce cadre.
M. Claude Birraux, député, président. – Nos rapporteurs détailleront aujourd’hui les conclusions du projet de rapport d’étape sur la sûreté nucléaire, qui analyse les informations recueillies au cours de six auditions publiques et de sept déplacements. Le document, mis en consultation hier, sera enrichi d’annexes : entre autres, les comptes rendus des auditions, déjà disponibles en ligne, et des documents de référence tels que la liste des installations nucléaires françaises ou encore la comparaison des accidents de Three Mile Island, Tchernobyl et Fukushima établie par l’Autorité de sûreté nucléaire (ASN).

Ce rapport souligne la grande rigueur de notre dispositif de sûreté nucléaire. Avec la radioprotection et la protection physique, cette dernière constitue le cœur de la sécurité nucléaire. De fait, elle recouvre, aux termes de la loi du 13 juin 2006, l’ensemble des dispositions techniques et des mesures d’organisation prises en vue de prévenir les accidents ou d’en limiter les effets, notamment la conception des installations et l’organisation de leur fonctionnement.

La dimension proprement dynamique du dispositif constitue le premier aspect essentiel à sa robustesse : il n’est de sûreté nucléaire qu’en recherche permanente d’amélioration. D’où l’importance des visites décennales afin d’intégrer les « meilleures pratiques internationales » et de la poursuite de leur effort de recherche par les exploitants comme par l’Institut de radioprotection et de sûreté nucléaire (IRSN).

Le second aspect concerne la coopération internationale : le dispositif de sûreté est d’autant plus robuste qu’il s’appuie, via les inspections conjointes, sur une pluralité d’autorités nationales incontestables. Car, autant l’élaboration de normes internationales strictes va dans le bon sens, autant la concentration du contrôle aux mains d’un petit nombre d’autorités continentales ou mondiales accroîtrait l’exposition à une défaillance organisationnelle. D’ailleurs, durant la crise de Fukushima, l’Agence internationale de l’énergie automatique (AEIA) a délivré moins d’informations que l’ASN ou d’autres autorités nationales.
Pour finir, rappelons que notre rôle est de contrôler le fonctionnement du dispositif, non de nous substituer à l’ASN. Nous n’avons pas à suggérer des parades aux actes de malveillance. C’est une affaire de bon sens : nous ne saurions écrire un manuel de terrorisme nucléaire pour les nuls – et l’on sait le succès rencontré par cette collection. Nous n’avons pas plus à juger des situations sur le terrain. Il revient à l’ASN, seule, de rendre une décision après la troisième visite décennale du réacteur n°1 de Fessenheim, notamment quant à l’épaisseur du radier qui est de 1,5 mètre. Celle-ci devra être publique, claire et justifiée.

M. Bruno Sido, sénateur, premier vice-président de l’Office, rapporteur de la mission parlementaire. – Premier axe : renforcer la recherche universitaire sur le nucléaire. De fait, après Fukushima, la priorité était d’étudier comment sont pris en compte les risques majeurs dans nos installations, à commencer par le risque sismique. En France métropolitaine, celui-ci est évalué de « moyen » à « très faible ». Notre situation n’est donc en rien comparable à celle de l’archipel japonais, situé dans une zone de subduction des plaques tectoniques. Sans compter que l’aléa tsunami, comme l’a reconnu le Japon dans un récent rapport à l’AEIA, avait été sous-estimé. D’après les données historiques disponibles, la survenue d'un tsunami de plus de 10 mètres était un événement prévisible avec une récurrence de trente ans.

Parce que le progrès des connaissances améliore la sûreté, via les réexams de sûreté, il faut poursuivre les travaux de recherche afin de mieux évaluer les marges d’incertitude et leur traduction en marges de
sécurité ; d’approfondir les connaissances historiques et paléo-historiques dans le domaine des risques majeurs ; et, enfin, d’étudier les combinaisons de risques d’origine diverse, car les difficultés majeures résultent rarement d’un risque réalisé isolément. Voilà pourquoi nous préconisons qu’un fonds, abondé par les exploitants nucléaires et géré par l’Agence nationale de la recherche (ANR), soit dédié à la recherche universitaire sur les risques naturels majeurs, leur impact sur les installations nucléaires et les moyens d’y faire face, sur la base d’un cahier des charges établi par l’ASN.

Les procédures d’appels d’offres, imposées par la réglementation européenne, privilégient le critère du prix sur celui de la qualité, ont souligné nos interlocuteurs. Cette réglementation doit être améliorée pour l’industrie nucléaire, et les autres industries sensibles. La sous-traitance en cascade qui va, dans certains cas, jusqu’à huit niveaux, est particulièrement préoccupante. D’une manière générale, cette pratique est source de lourdeur partant, d’erreur et d’incompréhension. De fait, le « contrôleur », la personne nommée par le donneur d’ordre pour contrôler le prestataire, doit s’adresser uniquement au chef d’équipe du prestataire.

En outre, quid de la traçabilité du suivi radiologique des personnels et, surtout, des itinérants ? Pour remédier à cette situation, nous suggérons de créer un correspondant-référent de la médecine du travail pour chaque site, chargé de vérifier les dossiers de santé ; de confier à l’IRSN une étude sur la traçabilité du suivi radiologique des sous-traitants ; et, enfin, de donner à l’ASN une compétence de contrôle des modalités d’habilitation des entreprises et personnes travaillant dans les installations nucléaires.

Dans l’attente d’une nécessaire restriction de la sous-traitance, l’urgence est de limiter l’externalisation en cascade. Pour ce faire, nous demandons au gouvernement une étude juridique de faisabilité avant la fin de l’année, étude qui sera publiée dans notre prochain rapport.
M. Bruno Sido, rapporteur. – Troisième axe : afin de faire face à un cumul de phénomènes naturels extrêmes, ajouter à la défense en profondeur une capacité de réaction en arrière-garde, soit sous forme de moyens mobiles, soit par une technologie assurant un certain contrôle à distance. L’idée de constituer une flotte d’alternateurs et de pompes rapidement mobilisables n’est pas nouvelle. A cet égard, l’homogénéité et l’étendue du parc nucléaire français constituent plutôt un atout. Le but est de faire jouer la solidarité, y compris internationale, entre sites : si l’un est touché par un sinistre localisé, les autres lui servent de base arrière pour la fourniture de moyens de secours. Cela suppose d’encourager les sites à maintenir et projeter des moyens de secours, mais aussi de prévoir, dès la conception des installations, une capacité d’acheminement proche et une capacité de branchement, les aménagements nécessaires faisant l’objet de vérifications de sûreté.

Pour toutes ces raisons, nous préconisons que l’ASN nous transmette, avant la fin de nos travaux, une évaluation du renforcement en cours des dispositifs mobiles d’approvisionnement de secours en eau et en électricité. De plus, nous invitons l’IRSN et le Commissariat à l’énergie atomique (CEA) à mener des recherches conjointes sur les instruments permettant d’effectuer à distance des mesures radiologiques et des pilotages d’équipements car leur développement mérite une attention particulière.

M. Christian Bataille, rapporteur. – Quatrième axe : consolider la maîtrise publique du contrôle de sûreté. Il ne faut pas banaliser l’industrie nucléaire, qui n’est pas une industrie comme les autres. Elle ne peut pas être dominée par la recherche du profit, objectif naturel en d’autres domaines, quand son échelle de temps est de l’ordre du demi-siècle. En conséquence, il convient que la filière nucléaire française reste sous le contrôle direct de l’État, et que les règles européennes de la concurrence ne s’appliquent pas sans discernement au marché de l’énergie. L’énergie nucléaire concerne la France plus que son environnement européen.

Le Gouvernement doit donner à l’ASN et aux Commissions locales d’information (CLI), dont nous avons mesuré l’importance lors de nos visites d’installations nucléaires, les moyens nécessaires à l’efficacité de leur action. Par exemple, l’ASN ne dispose pas d’un véritable régime d’astreintes garantissant sa capacité de réaction à une crise – nous demanderons au gouvernement de prendre rapidement les mesures nécessaires. Son budget
est éclaté en quatre programmes, ce qui complique la gestion et fait obstacle à la transparence sur les moyens accordés à la sûreté – il convient de regrouper les moyens de l’ASN en un seul programme.

Quant aux CLI, leur financement par une part de la taxe sur les installations nucléaires, prévu en 2006, n’est toujours pas mis en œuvre – nous demandons au gouvernement de le faire. Une véritable transparence suppose également de les autoriser à faire appel à une expertise pluraliste. L’absence d’alternative à celle de l’IRSN, au reste, excellente, est une limite du système actuel – nous souhaitons la mise en place d’un fonds, géré par l’ANR, pour que les CLI puissent commander des études aux laboratoires universitaires.

M. Bruno Sido, rapporteur. – Cinquième axe : améliorer la gestion de crise. Nous demandons aux autorités publiques d’intégrer rapidement les nouvelles technologies (téléphonie mobile, réseaux sociaux, Internet) aux dispositifs d’alerte et de communication, tout en dimensionnant de façon suffisante les moyens techniques correspondants.

L’exemple des mesures prises au Japon pour faire face à la crise nucléaire doit inciter les pouvoirs publics et les exploitants à réétudier les modalités de formation et de mobilisation des personnels appelés à intervenir en cas de crise. Ils auront également à tester les conditions de mise en œuvre du volontariat lors de véritables exercices.

La protection des populations en cas de crise nucléaire exige, enfin, de mieux maîtriser l’urbanisation aux abords des sites nucléaires où les
projets se sont multipliés. Le guide que rédige l’ASN à ce sujet sera essentiel.

M. Christian Bataille, rapporteur. – Sixième axe : rendre plus transparents les coûts de la filière. Dans le domaine nucléaire, la sécurité n’a pas de prix, avons-nous l’habitude de dire avec M. Claude Birraux. La catastrophe nucléaire de Fukushima nous ayant rappelé cette cruelle évidence, puissions-nous enterrer définitivement l’idée de vendre des réacteurs à coût réduit à des pays qui ne disposent ni des moyens techniques, ni des personnels nécessaires, ni d’une autorité de sûreté indépendante.

Néanmoins, si la sûreté nucléaire n’a pas de prix, elle a un coût. Et la transparence exige que celui-ci soit connu de nos concitoyens. La Commission nationale d’évaluation du financement des charges de démantèlement des installations nucléaires et de gestion des déchets radioactifs, instaurée par la loi du 28 juin 2006, s’est réunie pour la première fois… le 7 juin dernier, soit cinq ans après sa création. Le Gouvernement doit fournir à cette commission les moyens nécessaires pour qu’elle puisse remettre son premier rapport d’évaluation avant la fin de cette année.

En outre, nous demandons à l’ASN d’établir, dans son rapport annuel d’activité, un bilan du coût des mises à niveau des installations et de l’organisation de la sûreté qu’elle impose aux exploitants lors des contrôles, des visites décennales et des évaluations de sûreté.

M. Bruno Sido, rapporteur. – Septième axe : garantir la cohérence internationale des évaluations de sûreté. L’idée de confier à une autorité internationale le soin de contrôler le respect des normes de sûreté nucléaire, intellectuellement satisfaisante, se heurte à la réalité des relations diplomatiques. De fait, des contrôles internationaux, contraires au principe de souveraineté nationale, sont suspendus à l’approbation des pays. En outre, la recherche d’équilibre entre intérêts nationaux divergents est parfois contradictoire avec la rigueur absolue qu’impose la sûreté nucléaire. Nous ne voyons donc pas dans la coopération internationale renforcée le germe d’une organisation supranationale, ayant vocation à se substituer aux contrôles publics nationaux.

Enfin, la consistance d’une organisation internationale dépend souvent de l’alchimie complexe qui préside à la nomination de ses dirigeants et de ses agents, laquelle doit nécessairement respecter un principe d’équilibre entre les États-membres. En revanche, une coopération internationale renforcée constitue indéniablement un atout pour la sûreté dès lors que les normes de sûreté se calent sur le plus haut niveau d’exigence. Plus de regards indépendants se croisent, et meilleure est la détection des défauts. Le gouvernement doit donc défendre, dans les négociations internationales, l’adoption des standards de sûreté européens par l’AIEA.

M. Christian Bataille, rapporteur. – Malgré les difficultés, la France, avec l’ASN et les CLI, constitue l’un des pays nucléaires où la gestion de la sûreté nucléaire est la plus exigeante et la plus transparente. Néanmoins, parce qu’aucun pays n’est totalement à l’abri, notre industrie nucléaire doit pousser d’un cran son investissement dans la sûreté. Elle doit imaginer des événements d’une intensité plus élevée, des schémas accidentels en cascade avec des interactions entre sites industriels voisins. Priorité doit être donnée aux impératifs de sûreté sur toute considération économique. La maîtrise de cette industrie, qui n’est pas une industrie comme les autres, doit rester publique : seul l’État peut apporter des garanties solennelles à une population inquiète.
La sûreté repose d'abord sur les personnels qui travaillent dans cette industrie exigeante et essentielle à l’activité économique de la Nation. Il faut veiller à l’approfondissement de leur formation, *a fortiori* quand les départs à la retraite sont nombreux. Quant à la sous-traitance, il faut y avoir recours de façon responsable, et non pour des raisons mercantiles.

Ensuite, on doit développer la recherche, qui crédibilise toute la filière, et parvenir à des normes mondiales. L’urgence est de prévenir les risques dans les installations les moins sécurisées avant d’élever le niveau d’exigence de sûreté dans les chantiers en projet ou en cours. Espérons que le premier accord entre l’Europe et l’Amérique du Nord sera l’occasion de lancer ce chantier !

M. Claude Birraux, président. – Merci aux rapporteurs pour la qualité de leur travail et leur investissement : ils ont travaillé à un rythme effréné durant deux mois et demi pour parvenir à rendre ce rapport d’étape en temps et en heure. Merci également à nos collaborateurs, que nous avons soumis à rude épreuve.

Les premières conclusions de l’Académie des sciences, rendues publiques hier, convergent avec certaines de nos propositions, ce dont je me réjouis. Avant d’ouvrir le débat, précisons que j’ai reçu une contribution de la part de Daniel Paul, retenu par une réunion du Bureau de l’Assemblée nationale.

J’appuie totalement vos préconisations sur la sous-traitance, problème que j’ai soulevé à plusieurs reprises au Sénat. La maîtrise de l’énergie nucléaire doit rester publique.

M. Bruno Sido, rapporteur. – La question est importante : tout est dans le commandement et l’exécution, disait Napoléon. En cas d’accident, la chaîne de commandement est claire : à l’exploitant, épaulé par l’ASN, de gérer la crise au niveau de la centrale ; au préfet d’informer et d’évacuer la population de l’hinterland. Il y a d’ailleurs redondance au niveau de la préfecture et des centrales.

Mme Marie-Christine Blandin, sénateur. – Merci pour ce rapport. L’Office est bien dans son rôle : l’évaluation d’une technologie. En revanche, les rapporteurs, dans leur exposé, préemptent quelque peu les conclusions définitives de la mission. De fait, toutes vos propositions vont dans le sens de l’amélioration de la filière et, donc, de son maintien. Entre autres, vous préconisez d’investir massivement dans le nucléaire. Qui pourrait refuser l’argent de la sécurité ? Celui qui est nécessaire à la recherche publique ? Sauf à considérer que la recherche publique en énergie est déjà consacrée à 95% par le nucléaire… Ce n’est pas ainsi que l’on avancera dans la recherche sur les énergies alternatives.
Je commencerai par les recommandations. Une étude juridique pour éviter la sous-traitance en cascade dans le nucléaire ? Très bien, si ce n’est que l’instance spécifique de garantie de l’indépendance de l’expertise, dont le Sénat avait voté le principe à l’unanimité il y a trois ans, n’a jamais été créée. Bref, il faut des propositions plus radicales. Un correspondant-référent pour les travailleurs du nucléaire ? Evidemment, sauf que le gouvernement a refusé l’amendement en ce sens que les sénateurs Verts avaient présenté sur le texte relatif à la médecine du travail. Gardons à l’esprit le contexte dans lequel nous évoluons… Enfin, je n’ai pas trouvé trace, dans le projet de rapport, du droit de recours au budget de l’ANR accordé aux CLI pour obtenir des contre-expertises.

On me dira que, durant les visites, j’ai fait ma moisson dans un sens partisan. Néanmoins, vos recommandations, notamment quant au radier de Fessenheim, disent l’opacité qui règne. Vous avez repéré nombre de difficultés : Comurhex I ne résiste pas un séisme de 5,5 ; Gravelines n’a pas anticipé le risque tsunami consécutif à un glissement ; le radier de Fessenheim est trop fin. On pourrait mentionner également les dérives de la sous-traitance, les périmètres trop étroits des plans particuliers d’intervention (PPI), le laxisme dans l’urbanisation périphérique ; la mobilisation médiocrement orchestrée des secours mobiles, les dispositifs de secours en bord de mer et, enfin, l’absence d’arrêt automatique des centrales en cas d’alerte sismique. Tout cela ne dessine pas un beau paysage…

Certains points méritaient de plus amples développements : les problèmes spécifiques aux piscines, signalés par les experts hier ; l’oubli du cas de Superphénix ; le sous-dimensionnement du dispositif anti-marée noire de Gravelines – quel dommage que nous n’ayez pas vu le boudin de Gravelines, ridiculement petit ! – ; la modélisation inexistant de l’effets de crue en cas de contournement des digues ; les risques majeurs liés au transport, maritime et terrestre, du minerai et des déchets ; et, enfin, les effets du nucléaire sur l’environnement dans la durée. J’insiste sur ce dernier point : après le drame au Japon, des centaines, voire des milliers d’hectares, sont devenus incompatibles avec toute activité humaine : on ne peut plus y vivre. Quelle tragédie ! Concernant la gestion de la crise, les plans Orsec, confiés aux préfets, sont nettement insuffisants : une semaine après la crise, rien n’est prévu pour les populations évacuées.
Certaines considérations paraissent trop optimistes. La France est l’un des pays où la gestion de la sûreté est la plus transparente ? Pourtant, en 2009, ni l’ASN ni le plan national de gestion des matières et des déchets radioactifs (PNGMDR) ne mentionnaient l’exportation de tonnes d’uranium en Sibérie. Il a fallu que la presse aille fouiller pour que nous en soyons informés ! Autre exemple, vous parlez d’une gestion parfaitement rigoureuse de la sécurité des installations nucléaires. Les dernières photos de fuites à Paluel et Penly, que m’ont transmises des sous-traitants, témoignent du contraire : on croirait voir de vieilles chaudières poussives. L’existence de risques majeurs serait prise en compte dès le choix d’installation, affirmez-vous. A considérer le niveau de Gravelines par rapport à celui de la mer ou encore la centrale de Tricastin située en plaine alluviale et inondable (Georges Besse II a été surélevé), le propos paraît un peu abusif. Une progression continue de la transparence ? Souvenez-vous ! A Tricastin, j’ai dû sortir de mon sac à main la carte IGN pour qu’on nous donne les points cotés, l’altitude du canal et des fonds de réacteur. A Fessenheim, il a fallu que je les soumette à un tir de questions pour que nous apprenions, dix minutes avant de quitter le site, que l’épaisseur du radier est de 1,5 mètre, selon l’ASN, et de 1,3 mètre, selon EDF. Et trois minutes avant de monter dans le bus, un ingénieur de m’appeler : « Rassurez-vous ! Nous élaborons un projet pour ajouter 80 centimètres de béton en dessous du réacteur n° 1 ». Bref, vous êtes trop indulgents ou peut-être « pas assez curieux ». Moi, j’ai eu l’impression de devoir arracher les données à des gens qui n’étaient pas pressés de partager leurs incertitudes.

Quant aux conclusions du rapport, je souhaite des positions plus radicales. Vous avez su interdire la sous-traitance, sauf dérogation, dans la loi bioéthique, pourquoi n’en serait-il pas de même pour le nucléaire ? Le principe doit être le travail dans la maison mère, sous contrôle public. Il faut également exiger des scénarios de crise dépassant les premiers jours.

Ce commentaire ne préjuge pas de ma position sur le rapport définitif, même si vous devinez déjà sur quels points j’interviendrai.

M. Claude Birraux, président. – Chaque chose en son temps : ce n’est qu’un rapport d’étape… Le programme a été dense : six auditions publiques auxquelles ont assisté 23 membres de la mission et sept déplacements auxquels ont participé 17 parlementaires ; le tout en deux mois ! Dans ces circonstances, le temps a manqué pour s’intéresser à toutes
les questions de sécurité hors des centrales, notamment le transport du minerai. D’ailleurs, concernant le stockage d’uranium en Sibérie, j’avais organisé une conférence de presse au Sénat pour rappeler la règle internationale : l’uranium appauvri reste stocké dans le pays qui l’a enrichi.

Mme Marie-Christine Blandin. – Mon grief s’adressait à l’ASN, non à l’Office ! Ce stockage n’a pas été mentionné dans le PNGMDR.

M. Claude Birraux, président. – Normal, puisque l’uranium n’a pas été enrichi en France !

M. Christian Bataille, rapporteur. – Ce rapport d’étape ne préempte en rien notre position finale : en toute honnêteté, nous avons soulevé les points qui méritent d’être corrigés, tel le recours à la sous-traitance, pour consolider la filière. Consolider la filière ne signifie pas exclure des hypothèses. Je me rendrai en septembre prochain en Allemagne pour étudier les conséquences de l’arrêt des centrales, car cette option pose également des problèmes de sécurité.

Soit, la transparence n’est pas idéale dans une industrie longtemps marquée par ses origines militaires. En revanche, les progrès sont continus : EDF, Areva et le CEA n’ont plus du tout le même comportement qu’il y a vingt ans.

M. Claude Birraux, président. – Juste ! Et l’ASN publie sur son site internet toutes les lettres de demandes, les réponses d’EDF et les avis qu’elle rend.

M. Christian Bataille, rapporteur. – Oui, parfois, il faut « tirer les vers du nez ». Nul ne doute que Mme Marie-Christine Blandin sait y réussir ; quant à nous, nous avons fait notre possible dans la limite physique des deux mois et demi. Le délai sera identique pour le rapport définitif : il doit être prêt en décembre et des élections sénatoriales auront eu lieu en septembre.

M. Bruno Sido, rapporteur. – On ne peut pas nous reprocher d’avoir répondu à la question posée : comment améliorer la sécurité nucléaire ? Ce travail n’exclut pas une éventuelle sortie du nucléaire. Si la
France s’alignait sur l’Allemagne, l’arrêt des centrales prendrait vingt ans, durée pendant laquelle la sécurité nucléaire serait tout aussi importante. Arracher les informations ? Je sais gré à Mme Blandin d’avoir sorti sa carte IGN au 500 millième. D’ailleurs, à Gravelines, il aurait été bien utile d’avoir aussi une carte marine. Quant au suivi radiologique, on nous a affirmé que tous ceux qui travaillent sur un site nucléaire, du lampiste en passant par le peintre, possèdent la fameuse petite carte et profitent donc d’un suivi complet. Enfin, concernant les CLI et leur droit de recours au budget de l’ANR, il est abordé à la page 107 du rapport.

M. Claude Birraux, président. – J’ajoute que les études universitaires seront financées par les producteurs via un fonds géré par l’ANR. J’y vois le moyen de parvenir à une pluralité d’opinions et d’analyses.

Remerciez-moi d’avoir refusé la solution de stockage des déchets dans des piscines aux pieds des centrales que la commission du débat public me présentait comme consensuelle en 2006 ! On sait, depuis Fukushima, tous les risques qu’elle fait courir…

M. Yves Cochet, député. – Je vous ferai parvenir ma contribution écrite.

Page 14 du rapport, il est écrit que la sécurité et la sûreté nucléaires sont gérées du mieux possible en France : je m’interroge sur cette promotion modérée mais patente de la filière nucléaire.

Ne serait-il pas préférable que l’État maîtrise la sûreté nucléaire ? L’indépendance de l’ASN déresponsabilise l’exécutif.

Si je n’ai pas eu le temps d’aller à Fessenheim, j’ai entendu dire que les turbo-alternateurs n’étaient pas fixés sur des amortisseurs, comme dans les autres centrales nucléaires : en cas de séisme, ils seraient immédiatement ébranlés.

Page 23, vous évoquez les risques d’inondations. La centrale du Blayais a été inondée lors de la tempête de 1999 et douze ans après, les
règles fondamentales de sécurité sont encore en cours de révision, et un
guide en cours de rédaction ! N’est ce pas un peu long ?

Page 25, cinq lignes sont consacrées à la sècheresse. Si dans les
années à venir le climat change et les sècheresses s’intensifient, comme le
prévoit le GIEC, il faudra suspendre l’exploitation de près de la moitié de
nos centrales. Or, le rapport ne fait pas référence au risque de pénurie
d’électricité.

Et puis, vous n’évoquez pas du tout plusieurs autres risques : M.
Birraux estime qu’il ne faut révéler aucun point susceptible d’intéresser
d’éventuels terroristes. Pourtant, hier soir au collège des Bernardins, lors
d’un débat sur la convergence énergétique entre la France et l’Allemagne, M.
Christian Hey, secrétaire général du German Advisory Council on the
Environnement, a rappelé que l’hostilité des citoyens allemands au nucléaire
étaient principalement due au risque terroriste, surtout après le 11 septembre.
Nous aurions intérêt à nous pencher plus sérieusement sur ce risque, quitte à
cé que les études sur le sujet restent secrètes pour ne pas divulguer
d’éventuelles failles de nos centrales. Pourquoi ne pas créer un organisme
auprès du Premier ministre dédié à ces questions qui pourrait être composé
de spécialistes et de parlementaires ? Je me souviens que lors de l’explosion
de l’usine AZF le 21 septembre 2001, le Premier ministre de l’époque avait
 convoqué un comité de défense, car nous ne savions pas si l’explosion était
accidentelle ou non. Une réflexion approfondie sur les risques terroristes est
donc indispensable.

Vous n’évoquez pas non plus l’éventuel crash d’un avion gros
porteur sur une centrale nucléaire. Imaginez les dégâts que ferait un A 380
plein de kérosène sur une centrale !

Autre risque passé sous silence : les tempêtes électromagnétiques
solaires. Richard Carrington a associé son nom à celle de 1859. Il n’y avait
pas de grands réseaux électriques à l’époque, mais les télégraphes avaient
grillé. Si un tel événement venait à se reproduire, tous les transformateurs
seraient touchés. Il ne faudrait pas un jour ni même une semaine pour les
changer tous. Vous imaginez la France sans électricité pendant des mois, et
donc sans eau, parce que les pompes ne fonctionneraient plus ? Ce serait une
catastrophe majeure, naturelle en ce cas, mais qui peut également être
provoquée par des bombes spécifiques. Ne croyez-vous pas qu’il conviendrait de se pencher sur cette question ?

La semaine dernière, l’AIEA a tenu une conférence sur la sécurité et la sûreté des réacteurs nucléaires et Mme Kosciusko-Morizet y est allé délivrer le discours officiel de la France : l’AIEA n’a pris aucune décision ! Son inefficacité en la matière est patente.

M. Claude Birraux, président. – Dans mon exposé liminaire, j’ai rappelé le mutisme de l’AIEA sur les événements de Fukushima.

M. Yves Cochet. – Elle n’a procédé à aucune révision de norme ou de seuil ! Le rapport devrait insister sur l’impuissance de l’AIEA.

Enfin, peut être faudrait-il s’interroger sur la transparence des informations en cas d’accident.

Bref, je ne pourrai voter le rapport, mais je salue l’intensité du travail accompli.

M. Claude Birraux, président. – Pourrez-vous me communiquer ces réflexions par écrit d’ici la semaine prochaine ? Je souhaiterais que Mme Blandin fasse de même.

Sur le rapport de l’Allemagne au terrorisme : ce pays a connu la bande à Baader. La branche française était dirigée par Nathalie Ménigon qui a assassiné Georges Besse, alors qu’il venait de redresser Renault au bord du dépôt de bilan. Et puis, Cesare Battisti…

M. Yves Cochet. – Je vous arrête tout de suite ! Cela n’a rien à voir…

M. Claude Birraux, président. – Lors de la mission de l’Office sur les déchets faiblement radioactifs, vous aviez fait un vibrant plaidoyer contre l’information officielle dispensée par une autorité aux ordres de l’État. Vous réclamiez son indépendance ; vous voulez aujourd’hui que l’ASN soit
rattachée à l’État : est-ce pour revenir à l’époque où nous ne pouvions pas consulter les rapports d’audit, et avoir connaissance des réflexions d’experts et des lettres de réprimandes ?

Sans doute avez-vous des différends avec le président André-Claude Lacoste…

M. Yves Cochet. – Cela n’a rien de personnel. J’estime que l’État doit être responsable de la sûreté nucléaire. Si l’ASN n’est pas un comité Théodule, ses experts sont formés à la même école que ceux de l’exploitant. Je préfèrerais que des organisations vraiment indépendantes, comme la Criirad, disposent de moyens suffisants.

M. Claude Birraux, président. – N’oubliez jamais la compétence !

M. Christian Bataille, rapporteur. – Si nous n’avons évoqué la sécheresse que brièvement, c’est qu’elle n’a pas de conséquence sur la sûreté nucléaire.

Il ne faut pas non plus mélanger l’attaque d’une centrale par un avion militaire ou civil transformé avec la chute accidentelle d’un aéronef. Cette dernière hypothèse est hautement improbable. Peut-être faudrait-il nous intéresser aux itinéraires des lignes aériennes pour voir si certaines passent au-dessus des centrales.

La tempête solaire de 1859 ? Cela mériterait une étude de l’Office.

M. Claude Birraux, président. – Pourquoi pas ?

M. Bruno Sido, rapporteur. – Je ne sais pas si les turbo-alternateurs de Fessenheim sont montés sur amortisseurs, mais les bâtiments sont désolidarisés les uns des autres afin d’éviter, en cas de séisme, un effet domino. Quant au crash d’un gros porteur sur une centrale, je rappelle que le 11 septembre, l’avion qui visait le Pentagone a manqué son coup. Il est beaucoup plus facile d’atteindre des buildings que des bâtiments bas. Le risque est d’ailleurs estimé à 10⁻⁷ : il est donc quasi nul.
M. Pierre Lasbordes, député. – Le Secrétariat général de la défense et de la sécurité nationale traite spécifiquement des questions de terrorisme. Il est donc à même de répondre aux risques que vous évoquez. Il suffit de l’interroger.

Un autre risque n’a pas été évoqué, celui de la cybercriminalité. Nous avons assisté depuis quelques temps à une recrudescence de piratages informatiques. Sony et Air France en ont été récemment victimes. Les centrales nucléaires sont-elles protégées ?

M. Claude Birraux, président. – Elles ne sont pas reliées à l’extérieur.

M. Pierre Lasbordes. – Il y a des risques…

Mme Élisabeth Lamure, sénateur. – Le premier point fort du rapport que je voudrais relever est que nous avons une très belle filière industrielle. Elle est très importante pour notre tissu économique, et je me félicite de notre savoir-faire en la matière. Votre rapport dresse des constats satisfaisants et rassurants en la matière : compétence, rigueur et transparence sont de mise. Un seul bémol : la sous-traitance, trop importante.

L’Europe a procédé à des tests sur ses 140 réacteurs. Mais qu’en est-il pour les pays limitrophes qui construisent des centrales ? La Lituanie a ainsi fermé sa centrale en 2009, et elle s’inquiète de la construction, à une vingtaine de kilomètres de sa frontière, d’une centrale en Biélorussie. Ce pays n’a pas procédé à des études d’impact et il n’a pas organisé les consultations bilatérales prévues dans les textes internationaux. L’AIEA ne peut-elle pas faire respecter les procédures ?

Au point 7 de vos recommandations, vous préconisez le renforcement de la recherche universitaire sur la sécurité nucléaire et sur la prévention des accidents. Y a-t-il des recherches sur la décontamination des sites et des régions touchées après un accident ?
M. Claude Birraux, président. – L’IRSN mène des recherches dans ce domaine. Il est intervenu pour la réhabilitation des sites après l’accident de Tchernobyl.

M. Didier Guillaume, sénateur. – Je veux rendre hommage aux travaux menés par l’Office, même si le temps a été compté à nos excellents rapporteurs. On ne pouvait pas traiter de tous les aspects du sujet, mais je considère que des réponses ont été apportées à la question qui était posée.

Dans le nucléaire, il y a ceux qui sont pour – j’en fais partie –, et ceux qui sont contre. Évitons les uns et les autres de tomber dans la caricature : tout n’est pas parfait dans cette filière, mais tout ne mérite pas non plus l’opprobre. Évitons d’effrayer nos concitoyens par des propos à l’emporte-pièce. Si un Fukushima avait lieu en France, le gouvernement, l’ASN et l’exploitant ne réagiraient certainement pas comme au Japon.

M. Yves Cochet. – Et nos concitoyens ?

M. Didier Guillaume. – Des moyens supplémentaires doivent être alloués à la sûreté et à l’information de la population. La loi TSN est dépassée : il faut aller vers plus d’information et plus de réalisme. L’ASN est le meilleur gendarme du monde, et il ne faut pas qu’il soit raccroché à l’État : son indépendance est indispensable. Mon département subventionne la Criirad, dont je ne sais si elle est plus indépendante que l’ASN ou l’IRSN.

M. Yves Cochet. – Elle l’est bien évidemment davantage !

M. Didier Guillaume. – Je n’en suis pas si sûr…

La sous-traitance, maintenant. S’il est compréhensible que les industriels y aient recours, la sous-traitance en cascade doit être bannie, car elle entraîne la déresponsabilisation à tous les échelons. Et puis, nous devons prendre garde au cumul de risques : dans ces cas là, la situation devient très vite ingérable.
L’information de nos concitoyens, notamment ceux qui habitent à proximité des centrales, doit être améliorée. Les CLI doivent avoir les moyens suffisants pour remplir leur mission.

L’accident de Fukushima ne doit pas nous pousser à jeter le bébé avec l’eau du bain. Le retour d’expérience nous permettra de renforcer la sécurité de nos centrales. A chaque fois que des recommandations ont été faites à la centrale de Tricastin, que je connais bien, elles ont été suivies d’effet. Hélas, ce n’est pas le cas partout. Mme Blandin a remarqué, à juste titre, qu’il était parfois nécessaire d’arracher les informations aux exploitants. Cela ne peut continuer ainsi.

M. Jean-Marie Bockel, sénateur. – C’est la première fois que je suis associé aux travaux de l’Office et je veux rendre hommage à l’excellence de son travail. Si les comparaisons internationales sont toujours utiles, soyons conscients que la part d’électricité nucléaire dans notre mix énergétique est une des plus élevées au monde. Nous sommes donc bien loin des pays dont la part du nucléaire est limitée, comme de ceux qui s’acheminent vers une sortie du nucléaire. Il serait d’ailleurs intéressant de voir quel est le niveau d’entretien des centrales allemandes. A-t-on vraiment envie d’investir dans des centrales en fin de vie ?

Le rapport évoque brièvement les visites que nous avons faites.

M. Claude Birraux, président. – Tous les comptes rendus d’auditions seront publiés.

M. Jean-Marie Bockel. – Tant mieux !

Si je suis en total désaccord avec les conclusions de Mme Blandin, j’approuve en revanche certaines de ses remarques, notamment lorsqu’elle appelle EDF à plus de transparence. Ainsi, quand nous avons visité Fessenheim, aucun des responsables n’a évoqué les risques d’inondation. Le lendemain, une étude financée par le conseil général du Haut-Rhin paraissait dans la presse : en cas de rupture de la digue principale, les digues arrière ne permettraient pas d’éviter l’inondation de la centrale. Or, les responsables que nous avions rencontrés la veille ne nous avaient rien dit. Bref, EDF a encore des progrès à faire en matière de communication et d’information.
Mêmes interrogations en matière de risque sismique : sur place, on nous a assuré que la sécurité de la centrale avait été renforcée et on nous a montré, pour preuve, des tôles boulonnées sur du béton : je dois dire que ce bricolage m’a plus surpris que rassuré. Cela dit, je ne suis pas expert en ce domaine…

Enfin, il y a sous-traitance et sous-traitance : certaines entreprises sous-traitantes sont extrêmement performantes.

M. Claude Birraux, président. – Je partage votre avis.

M. Ladislas Poniatowski, sénateur. – J’apprécie l’objectivité de ce rapport, quoique l’on vous sache favorables à la filière nucléaire. En effet, vous n’êtes pas tombés dans la caricature.

Certaines des autorités de sûreté nucléaire rencontrées au fil de mes déplacements à l’étranger ne sont que de simples directions de ministères. La nôtre, sans conteste la plus indépendante et la plus sévère du monde, cherche sans cesse à renforcer les mesures de protection. Lorsque je siégeais à l’Assemblée nationale, j’ai visité de nombreuses centrales nucléaires, et j’ai toujours apprécié l’utilisation qui était faite des retours d’expérience. Tel a été le cas, par exemple, après l’accident de Three Mile Island. N’oublions pas non plus qu’en cas d’accident, il faut regarder ce qui se passe sur le site, mais aussi beaucoup plus loin. L’accident de Fukushima a ainsi eu des répercussions jusqu’à Tokyo. Lors du prochain rapport, il faudra peut-être se pencher sur ces questions.

Lors de nos visites dans les centrales, nous avons évoqué la sous-traitance et nous avons noté à chaque fois une grande réticence de la part de nos interlocuteurs. Certains syndicats représentent à la fois les personnels des centrales et les sous-traitants, et nous avons parfois entendu des propos désagréables. Sur les sept points forts soulignés dans votre rapport, la question de la sous-traitance est abordée en priorité, ce qui démontre l’importance de la question. Il convient toutefois d’opérer des distinctions, comme l’a fait Jean-Marie Bockel.

Enfin, ne risque-t-on pas d’affaiblir la portée de notre rapport sur la sûreté et la sécurité nucléaire en traitant du terrorisme alors que ce problème est un peu hors-sujet ?
M. Claude Birraux, président. – Aucune réglementation internationale n’oblige M. Loukachenko à consulter ses voisins. La Lituanie a dû, lorsqu’elle a demandé son adhésion à l’Union, démanteler sa centrale d’Ignalina, qui était de type RBMK, comme celle de Tchernobyl.

Plusieurs d’entre vous ont évoqué la sous-traitance : lorsqu’il faut changer un générateur de vapeur construit par Areva, il est préférable que ce soit cette entreprise qui procède au remplacement. Alstom qui construit les turbines, ou Hartman et Braun, qui a produit le contrôle-commande, sont mieux placées pour en assurer la maintenance qu’un génial bricoleur d’EDF. Ce qui pose véritablement problème, c’est la sous-traitance en cascade et l’exposition de certains travailleurs aux radiations. Je ne suis pas persuadé que le suivi radiologique de ces personnels soit véritablement assuré, contrairement à ce que l’on nous assure.

Deux fautes graves ont affecté la sûreté : à Gravelines, des vis pleines au lieu de vis creuses ont été posées sur les soupapes d’un pressuriseur. En cas d’incident, les conséquences auraient été graves et il a fallu attendre un an avant que ce problème ne soit détecté. À Belleville-sur-Loire, des boulons et des écrous ont été retrouvés dans certaines canalisations, mais la maintenance avait été effectuée par EDF…

Comme M. Poniatowski, je me souviens d’un déjeuner à la centrale de Gravelines : j’étais assis à côté d’un « nomade » syndiqué, qui était intervenu au cours du débat sur la sous-traitance avec des paroles fortes. Cette question va bien au-delà des interventions de certaines entreprises très spécialisées et très compétentes. À La Hague, les syndicats nous ont mis devant des situations problématiques. Pour sortir de ce problème, M. Poniatowski avait proposé que le coût soit le même pour EDF, qu’il y ait appel à la sous-traitance ou non. En tant que responsables de collectivités territoriales, nous connaissons tous les limites du mieux-disant, dont fait état le rapport. Or, il ne s’agit pas ici de trottoirs ou de ronds-points, mais de nucléaire !
Il faut attirer l’attention du gouvernement – c’est l’objet de ma contribution – sur ce qui se passe dans l’opinion. Comment laisser se développer une forme de travail contradictoire avec les nouvelles règles de construction, de fonctionnement et de gestion du nucléaire ? A chaque fois qu’EDF a recours à la sous-traitance, il serait souhaitable qu’une négociation avec les syndicats s’engage pour éviter une montée en puissance de la protestation syndicale. C’est un ses sujets majeurs à l’heure actuelle. Nous ne répondrions pas aux attentes des salariés si nous ne le marquions pas fortement. Pour ces raisons, vous comprendrez que je m’abstienne sur ce rapport.

M. Claude Birraux, président. – Chacun ayant pu s’exprimer, je vais mettre aux voix les conclusions de ce rapport et vous demander l’autorisation de le publier.

Les conclusions du rapport sont adoptées

M. Didier Guillaume. – Que va-t-il se passer ensuite ?

M. Claude Birraux, président. – Nous allons enchaîner sur la deuxième étape.

M. Christian Bataille, rapporteur. – J’effectuerai un voyage en Allemagne en septembre et je vous invite à participer à ce déplacement. Il nous restera ensuite deux mois pour achever notre programme de travail, ce qui sera particulièrement court, alors que j’aurais voulu organiser de multiples déplacements en France mais aussi à l’étranger, ainsi en Corée, pays champion des réacteurs nucléaires low cost.
CONTRIBUTIONS

CONTRIBUTION DE MME MARIE-CHRISTINE BLANDIN, SÉNATRICE

L’OPECST est au cœur de son rôle dans cette mission d’évaluation de la sécurité d’une filière technologique. Et le travail a été conséquent. Cependant les rapporteurs ont préempté la seconde partie du rapport (l’avenir de la filière) en proposant de la conforter par des aménagements, ainsi que d’y investir massivement (sécurité et recherche).

Le document de recommandations remis sur table s’inscrit dans cette logique. Il appelle quelques remarques :

– demander une « étude » sur la sous-traitance est trop peu ambitieux (l’étude sur une instance de garantie de l’expertise, votée en Grenelle I, par exemple, n’a toujours pas vu le jour) ;

– demander un correspondant référent de la médecine du travail est une bonne chose… mais un amendement le demandant dans un débat législatif a été repoussé par le Gouvernement ;

– permettre aux CLIS de recevoir le financement prévu par la loi et leur donner accès aux moyens de l’ANR, comme l’a dit Christian Bataille est juste… mais ne figure pas dans le rapport (p. 107).

Le rapport lui-même mérite les remarques suivantes :

L’investigation menée par les rapporteurs au travers de nombreuses visites et auditions publiques se traduit par des constats et recommandations qui montrent des failles dans la sécurité du parc nucléaire. Pour exemples :
– la recommandation de monter d'un cran la sécurité est vertueuse... mais elle donne acte de l'insuffisance actuelle ;

– la demande de transparence d'EDF et de l'ASN est louable (radier de Fessenheim, p. 21), mais elle donne acte de l'opacité actuelle ;

Des problèmes sont bien repérés :

– Comurhex 1 ne résiste pas à un séisme de 5,5 (p. 21) ;
– Gravelines n'a pas anticipé un tsunami consécutif à un glissement de terrain (p. 25) ;
– le radier de Fessenheim est trop fin (p. 21) ;
– les dérives de la sous-traitance (en cascade et suivi médical trop aléatoire) ;
– les périmètres insuffisants des PPI (Plans Particuliers d'Intervention) (p. 93) ;
– les problèmes des effets cumulés ;
– le laxisme dans l'urbanisation périphérique (p. 92) ;
– la mobilisation insuffisamment orchestrée des secours mobiles (p. 80) ;
– les dispositifs de secours en bord de mer (p. 25) ;
– s'il y a alerte sismique, cela ne déclenche pas l'arrêt automatique (p. 31) ;

Des points sont insuffisamment développés :

– les problèmes spécifiques aux piscines (audition des experts du 29/07/2011) ;
– oubli du « cas » Superphenix ;
– sous dimensionnement du dispositif anti marée noire de Gravelines ;
– modélisation inexistante des effets de crues et des contournements de fin de digue.

Enfin, des risques majeurs liés à la filière hors des centrales ne sont pas abordés :

– transport en mer ;
– transports terrestres ;
– circuit du minerai aux déchets, ou à l'export ;
– effets dans la durée sur l'environnement devenu incompatible avec les activités humaines ;
– gestion de crise à une semaine + n.

Face à ces manques, certaines considérations semblent trop optimistes :

– p. 123 : une France qui serait «la plus transparente» alors que ni le PNGMDR ni l'ASN n’avaient mentionné les tonnes d'uranium stockées en Sibérie ;

– p. 15, ligne 4 : « une gestion parfaitement rigoureuse » alors que la presse fait état de fuites alarmantes (Penly et Paluel) ;

– p. 15 dernier § : « l'existence de risques majeurs est prise en compte dès le choix d'implantation » est une phrase abusive quand on voit :

 ● le niveau de Gravelines, par rapport à celui de la mer ;
 ● Tricastin en plaine alluviale inondable... au point que Georges Besse 2 a été surélevé ;

– p.49 : « les progrès continus de la transparence » alors qu'il a fallu sortir une carte IGN pour faire dire à Areva les cotes comparées du canal
d'alimentation et des installations (Tricastin) ; alors qu'il a fallu questionner avec insistance pour découvrir le projet de 80cm de béton pour épaisir le radier de Fessenheim.

En conséquence, ce rapport apparaît non exhaustif et d'un parti-pris indulgent. En plus des points ci-dessus évoqués, il aurait été souhaitable que le rapport préconise :

– une position plus radicale sur la sous-traitance : interdiction sauf dérogation ;

– une exigence de scénarios de gestion de crise dépassant les premiers jours.

Aussi, je ne peux le voter.
CONTRIBUTION DE M. YVES COCHET, DÉPUTÉ

Pourquoi je n’ai pas voté en faveur de ce rapport

Yves Cochet
Député de Paris

Bien que ce rapport traduise le sérieux des travaux de la mission parlementaire, il s’inscrit dans un contexte de continuation et de développement de l’électro-nucléaire en France, sans remise en cause de cette filière, alors même qu’après la catastrophe de Fukushima, de nombreux pays refusent le nucléaire (Italie) ou souhaitent en sortir (Allemagne).

Il y a trente-cinq ans, lors du lancement du « programme électro-nucléaire » français par le gouvernement de Pierre Messmer, j’étais déjà convaincu que le triptyque sobriété énergétique + efficacité énergétique + énergies renouvelables aurait été une meilleure stratégie que le nucléaire pour éliminer les centrales à flamme et accroître l’indépendance énergétique de la France. Les catastrophes de Tchernobyl et de Fukushima n’ont fait que renforcer ma conviction.

Bien que ce rapport d’étape ne couvre que la première partie – sécurité – du périmètre de la mission parlementaire, il préempte déjà l’orientation générale du rapport final (deuxième partie : place de la filière et son avenir) que l’on peut résumer en : il faut continuer le nucléaire en France, tout en renforçant sa sécurité. Mon orientation est plutôt : il faut sortir du nucléaire en France, de façon sécurisée.

Quelques remarques au fil des pages

Concernant le risque d’inondation, il est indiqué (page 23) qu’à la suite de l’inondation partiale de la centrale du Blayais en 1999, une révision de la Règle fondamentale de sûreté (RFS) a été entreprise, avec la rédaction
d’un guide, en cours de finalisation. Je suis surpris qu’il faille douze ans pour rédiger cette révision, alors même le rapport indique (page 15) que « la sécurité des installations nucléaires, et en particulier leur sûreté, fait l’objet d’une gestion parfaitement rigoureuse ».

Page 25, cinq lignes seulement sont consacrées à la sécheresse. Si, dans les années à venir, le climat change et les sécheresses s’intensifient, comme le prévoit le GIEC, il faudrait suspendre l’exploitation d’environ la moitié de nos centrales, celles qui se trouvent en bord de fleuves à étiage trop faible Or, le rapport ne fait pas référence au risque de pénurie relative d’électricité consécutive à des sécheresses extrèmes.

Le rapport ne mentionne pas non plus l’éventuel crash d’un avion gros porteur sur une centrale nucléaire. Imaginez les dégâts que ferait un A 380 plein de kérosène s’écrasant sur les piscines de La Hague !

Un autre risque est passé sous silence : les tempêtes électromagnétiques solaires. Richard Carrington a associé son nom à celle de 1859. Il n’y avait pas de réseaux électriques à l’époque, mais le réseau télégraphique avait grillé aux États-Unis. Si un tel événement venait à se reproduire, tous les transformateurs électriques pourraient être touchés. Il ne faudrait pas un jour ni même une semaine pour les remplacer tous. Vous
imaginez la France sans électricité pendant des mois, et donc sans eau courante, parce que les pompes ne fonctionneraient plus ? Ce serait une catastrophe majeure, naturelle en ce cas, mais qui peut également être provoquée par des bombes spécifiques. Ne croyez-vous pas qu’il conviendrait de se pencher sur cette question ? Un rapport de l’OCDE, rendu public le 27 juin 2011, classe les « orages géomagnétiques » d’origine solaire parmi les cinq grands risques systémiques qui menacent l’économie mondiale.

Du 20 au 24 juin 2011, l’AIEA a tenu une conférence sur la sécurité et la sûreté nucléaires et Mme Kosciusko-Morizet y est allé délivrer le discours officiel de la France. Ce sommet de l’AIEA n’a pris aucune décision ! Son inefficacité en la matière est patente. L’AIEA ne dit rien après Fukushima ! Elle n’a procédé à aucune révision de norme ou de seuil ! Le rapport de la mission parlementaire devrait insister sur l’impuissance de l’AIEA.
CONTRIBUTION DE M. DANIEL PAUL, DÉPUTÉ

Nucléaire : redonner confiance.

Fukushima a provoqué une immense émotion. Elle est légitime. Il nous faut donc tirer tous les enseignements de ce qui s’est passé au Japon, comprendre les conséquences d’un enchaînement d’événements majeurs et mettre en œuvre les réponses appropriées ici, en France. Il nous faut même sans doute aller plus loin, car le poids de notre filière nucléaire dans la production de notre électricité, comme dans notre industrie, exige de notre pays des assurances fortes, propres à améliorer encore les conditions de fonctionnement de nos sites nucléaires et en particulier des centrales et à redonner à nos concitoyens une confiance qui, à l’évidence, s’est émoussée.

Cela passe sans doute par un large débat public qui donne à voir l’ensemble des éléments constitutifs d’une politique énergétique, dont les objectifs sont de fournir de l’énergie pour répondre aux besoins économiques et sociaux, à un coût abordable, tout en réduisant de manière drastique nos émissions de CO2. Et cela, dans un contexte qui a beaucoup évolué depuis les années 70.

Comment ignorer l’exigence de transparence et de concertation ? L’expérience accumulée par les CLI et les CLIS montre pourtant combien on gagnerait à diffuser largement les éléments d’information propres à permettre une réflexion responsable. De même, on gagnerait à associer les salariés aux décisions qui les concernent.

Comment sous-estimer les effets de la libéralisation du secteur énergétique, l’ouverture à la concurrence et les objectifs de rentabilité financière d’un ancien opérateur historique, devenu un groupe mondialisé, « membre » du CAC 40 ? Il y a une vraie contradiction entre la recherche de réduction des coûts pour augmenter les dividendes des actionnaires et la mise en œuvre d’une politique industrielle de long terme, au service de l’intérêt général, garantissant un haut niveau de sécurité pour les salariés et les citoyens.
C’est pourquoi les députés communistes se sont totalement opposés aux politiques qui ont mené à la libéralisation du secteur de l’énergie, à la privatisation de GDF et à son absorption par Suez, à l’ouverture du capital d’EDF, à la loi NOME. Autant de décisions qui, avec celles qui affectent Areva, autre acteur majeur du nucléaire, n’ont pas contribué à raffermir, dans l’opinion publique, l’idée que le nucléaire français échappait totalement à l’emprise de la rentabilité financière. Et pourtant, c’est là un des piliers du soutien de nos concitoyens à la filière nucléaire.

Il convient, évidemment, d’apprécier le souhait, inscrit dans le rapport, que l’Etat ait une maîtrise complète des entreprises de la filière nucléaire et que cette dernière soit dégagée de l’exigence de concurrence imposée dans le secteur de l’énergie par les traités. Pour autant, les députés communistes sont attachés à l’idée, non seulement d’une maîtrise publique de l’énergie, avec la constitution d’un pôle public, autour d’EDF à 100% publique et l’engagement que le nucléaire ne sera jamais ouvert à la concurrence dans notre pays. Nous proposons aussi que la France porte ces mêmes exigences au niveau européen, tant les mêmes garanties sont justifiées à l’échelle de notre continent.

Le rapport met fort justement en évidence l’attention à apporter aux cumuls de difficultés, telles qu’apparues à Fukushima, à l’effet domino dans le cas de centrales proches de sites industriels, à la disponibilité des dispositifs de secours et d’alimentation électrique pour les centrales situées en bord de mer. A cet égard, il serait sans doute souhaitable d’examiner les conséquences de pollutions marines, de type marée noire… Il souligne aussi la nécessité de prendre en compte l’hypothèse d’accidents et de rejets sur une longue durée dans la gestion de la crise. Je partage aussi l’importance accordée à la recherche universitaire, à la formation des personnels, comme la demande de mise en place d’une « force de réaction rapide » disposant en permanence de moyens et capable d’intervenir partout dans des délais de quelques heures…

Tous les syndicats ont mis en avant la question de la sous-traitance. Le rapport en fait une question importante en souhaitant, en tête de ses conclusions, que « les conditions de la sous-traitance soient gérées de façon plus sûre ».
C’est une question centrale. Son développement actuel, conséquence de la libéralisation du secteur, nourrit l’idée que, finalement, le nucléaire est une activité comme les autres ! On peut y voir, comme ailleurs, la sous-traitance en cascade, des incidents non déclarés, des responsabilités difficiles à déterminer,… Les reportages sur les « nomades » du nucléaire et les témoignages recueillis lors des visites de centrales et d’un site comme « la Hague » sont éloquents.

Il ne saurait être question de laisser se développer ce recours à la sous-traitance. Le rapport propose de systématiser le mieux-disant en France comme en Europe. Cette préconisation serait sans doute un progrès, mais elle n’en serait pas moins insuffisante. Elle laisserait en effet entière la possibilité de voir se développer un système qui ne garantirait pas suffisamment, pour chaque intervenant, la connaissance et l’expérience de chaque installation, alors que de nombreux acteurs nous ont dit l’importance de ces éléments.

Les métiers du nucléaire ne sont pas des métiers comme les autres. Les sites d’intervention justifient une connaissance de la part de tous les intervenants, dont on nous a dit qu’ils sont tous co-responsables de la sécurité. Alors, ne permettons pas au coût du travail de peser sur la sécurité : « on ne négocie pas avec la sécurité d’une centrale ». L’État doit, à ce sujet, favoriser l’ouverture de négociations avec les organisations syndicales.

Après ce 1er rapport, la réflexion va se poursuivre. Mon abstention, à l’issue de cette 1ère étape, a pour but de nourrir cette réflexion et les débats nécessaires, afin que soient prises les décisions permettant à la filière nucléaire de regagner la confiance dont elle a besoin.
ANNEXES
ANNEXE 1 : COMPOSITION DU COMITÉ D’EXPERTS

Académie des Sciences :
- M. Robert GUILLAUMONT, professeur honoraire à l’Université Paris-Sud Orsay
- M. André ZAOUI, directeur de recherche émérite au CNRS

Académie des Technologies :
- M. Bernard TARDIEU, président de la commission Energie et changement climatique

Autorité de sûreté nucléaire (ASN)
- M. Philippe SAINT RAYMOND, ancien DGA de l’ASN, vice-président du « groupe d’experts réacteurs »

Associations
- Mme Monique SENÉ, présidente du GSIEN
- M. Yves MARIGNAC, directeur WISE-Paris

Centre national de recherche scientifique (CNRS)
- M. Hubert FLOCARD, directeur de recherche
- M. Sylvain DAVID, chercheur à l’Institut de physique nucléaire d’Orsay

Institut de radioprotection et de sûreté nucléaire (IRSN)
- M. Michel SCHWARZ, directeur scientifique
Experts étrangers :

Agence de l’OCDE pour l’énergie nucléaire (AEN)

- M. Javier REIG, chef de la division de la sûreté nucléaire

Autorité de sûreté nucléaire (ASN)

- M. Pierre GOVAERTS, ancien responsable de la sûreté nucléaire en Belgique, président du « groupe d’experts réacteurs »
ANNEXE 2 : LISTE DES PERSONNES RENCONTRÉES LORS DES DÉPLACEMENTS

VISITE DE LA CENTRALE NUCLÉAIRE DU NOGENT-SUR-SEINE
9 mai 2011

ASN
M. Michel BABEL, Chef de la division régionale de l’ASN

EDF
M. Hervé MAILLART, Directeur de la centrale de Nogent-sur-Seine

Organisations syndicales

CGT : MM. Manuel FIGUEREIDO, secrétaire général du syndicat énergies Aube - Pascal PAINAULT, secrétaire du CHSCT - Dominique BRIDIER, secrétaire du CE.

CFDT : MM. Pascal VERSAVEL, délégué syndical, élu CE - Baptiste LEROY, responsable syndical CE, élu CHSCT - Francis LUC, élu délégué du personnel

Commission locale d’information
M. Gérard ANCELIN, Maire de Nogent-sur-Seine, Vice-président du conseil général de l'Aube, Président de la CLI

VISITE DES ATELIERS DU CREUSOT ET DE CHALON-SUR-SAÔNE
16 mai 2011

ASN
M. Sébastien CROMBEZ, Directeur des équipements sous pression nucléaires (ASN)
Areva Corporate
M. Jean-Luc ANDRIEUX, Directeur Sûreté, Santé, Sécurité et Environnement

Areva Business Unit Equipements
M. Etienne TOUZAIN, Directeur Développement durable et Progrès continu
M. Xavier LESAGE, Responsable de la cellule relation avec l’ASN

Creusot Forge
M. Patrick PORET, Directeur général
M. Emmanuel Bertrand de BALLANDA, Directeur des opérations
M. Daniel JOBARD, Directeur Recherche et Développement

Usine de Chalon / Saint-Marcel
M. Emmanuel TOURON, Chef du service Développement durable et Progrès continu
M. Dominique MAIRE, Responsable des opérations

Organisations syndicales
M. Jean-Pierre FUENTES (CGT - Creusot Forge)
M. Frédéric MULLIERE (CFDT - Creusot Forge)
M. Angelo PALADINO (CGT - Chalon / Saint Marcel)
M. Ludovic PIERRICHON (CGT - Chalon / Saint Marcel)
M. Fabrice MARTINERIE (CFDT - Chalon / Saint Marcel)
M. Bruno de VALENCE (CGC - Chalon / Saint Marcel)
M. Bruno ASSEMAT (CGC - Chalon / Saint Marcel)

Elus
M. André BILLARDON, Maire du Creusot
M. Jean-Paul ANCIAUX, Député de Saône-et-Loire

VISITE DE LA CENTRALE NUCLÉAIRE DE GRAVELINES

13 mai 2011

ASN
M. Michel PASCAL, Délégué territorial
M. François GODIN, Chef de division
M. Jean-Marc DEDOURGE, Adjoint au chef de division
M. Laurent DUCROCQ, Inspecteur du travail

EDF
M. Jean-Michel QUILICHINI, Directeur de la centrale

Organisations syndicales
M. Didier HOCHART (CGT)
M. Claude LAVIGNE (CGT)
M. Eric GLASIK (CGT)
M. Ludovic JONVEL (CFTD)
M. Bruno DESMET (CGT-FO)
M. Jean-Claude BLONDEL (CGT - société prestataire de gardiennage)
M. Bernard FLANDERINCK (CGT - société prestataire de maintenance en ventilation)

Commission locale d’information
M. Jean-Claude DELALONDE, Président de l’ANCCLI, Ancien Président de la CLI
M. Jo DAIRIN, Adjoint au Maire de Dunkerque, Président par interim de la CLI
M. Jean-Claude BOUCHERY, Conseiller municipal de Gravelines
M. Michel DEMET, Administrateur à la ville de Dunkerque
M. Didier HOCHART, Membre (CGT) du CHSCT de la centrale de Gravelines
M. Nicolas FOURNIER, Les Amis de la Terre
M. Dany BOGAERT, Président de l’Association de défense de l’environnement du Calaisis
M. Jean-Claude ROMBEAUX, Membre des groupes de travail du CODIRPA
M. Philippe BOUDIER, Directeur de l’usine BASF de Gravelines
M. Thierry DUBUIS, secrétaire de la CLI
M. Yves LHEUREUX, secrétaire de la CLI
M. Laurent ROUSSEL, Chef du service “Risques, nuisances, déchets” au Conseil général du Nord

Elus
M. Bertrand RINGOT, Maire de Gravelines
M. Jean SCHEPMAN, Conseiller général

VISITE DE FLAMANVILLE-LA HAGUE
20 mai 2011

ASN
M. Simon HUFFETEAU, chef de la division de Caen, ASN
M. Christophe QUINTIN, délégué territorial Caen, ASN

Commission locale d’information
M. Michel LAURENT, Président des 3 CLI de la Manche
M. Yves BARON, Scientifique CLI Areva et Flamanville
M. Pierre BIHET, Vice-président CLI Areva
M. Charly VARIN, Directeur des 3 CLI
M. Jean-Paul MARTIN, Association AEPN

Organisations syndicales
M. Jean-Michel BEAUBRAS (CGT-FO)
M. Arnaud PAPILLON
M. Daniel CHECIAU (CGT)
M. Bruno BLANCHON (CGT)
M. Joël LECOSTEY (CFDT)
M. Philippe JOUET (CFE-CGC)
M. Daniel CUNY (CFE-CGC)
M. André HUCHET (UNSA-SPAEN)
M. Frédéric RIVIERE (UNSA-SPAEN)
M. Philippe LEFRANÇOIS (CFTC)
M. Florent SOHIER (CFTC)

AREVA
M. Jean-Jacques DREHER, Directeur de l’établissement
M. Roland JACQUET, Directeur adjoint de l’établissement
M. Christophe NEUGNOT, Directeur de la communication
M. Jean-Luc ANDRIEUX, Directeur Sûreté, Sécurité, Santé et Environnement

EDF
M. Jean-Marc MIRAUCOURT, Directeur ingénierie nucléaire
M. Antoine MÉNAGER, Directeur du chantier de l'EPR
VISITE DES INSTALLATIONS DU TRICASTIN
27 mai 2011

ASN
M. Grégoire DEYIRMENDJIAN, Chef de division de l'ASN Lyon

M. Richard ESCOFFIER, Adjoint au chef de division de Lyon

Commission locale d'information
M. Philippe BERRARD, Conseiller Général délégué à l'insertion, Département de la Drôme

M. Wilfrid CAPEVAND, Conseiller Régional de l'Ordre des Pharmaciens

M. Gérard CHAUMONTET, Vice président chargé de l'économie, de l'emploi et de l'innovation, Département de la Drôme

Cl. Olivier BOLZINGER, Directeur départemental, Services d'Incendie et de Secours de la Drôme

M. Bruno DELOME, Secrétaire général, Union départementale syndicat CFTC

M. Roland DESBORDES, Président, CRIIRAD

M. Guy DURAND, Premier adjoint, Mairie de Pierrelatte

M. Serge FISSE, Union départementale syndicat CFE-CGC

M. Maryannick GARIN, Maire de Clansayes

M. Didier GUILLAUME, Sénateur, Président du Conseil Général de la Drôme

M. Alain KHERARO, DGA développement, secrétariat de la CLIGEET, Département de la Drôme

M. Georges LE DINAHET, Union départementale syndicat CFDT

M. Claude LOVERINI, Adjoint au Maire de Saint Paul Trois Châteaux

M. Jean-Pierre MORICHAUD, représentant FRAPNA

Mme Marie-Pierre MOUTON, Conseillère générale, Département de la Drôme

M. Alain PECHERAND, Union départementale syndicat CGT

M. José UGHETTO, Secrétaire général, Areva NC Pierrelatte, section SPAEN
M. Jean-Pierre GERME, syndicat FO Areva

AREVA
M. Frédéric De AGOSTINI, Directeur Areva Tricastin
M. Jean-Luc ANDRIEUX, Directeur Sûreté, Sécurité, Santé et Environnement

EDF
M. Laurent DELABROY, Directeur du CNPE
M. Jean Marie FRIEDRICH, Directeur technique du CNPE
Mme Adeline BERTONCINI, Responsable de la communication du CNPE

Organisations syndicales
M. Georges LE DINAHET, CGT
M. Jean-Marc BLUY, CGT
M. Jean-Jacques PERROT, CGT
M. Claude GARNIER, FO
M. Jean-Claude CARON, FO
Mme Virginie NEUMAYER, CGT EDF CNPE Tricastin
M. Alain PECHERAND, CGT Areva Eurodif Production
M. Georges BREZZO, CGT SOPROVISE Calorifuge
M. Cyril GISBERT, CGT Ponticelli Mécanique et robinetterie
M. S. FISSE, CFE-CGC

VISITE DE LA CENTRALE DE BELLEVILLE-SUR-LOIRE
10 juin 2011

ASN
M. Alain DELMESTRE, Directeur général adjoint, ASN
M. Simon-Pierre EURY, Chef de la division d'Orléans, ASN

Commission locale d'information
M. Pascal VIGUIER
M. Patrick RENON
M. Daniel MESSELOT

EDF
M. Antoine ASSICE, Directeur du CNPE
M. Jean-François DEMALDENT, Directeur Relations Industrielles, Division Production Nucléaire
M. Jean-Bernard ALEMANNI, Directeur Relations Industrielles, Division Ingénierie nucléaire
M. Eric MAUCORT, Directeur Coordination, Division Production Nucléaire
M. Pierre-Franck THOMÉ JASSAUD, Directeur Communication, Division Ingénierie nucléaire

Elus
M. Yves FROMION, député du Cher

VISITE DE LA CENTRALE DE FESSENHEIM
10 juin 2011

ASN
M. Florien KRAFT, Chef de la division de Strasbourg
M. Hubert MENNESSIEZ, Adjoint au chef de la division de Strasbourg
Mme Geneviève CHAUX-DEBRY, déléguée territoriale de la division de Strasbourg

Commission locale d'information
M. Michel HABIG, Président de la CLIS
Mme Fabienne STICH, Maire de FESSENHEIM

M. Jean-Paul LACOTE, Membre d'Alsace Nature

Elus

M. Michel SORDI, Député du Haut-Rhin

EDF

M. Thierry ROSSO, Directeur de la centrale de Fessenheim

M. Pascal GUIHOT, Directeur technique de la centrale

M. Pierre LABBÉ, Délégué technique à la Direction Production Ingénierie

Organisations syndicales

M. Guy KLEIN (CGT)

M. Denis KUPPER (CGT)

M. Jean-Marc PAQUET (CFE CGC)

Mme Véronique SALVODELLI (CFE CGC)

M. Martin KUPFER (FO)

M. Angelo MURGANTE (FO)

M. Bernard DODIN (CFDT)

M. Yannick MEAL (CFDT)
ANNEXE 3 : COMPTES RENDUS DES AUDITIONS
LISTE DES PERSONNES AUDITIONNÉES

Mercredi 16 mars 2011

- M. Bernard BIGOT, administrateur général du Commissariat à l'énergie atomique et aux énergies alternatives.

- M. Luis ECHAVARRI, directeur général de l'Agence de l'OCDE pour l'énergie nucléaire.

- Mme Nathalie KOSCIUSKO-MORIZET, ministre de l'Ecologie, du Développement durable, des Transports et du Logement.

- M. Philippe KNOCHE, responsable de l’activité réacteurs d’Areva.

- M. André-Claude LACOSTE, président de l’Autorité de sûreté nucléaire.

- Mme Anne LAUVERGEON, présidente du directoire d'Areva.

- M. Henri PROGLIO, président directeur général d’EDF.

- M. Jacques REPUSSARD, directeur général de l’Institut de radioprotection et de sûreté nucléaire.

- M. Henri REVOL, président du Haut comité pour la transparence et l'information sur la sécurité nucléaire.

Jeudi 5 mai 2011

- M. Jean-Luc ANDRIEUX, directeur Sûreté, Sécurité, Santé et Environnement d’Areva

- M. Pierre BARBEY, association pour le contrôle radioactivité dans l'ouest (ACRO)
- M. Hervé BERNARD, administrateur général adjoint du Commissariat à l’énergie atomique et aux énergies alternatives (CEA)

- M. Guillaume DEDEREN, chef du bureau des risques à la Direction de la sécurité civile

- M. Jean-Claude DELALONDE, président de l’Association nationale des comités et commissions locales d’information (ANCCLI)

- M. Augustin JANSSENS, Commission européenne

- M. André-Claude LACOSTE, président de l’Autorité de sûreté nucléaire

- M. Ted LAZZO, Agence de l’OCDE pour l’énergie nucléaire (AEN) :

- M. Dominique MINIÈRE, directeur du parc nucléaire d’EDF

- M. Jacques REPUSSARD, directeur général de l’Institut de radioprotection et de sûreté nucléaire

- M. Finn UGLETVEIT, Association des responsables des Autorités européennes compétentes en radioprotection (HERCA)

Vendredi 13 mai 2011

- Colonel Philippe BIZET, chef de l’état-major de la zone Nord

- M. Jean-Christophe BOUVIER, directeur du cabinet du préfet

- M. Dominique BUR, préfet du Nord, préfet de la région Nord-Pas-de-Calais

- M. Christian CHOQUET, préfet de la zone de défense et de sécurité Nord

- M. Stéphane DHÉE, directeur par intérim, Service interministériel régional des affaires civiles et économiques de défense et de la protection civile (SIRACEDPC)

- M. Pascal FORCIOLI, directeur général adjoint de l’Agence régionale de santé du Nord-Pas-de-Calais
- M. François GODIN, chef de division de l'Autorité de sûreté nucléaire

- Docteur Patrick HERTGEN, médecin-chef adjoint du SDIS du Nord

- M. Marc LEURETTE, représentant de la mission d'appui à la gestion des risques nucléaires du ministère de l'intérieur

- Commandant Laurent MAILLARD, référent risques radiologiques, SDIS du Nord

- M. Salvador PEREZ, secrétaire général de la préfecture du Nord

- M. Jean-Michel QUILICHINI, directeur du CNPE de Gravelines, EDF

- Mme Astrid TOMBEUX, chef du bureau de la communication interministérielle

Jeudi 19 mai 2011

- M. Jean-Luc ANDRIEUX, directeur Sûreté, Sécurité, Santé et Environnement d’Areva

- M. Paul-Henri BOURRELIER, président du conseil scientifique de l'association française pour la prévention des catastrophes naturelles

- M. Michel BRONIATOWSKI, Laboratoire de Statistique Théorique et Appliquée, Paris VI

- M. Bruno CAHEN, directeur industriel de l'Andra

- M. Vincent COURTILLOT, Académie des sciences

- M. Jean-Christophe GARIEL, adjoint du directeur de l’environnement et de l’intervention de l’IRSN

- M. Jean GAUVAIN, Agence de l’OCDE pour l’énergie nucléaire (AEN)

- M. Thomas HOUDRÉ, directeur des centrales nucléaires à l’ASN

- M. Hervé LE TREUT, Académie des sciences
- M. Jean-Marc MIRAUCOURT, directeur de l'ingénierie nucléaire d’EDF
- M. Javier REIG, Agence de l’OCDE pour l’énergie nucléaire (AEN)
- M. Bernard TARDIEU, Académie de technologies

Mardi 24 mai 2011

- M. Paul ACKER, directeur Scientifique du Groupe Lafarge
- MM. Bertrand BARRÉ, conseiller scientifique d’Areva et professeur émérite à l’Institut National des Sciences et Techniques Nucléaires
- M. Christophe BÉHAR, directeur de l’énergie nucléaire du CEA
- M. Jean-Luc CARON, vice-président EPR™ Model (PTE)
- M. Sébastien COMBREZ, directeur des équipements sous pression nucléaires de l’ASN
- M. Jean-Claude DA ROCHA, ingénieur responsable Recherche & Développement Innovation chez ACOME
- M. Pierre FERDINAND, directeur de recherche, CEA Laboratoire d’intégration des systèmes et des technologies:
- M. Jean GAUVAIN, Agence de l’OCDE pour l’énergie nucléaire (AEN)
- M. Thomas HOUDRÉ, directeur des centrales nucléaires de l’ASN
- Mme Laurence JACQUES, directrice Ductal, France Belgique Luxembourg
- M. Martial JOREL, directeur de la sûreté des réacteurs de l’IRSN
- M. Jean-Claude MICAELLI, directeur de la Prévention des Accidents Majeurs de l’IRSN
- M. Jean-Marc MIRAUCOURT, directeur de l'ingénierie nucléaire d’EDF
Mardi 31 mai 2011

- M. Jean-Luc ANDRIEUX, directeur Sûreté, Sécurité, Santé et Environnement d’Areva

- Mme Edwige BONNEVIE, directrice du pôle de maîtrise des risques au CEA

- M. Henri CHAPOTOT, directeur du Comité français de certification des entreprises pour la formation et le suivi du personnel travaillant sous rayonnements ionisants (CEFRI)

- M. Denis FLORY, chef du département de sûreté et de sécurité nucléaire de l’AIEA

- M. André-Claude LACOSTE, président de l’Autorité de sûreté nucléaire

- M. Henri LEGRAND, conseiller du Directeur général de l’ASN

- M. Jacques REPUS SARD, directeur général de l’IRSN

- M. Philippe SAINT-RAYMOND, vice-président du groupe d’experts « Réacteurs » de l’ASN

- M. Philippe SASSEIGNE, directeur adjoint de la Production nucléaire d’EDF

- M. Laurent STRICKER, Chairman de World Association of Nuclear Operators (WANO)

- M. Jean TANDONNET, inspecteur général pour la sûreté nucléaire d’EDF
Jeudi 16 juin 2011

- M. Jean-Luc ANDRIEUX, directeur Sûreté, Sécurité, Santé et Environnement d’Areva

- M. Jan BLOMGREN, Director of the Swedish Nuclear Technology Centre (Suède)

- M. Xavier CLÉMENT, directeur de la communication du CEA

- M. Jean-Claude DELALONDE, président de l’ANCCLI

- M. Philippe DESLANDES, président de la Commission nationale du débat public

- M. Jean GAUVAIN, Agence de l’OCDE pour l’énergie nucléaire (AEN)

- M. André-Claude LACOSTE, président de l’Autorité de sûreté nucléaire

- M. Michel LALLIER, membre du Haut comité pour la transparence et l'information sur la sécurité nucléaire et pilote du groupe de travail « Transparence et secrets »

- M. Marc LÉGER, directeur juridique et du contentieux du CEA

- M. Dominique MINIÈRE, directeur du parc nucléaire d’EDF

- M. Javier REIG, Agence de l’OCDE pour l’énergie nucléaire (AEN)

- M. Henri REVOL, président du Haut comité pour la transparence et l'information sur la sécurité nucléaire (HCTISN)

- M. Jacques-Emmanuel SAULNIER, directeur de la communication d’Areva

- M. Matthieu SCHULER, directeur de la stratégie, du développement et des partenariats de l’IRSN

- M. Georges SERVIÈRE, conseiller nucléaire du Président d'EDF
LA CRISE NUCLÉAIRE AU JAPON
MERCREDI 16 MARS 2011

Réunion, ouverte à la presse, conjointe avec la commission du développement durable et de l’aménagement du territoire, la commission des affaires économiques, et la commission de l’économie, du développement durable et de l’aménagement du territoire du Sénat

M. le président Claude Birraux. Ma première pensée, empreinte naturellement d’émotion, sera pour le peuple japonais qui subit aujourd’hui une triple peine, avec cette catastrophe nucléaire venant après un séisme et un tsunami. Je remercie Mme la ministre et M. le ministre d’avoir aussi rapidement accepté de répondre à nos questions – avant d’aller rejoindre le Président de la République à dix-sept heures – puisque c’est seulement hier à midi que l’idée de cette réunion a été lancée. Je salue mes collègues Serge Poignant et Serge Grouard, présidents des commissions des affaires économiques et du développement durable et de l’aménagement du territoire de l’Assemblée nationale, Jean-Paul Émorine, président de la commission de
l’économie et du développement durable du Sénat, et Bruno Sido, premier vice-président de l’OPECST. C’est ici le Parlement rassemblé qui souhaite écouter les ministres et les responsables du secteur faire le point sur la situation au Japon et sur la sûreté dans nos propres centrales.

M. Serge Poignant, président de la Commission des affaires économiques de l’Assemblée nationale. Je remercie également Mme la ministre et M. le ministre d’avoir répondu à notre invitation à cette audition commune et je me réjouis de profiter des compétences de mes collègues et de celles, incontestées, de l’Office en matière de sécurité nucléaire.

La commission des affaires économiques vient d’achever une série d’auditions sur la filière nucléaire. Bien qu’elles aient été centrées sur les aspects industriels et stratégiques, l’Autorité de sûreté nucléaire et l’Institut de radioprotection et de sûreté nucléaire ont été entendus aussi. Et nous sommes convaincus qu’en une dizaine d’années, la France a élaboré une architecture de sécurité et de sûreté nucléaires exceptionnelle. Comme l’a dit le Premier ministre, il y aura un moment pour le retour d’expérience et pour le débat mais, parlementaires ou citoyens, nous avons besoin dans un premier temps d’autant d’informations objectives qu’on peut en avoir sur ce qui s’est passé à Fukushima, afin de disposer d’éléments de comparaison pour évaluer la sûreté de nos propres centrales. J’invite donc mes collègues à poser beaucoup de questions, d’autant que cette réunion, retransmise par les télévisions, sera accessible au plus grand nombre.

M. Serge Grouard, président de la commission du développement durable et de l’aménagement du territoire de l’Assemblée nationale. Je m’associe en pensée aux souffrances qu’endure le peuple japonais et je salue sa dignité impressionnante dans les drames qu’il est en train de vivre.

Nous souhaitons que cette audition soit l’occasion d’avoir, de la part des spécialistes, des réponses aussi précises que possible aux interrogations de nos concitoyens. Ces questions portent d’abord, à mon avis, sur trois points. Premièrement, quelle est la configuration technique exacte du site Fukushima 1, qui est principalement en cause ? Deuxièmement, quelle est en ce moment la situation aux abords de cette centrale, ainsi que sur l’ensemble du territoire japonais ? Enfin, à quoi le reste de la planète doit-il s’attendre ?
Quels sont à ce jour les scénarios envisageables pour autant qu’on puisse les déterminer ?

M. Jean-Pierre Émorine, président de la commission de l'économie, du développement durable et de l'aménagement du territoire du Sénat. Cette réunion exceptionnelle de nos deux assemblées doit nous permettre d’affirmer solennellement notre solidarité avec le peuple japonais. La première priorité de la France doit être d’apporter à celui-ci toute l’aide possible, tant humanitaire que technique, mais nous nous préoccupons bien entendu fortement du sort de nos ressortissants au Japon et nous suivrons de près l’évolution de la radioactivité dans les territoires français du Pacifique au cas où les rejets constatés dans l’atmosphère seraient de nature à faire peser sur eux une menace de contamination.

Nous attendons des intervenants qu’ils nous présentent l’analyse la plus précise possible, compte tenu des nombreuses incertitudes liées à l’évolution rapide de la situation. Les informations sur ce qui se passe à l’intérieur des réacteurs semblent arriver avec retard. Les autorités japonaises ont-elles bien les choses en main ?

Il est primordial de répondre aux inquiétudes légitimes de nos compatriotes, s’agissant de la sécurité nucléaire sur notre territoire. Les centrales nucléaires françaises, qui se caractérisent par une grande homogénéité, font l’objet de visites régulières de l’Autorité de sûreté nucléaire. Autorité indépendante, celle-ci est chargée de vérifier le niveau de sécurité et, le cas échéant, de le rehausser. Les nouveaux programmes de construction privilégient la sécurité des réacteurs, quel qu’en soit le coût. Est-il possible de confirmer le très haut niveau de sécurité exigé de notre parc nucléaire ? Sachant qu’il est indispensable de préserver le lien de confiance entre nos concitoyens et le secteur nucléaire, je ne puis en tout cas qu’approuver les déclarations du Premier ministre devant l’Assemblée nationale, annonçant un contrôle systématique de nos centrales dont les résultats seront rendus publics.

M. Bruno Sido, sénateur et premier vice-président de l’OPECST. Mes pensées vont, comme celles de mes collègues, au peuple japonais. Cette catastrophe ayant une dimension planétaire, quelle coopération internationale peut-on envisager afin d’aider ce pays à gérer la crise ? Je m’adresse plus

Le Japon est le théâtre d’une catastrophe dont les conséquences sont loin d’être encore entièrement connues et qui suscite en France des inquiétudes auxquelles il faut répondre. Un séisme dévastateur, de magnitude 9, a été suivi d’un tsunami très meurtrier qui a porté des atteintes très sérieuses à la sécurité de certains réacteurs. Ces derniers ont supporté le tremblement de terre comme prévu, et une dizaine d’entre eux se sont arrêtés automatiquement, mais le tsunami a gravement endommagé les systèmes de refroidissement. Or un réacteur arrêté doit encore être refroidi pendant plusieurs semaines. Là où les réacteurs ont été privés d’eau, une fusion partielle du cœur s’est produite : cela concerne au moins les réacteurs n°s 1, 2 et 3 de Fukushima Daiichi. De surcroît, et c’est sans doute le point le plus important, l’enceinte du réacteur n° 2, et probablement celle du n° 3, ont également été endommagées, ce qui entraîne des rejets radioactifs continus et plus intenses s’ajoutant aux rejets volontaires décidés pour diminuer la pression dans le cœur des réacteurs. Les inquiétudes portent en outre sur une piscine contenant du combustible usé et que les autorités cherchent à remplir pour éviter que ce combustible se retrouve à nu. L’ennoyage est en effet nécessaire pour empêcher une dégradation qui provoquerait une émission directe de radioactivité dans l’environnement, d’autant que la piscine n’est pas confinée.
Dans ce contexte, entre les émissions intentionnelles destinées à réduire la pression dans les réacteurs, les émissions permanentes liées au déconfinement de certains réacteurs, et la dégradation probable du combustible usagé entreposé dans des piscines, la radioactivité dans l’environnement est devenue forte. La majorité des personnels de la centrale a été évacuée. Certains sont revenus avant d’être évacués une seconde fois. Selon les informations dont nous disposons, les conditions d’intervention sont extrêmement difficiles et les opérateurs restés sur place mettent en péril leur santé, et même leur vie. À ce stade, les rejets radioactifs sont concentrés dans un rayon de vingt kilomètres autour de la centrale et la radioactivité diminue graduellement au fur et à mesure que l’on s’en éloigne. Toutefois les rejets atmosphériques peuvent aller plus loin. Le 15 mars, les vents les ont entraînés vers Tokyo où la radioactivité a augmenté, mais sans risque sanitaire. La situation est susceptible de se dégrader à cause du déconfinement des réacteurs, de la baisse du niveau de l’eau dans les piscines de stockage du combustible usagé, et de l’incapacité d’intervenir dans laquelle les opérateurs risquent de se trouver, en dépit de leur héroïsme. On ne peut exclure que certaines opérations de refroidissement du réacteur encore confiné deviennent impossibles, avec un risque de réactions en chaîne. Une aggravation est donc encore envisageable.

Nous avons recommandé aux Français qui se trouvent là-bas de quitter Tokyo pour tout au moins gagner le sud de l’archipel. À titre préventif, des pastilles d’iode leur ont été distribuées mais il leur a été conseillé de ne rien absorber à moins d’une instruction des autorités japonaises. Toutefois, je le redis, la radioactivité mesurée à Tokyo ne présente pas de risque sanitaire.

Un mot sur le Pacifique et nos territoires d’outre-mer. La radioactivité libérée jusqu’à présent ne devrait pas avoir de conséquence sanitaire sur les territoires très éloignés. Et les premiers territoires français sont à 7 000 kilomètres du Japon. Cela étant, ces conclusions rassurantes se fondent sur la radioactivité libérée jusqu’à présent. Nous devons rester extrêmement vigilants et nous allons effectuer des mesures en permanence grâce au réseau de l’Institut de radioprotection et de sûreté nucléaire (IRSN), composé de 163 balises de surveillance. Il y en a une à Tahiti et les données sont disponibles sur le site de l’Institut. Celui-ci modélise aussi, et c’est indispensable compte tenu du scénario probable, l’évolution du panache radioactif afin de prévoir son déplacement. Le public en sera naturellement
tenu informé tant en métropole qu’outre-mer, les Français présents à l’étranger aussi, et des dispositions seraient prises en cas de besoin.

En métropole, la loi sur la transparence et la sécurité en matière nucléaire, de 2006, nous a dotés d’outils puissants : en premier lieu, l’Autorité de sûreté nucléaire (ASN), qui est une autorité administrative indépendante, sorte de gendarme du nucléaire chargé de contrôler les sites, impose aux exploitants des prescriptions qui peuvent aller jusqu’à la fermeture en cas de risque grave. Elle s’appuie sur les experts, internationalement reconnus, de l’Institut de radioprotection et de sûreté nucléaire, qui dispose d’un budget de plus de 600 millions d’euros, qui emploie 1 600 personnes et qui mène d’importants programmes de recherche. Expert pour la France, cet institut est aussi une force de proposition et il est en mesure d’assister le Japon si ce dernier le demandait. Dans ce système transparent, le moindre incident, aussi minime soit-il, doit être systématiquement signalé à l’ASN, sans appréciation de la part de l’opérateur. C’est donc à elle d’évaluer, de définir l’importance des incidents et de les rendre publics dans des délais très courts. À elle aussi de tirer d’éventuelles conséquences en matière de sûreté. La loi de 2006 a également créé un Haut comité pour la transparence et l’information sur la sécurité nucléaire, présidé par le sénateur honoraire Henri Revol ici présent et chargé d’améliorer l’information destinée au grand public. La sûreté est prise en compte dès la construction des centrales, les différents risques naturels majeurs – séisme, inondation – étant étudiés au moment de la décision d’implantation. Si le risque est réévalué à la hausse, l’ASN demande à l’exploitant de prendre des mesures pour y faire face, et ces allers-retours bénéficient à l’ensemble des équipements, comme ce fut le cas après l’incident enregistré par la centrale du Blayais au moment de la tempête de 1999. De même, l’ASN a tiré les leçons de la tempête Xynthia pour évaluer le risque de submersion marine.

La France a fait le choix du nucléaire pour des raisons d’indépendance énergétique tout autant que pour des raisons technologiques. Il s’inscrit dans une stratégie de bouquet énergétique qui s’est aujourd'hui élargi aux énergies renouvelables, l’objectif étant qu’elles fournissent 23 % de notre énergie en 2020. Cependant, l’énergie la plus sûre, il faut le rappeler dans le contexte actuel, est celle que l’on ne consomme pas. L’un des enjeux du Grenelle de l’environnement est donc de réduire notre consommation globale.
La pertinence de notre politique repose dans la durée sur une exigence absolue de sûreté. Le commissaire européen à l’énergie, M. Oettinger, a proposé des tests de résistance de toutes les centrales européennes sur une base volontaire. Un groupe de haut niveau doit se réunir en avril pour arrêter des critères et des normes qui tiennent compte de ce qui s’est passé au Japon. À la lumière de ces travaux, ainsi que le Premier ministre l’a annoncé, la France procèdera en toute transparence à une évaluation de la sûreté de chaque réacteur et le résultat sera rendu public. Les prescriptions de l’ASN seront systématiquement prises en compte. Au niveau tant national qu’international, la France continuera à promouvoir les normes de sûreté les plus exigeantes car c’est la condition première de l’acceptabilité du nucléaire, en France comme partout ailleurs.

Nous voulons aussi assurer de la solidarité de la France et de la communauté internationale le gouvernement japonais qui a demandé, le 14 mars, l’activation de la convention internationale sur l’assistance en cas d’accident nucléaire. L’Agence internationale de l’énergie atomique (AIEA) est désormais compétente pour coordonner l’assistance internationale avec les efforts japonais sur les sites nucléaires. Nous avons donc demandé immédiatement à l’Autorité de sûreté nucléaire de préparer la contribution technique de notre pays, en liaison étroite avec les différents ministères, avec les exploitants et avec les industriels dont je salue les efforts. J’ai entendu les déclarations d’Anne Lauvergeon, présidente d’Areva, et celles d’Henri Proglio, PDG d’EDF, qui annonçait ce matin la mobilisation de moyens robotiques et de stocks de bore pour stopper les réactions nucléaires, ainsi que celle de leurs équipes. Une importante réunion se tiendra à l’ASN à dix-
sept heures, avec pour objectif de faire une proposition d’assistance qui soit à la hauteur de notre savoir-faire.

Nous voulons tous que la France tire les enseignements de cette catastrophe. Son choix de l’énergie nucléaire remonte à plus d’un demi-siècle et il me semble – j’ai conscience de parler à un moment particulièrement sensible – qu’il est pertinent pour quatre raisons principales. Premièrement, il assure partiellement l’indépendance énergétique de notre pays, ce qui, dans ces temps d’instabilité internationale, ne doit pas être négligée. Deuxièmement, les prix des autres énergies disponibles, du pétrole notamment, augmentent et ils resteront élevés en toute hypothèse. Notre parc nucléaire, qui permet aux Français de bénéficier d’une électricité 40 % moins chère qu’ailleurs en Europe, est à ce titre un élément de la compétitivité de notre pays. Troisièmement, l’énergie nucléaire est la moins émettrice de gaz à effet de serre, dont la réduction est une priorité du Grenelle de l’environnement. Quatrièmement, la France dispose non seulement d’un parc de cinquante-huit réacteurs et d’un exploitant dont les références en matière de sûreté sont solides, mais aussi de capacités industrielles et de compétences reconnues partout dans le monde.

Mais ce choix en faveur de l’énergie nucléaire a pour contrepartie indissociable une exigence absolue en matière de sûreté. La loi sur la transparence et la sécurité nucléaire de 2006 a doté la France d’une organisation et d’outils puissants. Le premier de ceux-ci est l’Autorité de sûreté nucléaire, autorité administrative indépendante qui mérite en effet son titre de « gendarme » du nucléaire. Elle contrôle les sites et peut imposer aux exploitants des prescriptions qui peuvent aller jusqu’à la fermeture en cas de risque grave. L’ASN s’appuie sur l’expertise pointue de l’IRSN qui surveille la radioprotection sur notre territoire. La France a fait de la transparence un des fondements de sa sûreté nucléaire. Le moindre incident ou dysfonctionnement, aussi minime soit-il, est signalé automatiquement à l’ASN. Celle-ci évalue et qualifie son importance et le rend public dans des délais extrêmement courts. Le Gouvernement a également mis en place, en application de la loi de 2006, le Haut comité pour la transparence et l’information sur la sécurité nucléaire présidé par Henri Revol, ici présent. Cet organe collégial permet notamment d’améliorer l’information du grand public. Ainsi, notre système de sûreté et d’information est robuste et reconnu dans le monde entier pour son excellence technique, pour son intransigeance, pour son indépendance et pour sa transparence.
Armés de ces outils, nous devons désormais faire toute la lumière sur l’accident japonais et, surtout, en tirer toutes les conséquences pour notre propre parc. Comme l’a annoncé hier le Premier ministre à l’Assemblée nationale, il sera procédé en toute transparence à une revue complète de la sûreté de chaque réacteur au regard des événements du type séisme ou inondation, et à la lumière du drame de Fukushima. Les résultats seront rendus publics et les prescriptions de l’ASN seront systématiquement prises en compte. La revue portera notamment sur le risque sismique, sur le risque d’inondation, sur le risque de rupture des moyens de refroidissement – lequel constitue le point faible des installations japonaises – et sur les outils qui, comme le récupérateur de corium que nous avons prévu pour l’EPR, permettent de faire face aux situations extrêmes de fusion totale ou partielle du cœur d’un réacteur.

Pour tirer les leçons de la catastrophe, la France n’agira pas seule. Elle souhaite faire partager son exigence et entraîner la communauté internationale vers plus de sûreté. C’est pourquoi elle apporte son plein soutien à la démarche d’évaluation de la sûreté des centrales engagée au niveau européen, et intensifiera ses efforts pour élever et harmoniser les normes de sûreté au niveau européen et international, conformément aux engagements pris lors de la conférence de Paris sur le nucléaire, en mars 2010.

Pour conclure, je veux souligner que l’association du public à nos choix énergétiques est un facteur essentiel de notre démocratie. Le Gouvernement écouterà avec attention les propositions faites pour améliorer notre système énergétique. À l’initiative du Président de la République, il réunira, aussi dans les prochaines semaines, les ministres de l’économie et de l’énergie du G20 pour examiner ensemble les grandes questions relatives à la politique énergétique.

M. Jean-Marc Ayrault. Par la voix de Martine Aubry, les socialistes ont demandé un audit sur la sécurité de nos centrales et sur la prolongation éventuelle de leur durée de vie. Hier, le Premier ministre a répondu positivement, et nous nous en félicitons. Une telle démarche doit conduire à prendre toutes les mesures nécessaires à la sûreté de toutes nos centrales, même si on a dit et répété que tout avait déjà été fait et que tout était sous contrôle. Les événements tragiques du Japon nous prouvent qu’il faut sans cesse élever le niveau d’exigence. Au regard de ce qui se passe, il
ne faut exclure aucune éventualité, pas même celle d’arrêter certaines centrales si c’était nécessaire.

Mais la confiance suppose une totale transparence. C’est pourquoi je formulerai deux demandes. La première, et le Premier ministre ne m’a pas répondu sur ce point, c’est de rendre public le rapport de François Roussely, classé actuellement secret défense. Il n’est pas sain que nucléaire rime avec secret, et qu’il faille attendre les fuites dans la presse pour connaître les préconisations qui ont été faites sur l’avenir de la filière industrielle française. La seconde, c’est qu’il soit procédé, dans le cadre de l’audit européen du parc de centrales, à des expertises pluralistes et croisées. Offrir un tel gage de crédibilité serait le meilleur moyen d’avancer concrètement sur la voie de normes internationales. La question se pose en effet désormais avec acuité.

Face à l’urgence, nos compatriotes attendent des décisions claires et transparentes. L’importance du sujet nous impose de dépasser les petites polémiques. C’est pourquoi je vous pose des questions précises pour obtenir des réponses précises.

M. Jean-Claude Lenoir. Bien qu’intervenant au nom du groupe UMP, je pense que mon propos échappera aux habituels clivages politiques. Je veux dire d’abord, à mon tour, notre émotion et notre compassion, en particulier à l’égard des techniciens japonais qui luttent actuellement à Fukushima en prenant des risques considérables.

Nous avons connu trois catastrophes nucléaires – Three Mile Island, Tchernobyl et Fukushima – et il importe de bien distinguer les causes, la nature et les conséquences de chacune.

Nos concitoyens se demandent d’abord quelles seront les retombées exactes des fuites radioactives constatées au Japon. Il y a moins d’un an, l’éruption d’un volcan islandais affectait une partie du globe. Les mêmes vents ne peuvent-ils pas produire les mêmes effets ? Malgré la distance qui nous sépare du Japon, sommes-nous autant à l’abri des retombées radioactives que nous le croyons ?
Ensuite, l’opinion aimerait connaître les différences entre les réacteurs japonais et les nôtres. Plusieurs d’entre nous ont visité des centrales japonaises, dont Fukushima, et nous n’aurions pas pu imaginer un tel accident tant nous avons été impressionnés par le niveau de sûreté et par la qualité des prestations tant des autorités que des ingénieurs. Ils étaient en cause à Tchernobyl, pas au Japon. Après l’accident ukrainien, il y avait eu un débat sur la double enceinte de confinement. Comment sont donc conçus les réacteurs japonais ?

Par ailleurs, quelles garanties peut-on apporter à nos compatriotes ? Et quelles précautions allons-nous devoir prendre ? Notre Parlement peut s’honorer d’avoir voté la loi de 2006 sur la transparence et mis en place une Autorité de sûreté nucléaire qui fait référence au niveau mondial. Et je redis devant vous à M. Lacoste combien nous apprécions le travail accompli par l’ASN, même si on a pu lui reprocher son extrême exigence à l’égard de notre industrie.

En outre, deux questions se posent aux autorités et aux entreprises. Quelles seront les conséquences de cette catastrophe sur le développement du nucléaire qui, il y a quelques mois encore, connaissait un nouveau départ puisqu’il était prévu de construire 200 réacteurs dans le monde d’ici à 2030 ? À Fukushima, nous avons été frappés par l’accident qui concerne spécifiquement le combustible entreposé dans des piscines, solution que, dans son rapport, M. Roussely préconisait à tous ceux qui s’inquiétaient du sort des déchets nucléaires. N’est-ce pas le moment de remettre en cause ce mode de stockage des déchets à longue durée de vie, qui a montré ses limites ?

M. le président Claude Birraux. MM. Daniel Paul et Yves Cochet se partageront le temps du groupe GDR.

M. Daniel Paul. Comme je l’ai dit hier dans la question que j’ai posée à M. le Premier ministre, les Français s’interrogent, à juste titre.

(La réunion est perturbée par M. Maxime Gremetz et reprend son cours après le départ de celui-ci.)

M. Daniel Paul. Comme je l’ai dit hier dans la question que j’ai posée à M. le Premier ministre, les Français s’interrogent, à juste titre. Or, une part de la pérennité du nucléaire tient à l’acceptation sociale de cette source d’énergie et à la confiance qui peut s’attacher à un système où le taux de profit n’a pas d’incidences sur les règles de sécurité. Et, pour le respect de ces dernières, l’organisation du travail au sein des centrales compte beaucoup.

L’entreprise japonaise en cause est une entreprise privée – et même, me semble-t-il, la première entreprise nucléaire privée du monde – qui s’est déjà signalée dans le passé par des manquements aux règles de sécurité et a fait l’objet de rappels à l’ordre à ce sujet. Pour les députés communistes, le secteur du nucléaire doit échapper totalement à la vision court-termiste qu’impose la recherche de la rentabilité financière. Ne peut-on craindre que celle-ci affecte les règles de fonctionnement des centrales, y compris en Europe, où tous les exploitants sont des sociétés anonymes ? Il conviendrait donc d’ajouter aux quatre points sur lesquels doit porter la revue de sûreté que vous avez annoncée, monsieur le ministre, l’organisation de ce fonctionnement. Il faudrait s’intéresser en particulier à la maintenance, pour laquelle on recourt à des personnels qu’on a appelés les « nomades du nucléaire », mais sans doute faudrait-il aussi reposer, à l’échelle de l’Europe, la question d’une maîtrise publique totale de la filière nucléaire et revoir l’obligation faite à tous les opérateurs historiques publics d’ouvrir leur capital à des intérêts privés.

M. Yves Cochet. La situation m’apparaît incontrôlable et irréversible. Le changement requis va au-delà des quelques améliorations techniques ou audits dont il est aujourd’hui question. Notre solidarité est totale, mais notre colère est immense.

L’industrie nucléaire, nous le disons avec constance depuis le lancement du plan Messmer il y a de cela trente-cinq ans, est dangereuse, coûteuse et inutile. La France et le monde doivent donc sortir du nucléaire, ce qui est techniquement, financièrement et socialement possible en vingt-cinq ans – même si le temps me manque pour vous exposer en détail comment.

Cette sortie du nucléaire est cependant mal partie, à en juger par le fait qu’on ne trouve autour de cette table, outre les ministres et les
administrations concernés, aucun représentant de la société civile – je pense notamment à des organismes indépendants tels que la Commission de recherche et d'information indépendantes sur la radioactivité (CRIIRAD), le Groupement des scientifiques pour l'information sur l'énergie nucléaire (GSIEN), Greenpeace ou les Amis de la Terre.

M. Jacques Myard. Il y a les représentants du peuple !

M. Yves Cochet. J’espère donc que ces organismes, qui sont eux aussi depuis longtemps des experts du nucléaire, seront pleinement associés à l’audit prévu, dont je me félicite.

Je souhaite également qu’ait lieu en France un débat portant spécifiquement sur le nucléaire et tranché par les citoyens, sous la forme d’un référendum portant sur la sortie, ou non, du nucléaire.

Êtes-vous d’accord, d’autre part, pour que soient fermés le plus tôt possible les réacteurs vieux de plus d’une trentaine d’années, comme ceux de Fessenheim, de Gravelines, du Bugey et du Tricastin ? Mme Merkel, qui n’est pourtant pas une écologiste patentée, propose cette mesure en Allemagne et la moitié des pays de l’Union européenne se passent fort bien d’énergie nucléaire – les circonstances actuelles n’étant d’ailleurs pas de nature à les inciter à modifier leur position.

Enfin, il semble que le nombre d’incidents et d’anomalies nucléaires augmente – il aurait même doublé depuis dix ans, selon l’Autorité de sûreté du nucléaire, mais on est loin en la matière de la transparence immédiate dont vous vous flattez. Ainsi, pour ne citer que ces exemples, voilà à peine deux ans, il a fallu attendre le 6 octobre pour que soit dévoilée publiquement la découverte de plusieurs kilos de plutonium faite depuis le mois de juin à Cadarache et la Commission nationale du débat public n’a été saisie du projet de réalisation de l’EPR qu’après le vote de la loi de 2005 qui a décidé cette construction, ce qui n’a pas permis aux citoyens de faire entendre leur voix. Tout cela illustre bien le poids du lobby du nucléaire et montre combien nous avons raison de nous y opposer.

M. Jean Dionis du Séjour. Le groupe Nouveau Centre tient à exprimer sa solidarité avec le peuple japonais et il approuve la proposition
d’un audit portant sur chaque centrale nucléaire du territoire national. Cependant, le débat qui suivra cet audit ne doit pas se dérouler sous le coup de l’émotion et nous sommes pour notre part contre l’idée d’un référendum, préférant que la démocratie représentative joue tout son rôle.

Les ministres ont évoqué, pour cet audit, une réévaluation du risque sismique, présent dans la vallée du Rhin, dans les Pyrénées et dans la vallée du Rhône, ainsi que du risque d’inondation que peut laisser craindre le précédent du Blayais. Le critère de l’âge des centrales sera-t-il également retenu ? En effet, alors que la prolongation de la durée de vie de nos centrales nucléaires rencontrait, à l’exception des Verts, un quasi-consensus, l’ampleur de l’événement actuel et le fait que la France possède 58 réacteurs ne nous permettront pas d’éluder le débat sur ce point. Comment comptez-vous aborder cette question fondamentale ?

Enfin, la catastrophe japonaise nous fournit un motif majeur d’harmoniser par le haut les normes de sécurité appliquées par les vingt-sept pays de l’Union européenne. Quelle sera votre politique pour y parvenir ?

(Mme la ministre. Monsieur Lenoir, pour apprécier le risque de retombées radioactives, il faut considérer non seulement la distance, mais aussi le régime des vents et, localement, la pluviométrie. Nos territoires d’outre-mer les plus proches, situés à 7 000 kilomètres du Japon, se trouvent dans l’hémisphère Sud. Le régime des vents et les courants atmosphériques se concentrent d’ordinaire dans un hémisphère, ceux de ces territoires qui seraient, le cas échéant, les plus exposés seraient peut-être plutôt Saint-Pierre-et-Miquelon que les territoires du Pacifique Sud. À ce stade cependant, il n’y a pas lieu de s’alarmer et aucune retombée radioactive aussi distante ne peut être envisagée dans la situation actuelle. Une modélisation est toutefois en cours et l’alerte sera donnée s’il y a lieu.

Si le scénario catastrophe que je décrivais tout à l’heure se déroule jusqu’au bout, des retombées sont possibles dans une large partie de l’hémisphère Nord, y compris, dans de petites proportions, en France métropolitaine. Elles n’atteindront cependant jamais des niveaux...
susceptibles de poser un problème sanitaire. Il est néanmoins vrai que, comme dans le cas des cendres volcaniques, les particules peuvent être portées assez loin dans un même hémisphère. L’IRSN modélise toutes ces données et nous tient informés. Nous rendrons tous ces éléments publics d’une manière transparente et immédiate.

Les experts seront plus à même que moi de vous répondre quant aux différences entre les réacteurs japonais et les réacteurs français. Je puis néanmoins vous indiquer que les réacteurs japonais en cause sont des réacteurs à eau bouillante, alors que les nôtres fonctionnent à l’eau pressurisée. Malgré des différences techniques, ces types de réacteurs sont pour ainsi dire cousins. Un réacteur à eau bouillante comporte un système de refroidissement unique, alors qu’un réacteur à eau pressurisée est équipé d’un double circuit, de sorte qu’en cas de relâchement intentionnel de vapeur, celle-ci est plus chargée dans la première configuration ; mais le besoin de refroidissement est important dans toutes deux et une défaillance du circuit de refroidissement ne peut qu’être préoccupante. Seul le générateur de troisième génération, l’EPR, muni d’une double enceinte et d’une cuve très particulière, comporte une différence significative avec les réacteurs japonais.

Quant au combustible stocké à Fukushima, en particulier dans la piscine n° 4, il ne s’agit pas de matériaux faisant l’objet d’un stockage de longue durée, mais d’un cœur nucléaire extrait du réacteur en novembre 2010. Le problème posé par ce combustible n’est donc pas à proprement parler celui du stockage des déchets nucléaires et, à supposer que les Japonais aient disposé de possibilités de stockage en profondeur, la situation aurait pu être la même.

Monsieur Paul, la question des personnels « nomades » a été soulevée par l'Autorité de sûreté nucléaire et un plan d'amélioration a été demandé aux exploitants. Le problème est donc en cours de traitement.

Monsieur Ayrault, pour l'audit qui sera réalisé centrale par centrale, une coordination européenne est prévue : comme je l’ai dit, un groupe de haut niveau définira à l’échelle de l’Union les critères et les normes de ce « stress test », ou test de résistance. Il sera ainsi possible d’intégrer les retours d'expérience et les enseignements de la catastrophe de Fukushima en employant les mêmes normes d'audit que les autres États membres. La
procédure n'est cependant pas encore arrêtée, car nous commençons tout juste à y travailler. L’expertise devra évidemment être pluraliste, afin d'apporter une valeur ajoutée. Elle devra également être croisée et, surtout, la plus transparente possible. Il faut en effet rendre lisibles et compréhensibles pour nos citoyens les types de catastrophes auxquels nos réacteurs sont aujourd'hui préparés et les améliorations éventuelles à apporter à ceux-ci.

Monsieur Cochet, la société civile – dont la représentation n’a certes pas toujours été le point fort du nucléaire – est présente par l’intermédiaire du Haut comité présidé par le sénateur Henri Revol. L’audit sera tout à fait transparent, mais la société civile n'est pas toujours experte. De fait, les experts que vous souhaiteriez désigner seraient probablement contestés.

Le Président de la République, qui recevait lundi, pour une réunion prévue de longue date, les ONG environnementales du Grenelle, s’est dit ouvert à un débat, dont la forme reste à définir, sur les énergies. La situation de grande urgence – humanitaire et maintenant radiologique – que connaît le Japon ne permet évidemment pas de définir du jour au lendemain les contours d’un tel débat, mais le principe d'une réflexion partagée et d’une refonte du consensus sur les questions énergétiques est acquis. Un référendum n'apparaît cependant pas opportun dans ce contexte – d'autant que celui que vous souhaitez ressemble à un processus électoral qui ne manquerait pas d'interférer avec celui qui doit se dérouler l'année prochaine.

Monsieur Dionis du Séjour, nous cherchons à définir les normes les plus homogènes possibles au niveau européen. Toute initiative tendant à élever au maximum la transparence et les normes de sûreté nous convient et reçoit notre soutien.

M. le ministre. Monsieur le président Ayrault, le rapport Roussely portait sur l’organisation de la filière nucléaire, notamment à l’export, et non pas sur la sûreté nucléaire. Il est pour l’essentiel disponible, à l'exception d'une petite partie qui a été classée secret défense. L’organisation des « relations extérieures » de la filière a été redéfinie voilà une quinzaine de jours, lors d'un conseil de politique nucléaire qui fait foi désormais.

Monsieur Lenoir, la succession d’un séisme de magnitude 9 et d’un tsunami dont les vagues atteignaient de 15 à 17 mètres est un phénomène
tout à fait exceptionnel et on pourrait presque dire qu’il est remarquable que
la centrale ait tenu sous ce double choc. Mais le fait que le tsunami ait
affecté les circuits de refroidissement primaire et de secours doit conduire à
un retour d’expérience dont les conclusions seront du plus haut intérêt.

Il est encore trop tôt pour savoir quelles seront les conséquences de
cet événement sur la place de l’industrie nucléaire dans le monde – elles
dépendront d’ailleurs de l’ampleur définitive du drame qui se joue
actuellement. Un certain nombre de pays vont probablement suspendre ou
différer la relance de leurs investissements dans le secteur, tandis que
d'autres continueront.

Pour ce qui est du stockage de longue durée, nous réunirons le mois
prochain le Comité de haut niveau pour l'accompagnement économique du
laboratoire de Bure, dont j’ai prévu d’inspecter très prochainement le
chantier.

Monsieur Daniel Paul, la question des intérêts privés, qui sera peut-
être d’actualité dans l’avenir, est actuellement théorique car le seul
exploitant, EDF, est aujourd’hui public.

M. Daniel Paul. Pas complètement. L’État est en outre le premier
actionnaire à lui demander de l’argent.

M. le ministre. L’Autorité de sûreté nucléaire, qui détermine le
cahier des charges et procède à toutes les vérifications, est également
publique.

Monsieur Yves Cochet, le débat sur le « mix » énergétique est
constant, notamment au sein de votre assemblée où j’ai moi-même participé,
en tant que parlementaire, à des discussions sur ce sujet. D’autre part, il n’est
pas anormal que le nombre d’incidents signalés augmente dès lors que l’ASN
a fait le choix de la transparence totale et que le moindre incident donne lieu
à publicité.

Quant à la durée de trente ans, je rappelle que c’est à l’origine celle
de l’amortissement financier de nos centrales, et non leur durée de vie à
proprement parler. Au terme de ce délai, l'Autorité de sûreté nucléaire procède à un examen complet et rend un avis dont le Gouvernement se contente de prendre acte. Ainsi, le 3 décembre dernier, par un communiqué commun, Mme la ministre de l'économie et des finances, Mme la ministre de l'écologie et moi-même avons pris acte de son avis favorable à une prolongation de dix ans de l'exploitation de la centrale du Tricastin, la plus ancienne en fonctionnement. C'est maintenant le tour de la centrale de Fessenheim, l'avis de l’ASN étant attendu pour avril. Il vaut la peine de noter à cet égard que la France est l'un des rares pays au monde à accorder ces autorisations au cas par cas, après examen de la situation de chaque installation : dans d'autres pays, la décision de prolongation est prise en une fois pour l'ensemble des centrales. Et pour ses évaluations, monsieur Dionis du Séjour, l’ASN est tenue de prendre en considération tous les retours d'expérience, comme celui l'inondation qu’a connue la centrale du Blayais, en Gironde. Il en sera de même des éventuels retours d'expérience de la catastrophe qui vient de se produire au Japon.

M. le président Claude Birraux. Madame Buzyn, l’IRSN a-t-il mis en place une cellule de crise ? Qui la compose et comment s’articule-t-elle avec l'Autorité de sûreté nucléaire ?

Mme Agnès Buzyn, présidente du conseil d'administration de l’Institut de radioprotection et de sécurité nucléaire (IRSN). La cellule de crise a été créée dès les premières heures du séisme et je tiens à souligner la réactivité dont a fait preuve l’Institut pour se mettre en ordre de marche. Plus de cent vingt personnes ont été mobilisées jour et nuit pour répondre aux questions de nos concitoyens et je veux rendre hommage au travail du directeur général et des équipes.

Issue de la société civile, j'ai fait de la transparence une priorité. Dans les premières vingt-quatre heures, j'ai demandé que soient mises en ligne en continu les mesures atmosphériques fournies par nos balises sur le territoire national et outre-mer et que des points de situation soient régulièrement publiés sur le site Internet de l'IRSN. L’interaction et la coordination avec l'Autorité de sûreté nucléaire sont parfaites et nous nous efforçons de faire des points de situation communs.

M. André-Claude Lacoste, président de l’Autorité de sûreté nucléaire. Le Japon vit une véritable tragédie, dont la crise nucléaire n'est
qu'une composante. Il est clair que nos interlocuteurs japonais ont pour première préoccupation de gérer cette crise et que l'information à donner à l'extérieur ne vient pour eux qu’en second lieu. En outre, ils tendent bien évidemment à privilégier les contacts avec leurs homologues ou avec les autorités de sûreté nucléaire qui ont la meilleure connaissance des réacteurs à eau bouillante, du type de ceux de Fukushima.

Ce site rassemble dix réacteurs. Très rapidement, l'attention s'est focalisée sur les six réacteurs situés au nord. Trois étaient en fonctionnement et trois à l'arrêt au moment du tremblement de terre et du tsunami. Les premiers ont été automatiquement arrêtés et ont connu ensuite des difficultés d'approvisionnement en eau et en électricité. Les réacteurs 1, 3 et 2 ont connu successivement la même séquence : manque d'eau, début de dégradation des gaines de combustible, dégagement de gaz, dépressurisation de l'enceinte par l'exploitant et, en conséquence, explosions qui ont fait sauter les superstructures du bâtiment. Cette situation est déjà grave, mais la fusion du combustible s'est poursuivie et l'enceinte de confinement du réacteur 2 a été endommagée, ce qui est l'un des principaux motifs d'inquiétude. Le cœur du réacteur est en effet en communication avec l'extérieur et la fuite est permanente. Le réacteur 4, qui était à l'arrêt au moment du séisme, a en outre subi une perte de refroidissement dans la piscine contenant des cœurs de réacteurs usés, dont la température s’élève.

Les Japonais s’emploient à apporter, avec des moyens de secours, le plus d’eau possible pour refroidir les cœurs qui ont commencé à fondre. Les informations que nous recevons heure par heure font état des difficultés rencontrées, tantôt pour manœuvrer une vanne, tantôt pour acheminer un camion. L’ensemble de la situation est extrêmement grave. Au mieux, elle durera très longtemps et nous espérons que le pire – une fusion plus importante des éléments combustibles – ne se produira pas.

Les retombées radioactives sont extrêmement fortes dans l'enceinte des installations et les opérateurs qui interviennent sont exposés à des conditions extrêmes. Ces conditions sont prévues dans les procédures. En France, dans un tel cas, l'exploitant devrait faire appel à des volontaires. Alors que, selon les règles de radioprotection, un travailleur ne doit pas recevoir une dose supérieure à 20 millisieverts par an en temps normal, un volontaire peut recevoir, dans de telles conditions, jusqu’à 100 millisieverts, voire 300 millisieverts pour certaines interventions destinées à sauver des
vies. Au Japon, le ministre de la santé vient de décider de porter de 100 à 250 millisieverts cette dose acceptable. Le nombre de personnes intervenant dans ces conditions ne dépasse probablement pas une cinquantaine.

Les autorités japonaises ont en outre pris des mesures qui nous paraissent raisonnables : l'évacuation des populations dans un rayon de 20 kilomètres autour de la centrale et le confinement dans un rayon de 20 à 30 kilomètres.

Plusieurs scénarios sont possibles : soit l'exploitant japonais pourra apporter une quantité d'eau suffisante pour interrompre l'évolution en cours, soit cette évolution sera beaucoup plus négative.

On peut donc classer cet événement au niveau 6 sur l'échelle INES (International Nuclear Event Scale), c'est-à-dire entre l'accident survenu en 1979 à la centrale de Three Mile Island, où un demi-cœur de réacteur avait fondu sans entraîner de conséquences à l'extérieur, et celui de Tchernobyl, où le cœur avait totalement explosé. Cependant, de tels événements sont tellement inhabituels qu'il faut manier ces comparaisons avec prudence.

Pour ce qui est des conséquences possibles au Japon, l'IRSN a réalisé quelques simulations qui seront évoquées tout à l'heure. En France, quel que soit le scénario, il n'y aura très vraisemblablement pas d'impact sanitaire notable. Il s'agit néanmoins, je le répète, d'un accident majeur qui peut en outre encore évoluer aussi bien vers une stabilisation que vers des conséquences bien plus graves.

M. Jacques Repussard, directeur général de l'Institut de radioprotection et de sûreté nucléaire. De nombreux parlementaires ici présents connaissent l'IRSN et ont visité son centre de crise. Nous disposons d'un équipement et d'une organisation parmi les plus solides au monde. L'exercice mensuel d'accident majeur que nous menons avec EDF, le CEA et Areva est un entraînement très utile. On nous reproche parfois d'exagérer dans les scénarios que nous composons et que nous proposons aux exploitants et aux préfets. Il apparaît malheureusement aujourd'hui que ces scénarios peuvent se réaliser.
La première des trois cellules du centre de crise, consacrée à la sûreté des réacteurs, observe la situation à partir des éléments qui nous sont transmis par le service nucléaire de l’ambassade de France à Tokyo, et renseigne à son tour l’ASN. Nous travaillons également en liaison étroite avec les États-Unis et l’Allemagne : la France n’ayant pas de réacteurs à eau bouillante, nous ne disposons pas des plans des réacteurs japonais, par exemple. Cette collaboration a été parfaite et intense malgré les décalages horaires. Elle nous a permis de disposer d’informations précieuses, notamment pour la modélisation, c'est-à-dire pour l’estimation de la quantité de radioactivité susceptible de s’échapper des enceintes endommagées.

Cela dit, s’il est vrai que ces réacteurs ne sont pas les mêmes que les nôtres, une perte de refroidissement ne pose pas des problèmes très différents dans les deux cas, et obéit à un scénario que nous connaissons bien.

Il faut souligner en outre une différence qui est au bénéfice des installations françaises. L’ancêtre de l’IRSN, l’Institut de protection et de sûreté nucléaire du Commissariat à l’énergie atomique, avait imposé une innovation par rapport aux technologies américaines importées : il avait exigé que soit installée, pour ultime secours, une turbine fonctionnant avec la vapeur produite par le cœur nucléaire. Les réacteurs français sont ainsi à même de faire fonctionner des circuits de refroidissement d’eau sans aucun apport d’électricité et sans moteur diesel. Cette ressource est évidemment un dernier recours mais, si le Japon en avait disposé, peut-être ne connaîtrait-il pas une situation aussi inquiétante.

De notre point de vue, le sujet central n’est pas tant la résistance aux séismes ou aux tsunamis – des événements extraordinaires peuvent toujours survenir comme on l’a vu lors de la tempête du Blayais – que la défense en profondeur des installations et la capacité à restaurer rapidement, c'est-à-dire en moins de 24 heures, des moyens de refroidissement des circuits. Ce qu’il nous faudra comprendre, c’est pourquoi il y a eu défaillance à ces égards dans un grand pays nucléaire comme le Japon.

Pour l’avenir, le gouvernement français a demandé à l’IRSN d’élaborer des projets de recommandations pour l’établissement de futures normes internationales concernant tous les réacteurs de troisième génération : en effet, les règles que nous avons fixées pour l'EPR ne couvrent pas l’ensemble de la gamme. Nous nous sommes attelés à cette
tâche. Nous avons fondé une association des IRSN européens et travaillons main dans la main avec nos amis américains et japonais. Notre homologue japonais est d’ailleurs membre de ce club européen des experts de sûreté nucléaire. Nous sommes convaincus que cette recherche commune et cette culture partagée, pour des technologies qui, en définitive, se ressemblent, sont le meilleur moyen de contribuer à une harmonisation qui connaîtra également une étape réglementaire et une étape politique.

J’en viens aux conséquences de l’accident dramatique qui est en train de se produire au Japon. Le panache radioactif couvre actuellement une zone relativement concentrée de quelques dizaines de kilomètres autour du site. Les vents sont globalement orientés vers l’océan Pacifique, mais pas uniquement, en raison des spécificités de la météorologie côtière. Ce panache va en tout état de cause s’étendre et se déplacer. Nos calculs indiquent cependant qu’à Tokyo, qui compte 35 millions d’habitants et où se trouvent encore 2 000 Français, même si l’on détecte des rayonnements ionisants et des particules radioactives, la dosimétrie restera sans conséquences sanitaires visibles – en tout cas sans effets justifiant, par exemple, l’administration de comprimés d’iode.

Jusqu’à 50 ou 60 kilomètres autour du site, la zone sera fortement contaminée. Au-delà, les conséquences seront perceptibles par les mesures mais ne seront pas dramatiques. Sur le reste de la planète, on détectera les particules à mesure de leur progression, surtout dans l’hémisphère nord. La métrologie des rayonnements ionisants est en effet si puissante que l’on peut détecter des quantités très faibles et non nocives. Reste qu’il s’agit d’une pollution dont la planète se serait sans doute bien passée !

Pour donner un élément de comparaison, j’évoquerai les essais nucléaires atmosphériques des années 1950 et 1960. Nous allons mettre en ligne une carte historique des quantités de césium radioactif libérées à l’époque – et dont nous venons à peine de nous affranchir, puisque le césium a une demi-vie de 30 ans –, carte qui montre un ordre de grandeur supérieur à ce qu’a provoqué l’accident de Tchernobyl. Mais, dans ces années, la société n’était pas informée et cela n’avait pas soulevé une émotion considérable.

Il faut avoir en tête ces ordres de grandeur afin que nos concitoyens ne soient pas inutilement alarmés.
Néanmoins, expliquer ne suffit pas. Ayant pour mission de surveiller la radioprotection dans notre pays, l’IRSN a mis en place plusieurs dispositifs, parmi lesquels les balises dont parlait Mme Buzyn, qui sont des systèmes de détection de rayonnements gamma, et le réseau OPERA, qui surveille les aérosols radioactifs et mesure l’existence de particules qui ne sont pas à rayonnements gamma mais qui peuvent être tout aussi toxiques. Avec Air France et l’ambassade de France à Tokyo, où nous avons dépêché un expert en radioprotection, nous avons également installé un dispositif de contrôle de la non-contamination des équipages d’Air France. Les mesures ont commencé, donnant des résultats négatifs. Nous contrôlerons également les passagers qui auront voyagé dans des régions exposées ou qui nous diront avoir été exposés à des risques.

M. le président Claude Birraux. Je serai reconnaissant à l’IRSN, tout comme à l’ASN, de nous tenir régulièrement informés de l’évolution de la situation.

M. Luis Echávarri, directeur général de l’agence de l’OCDE pour l’énergie nucléaire. Dans le contexte d’un pays dévasté par des catastrophes naturelles d’une ampleur sans précédent, la situation de la centrale nucléaire de Fukushima est délicate. À cet égard, les informations techniques que notre agence recueille de façon indépendante coïncident totalement avec ce qui vient d’être rapporté.

La France est présente au plus haut niveau dans le débat international sur la sûreté nucléaire. Avec les États-Unis, elle est au premier rang de la coopération mondiale. MM. André-Claude Lacoste, Jacques Repussard et Bernard Bigot y participent directement, ainsi que de nombreux experts français présents dans tous les groupes de travail.
M. le président Claude Birraux. Le Japon a-t-il demandé à votre agence ou à l’AIEA d’apporter une aide technique, ou ne faites-vous que recueillir les informations ?

M. Luis Echávarri. Il incombe aux organisations internationales d’apporter une assistance aux pays en difficulté. Le Japon a demandé cette assistance. Néanmoins, je suis quelque peu sceptique quant à la capacité de ces organisations à apporter une aide effective dans une situation de crise. Seuls les grands pays nucléaires ont la capacité d’envoyer, dans un cadre bilatéral, les experts utiles. C’est ce qu’ont fait les États-Unis, qui ont dépêché des experts en matière de réacteurs à eau bouillante. La France, quant à elle, peut apporter une aide très importante en ce qui concerne la protection radiologique et quelques autres domaines.

L'agence de l'OCDE pour l'énergie nucléaire est de taille modeste mais son rôle est important. Tous les pays du monde nous demandent des informations sur l’évolution de la situation et sur la protection radiologique, ainsi que des comparaisons avec les accidents de Three Mile Island et de Tchernobyl. Mais nous nous attachons surtout à l’analyse technique des conditions qui ont conduit à cette situation. Bien que nous ayons déjà connaissance de certains aspects, une analyse en profondeur prendra beaucoup de temps. Nous savons que la technologie du réacteur à eau bouillante n’est pas à l’origine de l’accident. En revanche, certaines caractéristiques comme l’âge de la centrale ne sont peut-être pas étrangères à son évolution catastrophique. En outre, alors que l’électricien japonais pensait être prémuni contre un séisme et un tsunami de grande ampleur, il s'imposera sans doute de rendre plus rigoureux les critères de localisation des centrales au regard des risques de catastrophes naturelles.

Il nous faudra beaucoup plus d’informations pour améliorer de façon déterminante la sûreté des réacteurs. Pour l’heure, toutes les autorités nationales de régulation ont engagé une révision spécifique de chaque centrale afin de s’assurer que l’accident de Fukushima ne peut s’y reproduire, compte tenu des données actuellement connues. J’espère que nous parviendrons dans les prochains mois à une évaluation globale. Après les accidents de Three Mile Island et de Tchernobyl, une telle évaluation nous a permis de parvenir à une très bonne connaissance de ces situations. Une des caractéristiques de l’industrie nucléaire est que tout nouveau projet
se développe sur de nombreuses années. On dispose donc du temps nécessaire pour déterminer les conditions de sûreté des nouveaux réacteurs.

M. Henri Proglio, président-directeur général d'EDF. Je m’associe aux paroles de solidarité qui ont été prononcées à l’égard du peuple japonais et des personnes qui luttent contre la catastrophe avec courage et sang-froid.

Nous avons également une coopération avec TEPCO et nous lui avons proposé, dans le respect de ses priorités, de lui porter assistance à tout moment. Je confirme que nous avons mobilisé des équipements spécialisés adaptés à la situation, en étroite coordination avec l’IRSN et dans le cadre du groupement d’intérêt économique que nous avons constitué avec les industriels français, notamment Areva et le CEA. Cette aide est immédiatement disponible. Jusqu’à présent, nos collègues japonais n’y avaient pas fait appel mais ils ont réagi positivement cet après-midi et cette assistance devrait donc se concrétiser rapidement.

En France mais aussi en Grande-Bretagne, dans le cadre de la mission de service public qui nous a été confiée notamment dans le domaine nucléaire, la sûreté est notre obsession quotidienne. C’est un élément très important de notre culture d’entreprise. Nous y consacrions des moyens humains et financiers considérables – plus de 2 milliards d’euros par an pour l’amélioration, la maintenance et le gros entretien sur le seul territoire français. Nous continuerons à investir massivement pour continuer à bien entretenir nos centrales et à en améliorer systématiquement l’efficacité et la sûreté.

En France, les centrales en activité ont été mises en service entre 1978 et 1999. Elles sont donc d’âges différents, mais les données de sûreté ont évidemment été réactualisées et les investissements réalisés de façon à ce que toutes présentent les mêmes garanties.
Par ailleurs, nous bénéficions du retour d’expérience le plus important au monde en matière de nucléaire – 1 500 années-réacteur ! Nous y intégrons systématiquement toutes les informations provenant des opérateurs internationaux. Nous avons ainsi pu améliorer le niveau de sûreté de nos centrales en fonction des accidents répertoriés dans le monde, notamment des plus graves.

Toutes les caractéristiques des sites concernés sont prises en compte pour la conception et la réalisation des centrales. En matière sismique, l’intensité de référence est de deux fois supérieure à celle de la plus grave secousse intervenue dans les 1 000 dernières années. Nous anticipons également des catastrophes naturelles d’une gravité jamais constatée.

Cependant, rien n’est jamais suffisant en matière de sûreté. En coopération étroite avec les organismes compétents, nous continuerons à adapter et à anticiper, de façon à garantir à nos concitoyens et à tous ceux qui nous font confiance les normes de sécurité les plus ambitieuses et exigeantes au monde.

Mme Anne Lauvergeon, présidente du directoire d'Areva. Nous sommes également en relation avec nos partenaires japonais. TEPCO fait partie de nos clients, non pas en ce qui concerne les réacteurs, qui sont de conception américaine et de réalisation japonaise, mais pour ce qui touche à l’ensemble des autres sujets du nucléaire. Nous avons en outre une relation particulière avec Mitsubishi.

Je souhaite dire à mon tour toute notre compassion à l’égard des personnes qui vivent au Japon un véritable calvaire. Le courage et le sang-froid de la population face au tremblement de terre, au tsunami et, aujourd'hui, à la menace nucléaire forcent l’admiration.

Je souscris totalement à l’analyse technique faite par les précédents intervenants. Si un seul réacteur était défaillant, la situation serait facilement gérable. Mais le cumul des incidents et les circonstances exceptionnelles – interruption de l’alimentation électrique, formation d’une sorte de mangrove entre la centrale et la mer, accumulation de boue et de débris – empêchent l’intervention dont le Japon, nous le savons, est tout à fait capable. Nous sommes effectivement devant une catastrophe.
Même si la technologie choisie en France est celle de l’eau pressurisée, nous connaissons, grâce à nos développements en Allemagne et aux États-Unis, les réacteurs à eau bouillante. À Fukushima, à la différence de Tchernobyl, les centrales se sont arrêtées. Mais, dès lors que les combustibles – tant ceux dans les cuves que dans les piscines – ne sont plus refroidis, la situation devient extrêmement difficile et nécessite une action urgente. J’irai même jusqu’à parler d’urgence absolue. Il faut, par tous les moyens, parvenir à apporter de l’eau afin de refroidir les centrales et les piscines. Les hélicoptères, obligés de se maintenir en vol stationnaire, ne peuvent en outre embarquer qu’une quantité d’eau limitée. Ce n’est pas, semble-t-il, la bonne solution. Notre analyse est qu’il faut 100 mètres cubes d’eau par heure pour l’ensemble du site. Des moyens d’urgence tels que les camions destinés à combattre les incendies d’avions, dont le débit est de 6 mètres cubes par minute, peuvent fournir cette quantité. La portée de leurs lances est de 50 à 80 mètres, une distance qui semble compatible avec la nécessité de se préserver de la radioactivité.

Nous avons pensé, bien entendu, aux Canadairs français, mais il leur faudrait 96 heures pour rejoindre la zone. Les camions de pompiers de type « Faun » semblent une meilleure réponse, de même que les bateaux-pompes à ceci près que la zone boueuse qui sépare maintenant la centrale de la mer peut faire obstacle à leur approche, sachant que leur tirant d’eau est d’environ deux mètres.

Nous apprenons que des camions de pompiers arrivent des États-Unis. Nous avons également des capacités en France. Il y a certainement des choses à faire pour stabiliser la température. C’est une urgence à laquelle doivent répondre tous les pays.

Par ailleurs, une aide internationale a déjà été mobilisée après le séisme. En liaison avec EDF, nous n’avons à répondre pour l’instant qu’à des demandes très spécifiques de la part des Japonais. Un avion est prêt à partir. Mais il ne s’agit là que de moyens palliatifs. Je pense que nous devrions aussi intervenir immédiatement pour ce qui est des moyens curatifs, car les jours qui viennent seront déterminants.

Une centaine de collaborateurs d’Areva travaillent au Japon, dont quinze expatriés. Les dix-huit personnes qui se trouvaient sur le site – des Allemands et des Américains – ont été rapatriées et les familles ont été
déplacées temporairement vers le sud de l’archipel, mais tous les collaborateurs nécessaires à Tokyo y sont demeurés. En effet, les 44 autres réacteurs qui fonctionnent aujourd'hui au Japon sont essentiels à la fourniture du pays en électricité.

L’avion qui partira dès que possible de Roissy acheminera 3 000 masques de protection, des combinaisons, des gants, de l’acide borique, etc. Nous avons également envoyé, au début de cette semaine, du matériel de mesure de la radioactivité qui provient de notre filiale Canberra. Le matériel dont nous disposons à Tokyo a bien évidemment été mis à la disposition des équipes de sécurité japonaises.

Nous avons enfin fait un don pour les sinistrés du tremblement de terre et du tsunami.

Face à cette situation, nos concitoyens attendent de la transparence et souhaitent être assurés que nous déployons tous les moyens dont nous disposons au service d’une sûreté et d’une sécurité maximales. Le contexte actuel rend dérisoires les discussions sur le caractère « trop sûr » de l’EPR et montre bien que le pari sur la sécurité est le pari de l’avenir.

En tant qu’industriels, il nous sera nécessaire, avec Henri Proglio, de rétablir un dialogue dont dépend la confiance de nos concitoyens dans le nucléaire : il y va de l’avenir de nos industries.

Comme je l’ai dit à maintes reprises devant vos assemblées, sûreté et sécurité ne se négocient pas. C’est notre credo. Il faut appliquer les normes les plus exigeantes et recourir aux meilleures technologies.

M. Henri Revol, président du Haut Comité pour la transparence et l’information sur la sécurité nucléaire. Le Haut Comité pour la transparence et l’information sur la sécurité nucléaire, créé par la loi de 2006 et installé il y a deux ans et demi, a déjà beaucoup travaillé. Il a en effet été saisi, comme la loi le permet, par le Gouvernement, par l’OPECST et par les présidents des commissions du Parlement. Mais il peut également s’autosaisir de toute question relative à l’impact des activités nucléaires sur la santé humaine et sur l’environnement, ainsi qu’à l’accessibilité de l’information concernant ces activités.
Il se met donc à disposition des instances qui peuvent le saisir. Le cas échéant, il s’autosaisira dans le cadre de la procédure d’évaluation de la sûreté des installations annoncée par les ministres, notamment en ce qui concerne les catastrophes naturelles telles que séismes ou inondations.

M. François Brottes. Les ministres nous ont quittés pour participer à une réunion d’urgence. Ils devront revenir, comme s’y est engagé le président Poignant, car le débat sur la stratégie énergétique doit se tenir en premier lieu au Parlement et nous avons des points de vue différents sur la place du nucléaire dans le *mix* énergétique, sur les filières de l’énergie renouvelable, aujourd’hui maltraitées, ou encore sur la réalité de l’engagement en faveur de l’efficacité énergétique comme de la transparence, pour s’en tenir à ces points.

La corrélation scabreuse que le rapport Roussely établissait entre les coûts et la sécurité nous avait choqués. Le caractère elliptique, pour ne pas dire l’indigence, de ce rapport m’avait conduit à demander au nom du groupe socialiste que la commission des affaires économiques de l’Assemblée nationale consacre une série d’auditions à la question du nucléaire. Nous avons donc eu une dizaine de séances de travail avec les acteurs ici présents. Nous avons consacré plusieurs heures, par exemple, à la question de la centrale de Cadarache. Bref, le Parlement est totalement impliqué dans ces questions, sans forcément céder à l’émotion et à l’urgence.

Mais aujourd’hui notre préoccupation est l’épreuve terrible que vivent les Japonais.

On a l’impression que la catastrophe s’est produite alors que le risque était connu mais sous-évalué. Il semble que, si la vague du tsunami avait été moins haute, les opérations de refroidissement auraient été possibles. Comment se fait-il que l’on ait fait l’impasse sur une telle éventualité alors que l’on a réalisé tant d’études et que l’on a une si longue pratique dans le domaine ?

Deuxième question : qui vous alimente en informations ? Vous paraissez fonctionner par recoupements et nous avons beaucoup de mal à nous y retrouver.

Enfin, il se dit que les risques sismiques pris en compte pour la conception des centrales françaises auraient été sous-évalués. Il est important que l’ASN précise dès aujourd'hui ce qu’il en est.

M. Claude Gatignol. Ma préoccupation principale est la protection des populations, des familles, des enfants. Le temps viendra du retour d’expérience mais l’heure est aux mesures d’urgence, d’abord au Japon et ensuite, dans les jours ou les semaines qui viennent, en France.

Membre du Haut Comité pour la transparence et l’information sur la sécurité nucléaire et des commissions locales d’information des trois établissements de ma circonscription, j’ai dit à l’ambassadeur du Japon, avec plusieurs collègues, toute la compassion que nous éprouvons pour ses compatriotes. Comme M. Brottes, je souhaiterais savoir quels liens de communication vous avez avec les autorités japonaises. Quand disposerons-nous de véritables informations quant à l’évolution de la situation, à la nature et à la gravité des dégâts, à l’état de l’enceinte et du combustible de chacun des réacteurs concernés, au niveau d’eau dans les cuves et dans la piscine contenant le cœur déchargé ? A-t-on une idée exacte de ce que sont les rejets dans l’atmosphère ? Quelle est la nature des radionucléides ? Quelles sont les données météorologiques qui conditionneront les risques liés à ces rejets au Japon et dans les pays voisins ? Quand les premières particules de rejet seront-elles détectées en France ?

Notre parc nucléaire fait l’objet, régulièrement, d’audits, d’analyses et de *peer reviews*. Ne pouvons-nous déjà disposer d’un état des lieux ? La relation de la société à l’énergie atomique doit se fonder sur la connaissance et la transparence, qui sont le gage de la confiance, et non sur la peur et la démagogie.

M. Ladislas Poniatowski, sénateur. Mes deux questions s’adressent au président de l’Autorité de sûreté nucléaire.
La première concerne la gestion post-accident. Sachant que la menace présentée par le nuage radioactif va vraisemblablement s'aggraver, les populations évacuées pourront-elles revenir ou l’évacuation sera-t-elle au contraire définitive ? Pourra-t-on cultiver de nouveau et reconstruire ? Ces questions, la France se les est déjà posées : en 2005, il a été demandé à l’ASN un rapport sur ce qui se passerait dans un tel cas de figure. Alors que le délai de remise prévu était de deux ans, vous en avez demandé en 2007 la prolongation, en raison de l’importance du travail que vous aviez engagé avec vos experts. Mais nous n’avons toujours pas reçu ce rapport. Où en est votre réflexion ?

Deuxièmement, quelle est la nature exacte de l’audit que vous demande le Premier ministre ? Quel temps allez-vous y consacrer et quand disposerez-nous des résultats ? Il serait logique que ce travail soit mené en lien avec votre analyse des possibilités de prolonger la durée de vie de chacune des centrales, même si le premier problème est de court terme et le second de moyen et long termes.

M. Daniel Raoul, sénateur. Quelles conséquences cette catastrophe aura-t-elle sur le prix de l’ARENH, l’accès régulé à l’énergie nucléaire historique ? Ne convient-il pas de revisiter les conditions faites aux opérateurs ayant accès à l’investissement privé ? Peut-on en effet confier à un groupe privé ou partiellement privatisé la gestion de la sûreté nucléaire et les mesures de maintenance et de prévention qu’elle exige ?

M. André-Claude Lacoste. Nous ne sommes pas encore dans la gestion de l’après-accident : le Japon est actuellement en pleine crise et la seule préoccupation de nos collègues de ce pays est de parvenir à apporter de l’eau sur les installations touchées.

Cela rappelé, les événements en cours sont-ils dus au fait que l’on a sous-estimé le séisme ou le tsunami ? Je ne le crois pas : les bâtiments des centrales ont résisté. Sont-ils alors dus à une moindre rigueur en ce qui concerne les systèmes électriques de secours ? La diversité des hypothèses et des réponses possibles montre bien que nous devons nous donner le temps de l’analyse et ne pas nous précipiter.
En contrepartie de son indépendance, l’ASN a un devoir absolu de transparence. S’agissant de cette crise comme de tout le reste, nous disons tout ce que nous savons.

En ce qui concerne la gestion de l’après-accident, la France est à ma connaissance le seul pays à avoir eu le courage d’y réfléchir. Quand nous cherchons des références à l’extérieur, nous n’en trouvons pas ; en revanche, nos homologues étrangers viennent nous consulter sur l’état de nos travaux, commencés en 2005. Nous avons organisé en 2008 un colloque international sur ce thème, et un autre est prévu pour juin. C’est toutefois un processus long et difficile, parce que la matière est complexe et parce que nous n’avons pas souhaité mener un travail technocratique – outre l’IRSN, nous avons associé l’ensemble des parties prenantes. Un certain nombre de débats, auxquels ont participé les associations, ont d’ailleurs eu lieu dans les régions.

Dans ce domaine, la France est donc pionnière. Nous n’arriverons pas à des décisions ou des formulations spectaculaires, mais nous aurons avancé dans la détermination des actions à mener sur des questions fondamentales comme celle de savoir dans quelles conditions peut être autorisé le retour des populations.

Quelles sont, s’agissant du Japon, nos sources d’information ? Il s’agit de nos homologues et de l’attaché nucléaire de l’ambassade de France
à Tokyo, mais aussi de personnalités avec lesquelles nous sommes en contact direct, comme un ancien commissaire de la Nuclear Safety Commission, qui se trouve suffisamment détaché de l’actualité pour porter sur elle un regard à la fois avisé et critique. Lorsque l’information est suffisamment fiable, nous disons : « Voilà ce qui nous semble avéré », et lorsqu’elle l’est un peu moins, « Voilà ce que nous croyons savoir ». Mais nous nous gardons de nous fonder sur des rumeurs ou de prendre en compte une mesure de radioactivité dont nous ignorons la provenance. Nous nous efforçons de bâtir une connaissance aussi fiable que possible, dans un contexte difficile et alors que le premier souci de nos homologues est de gérer la crise – mettons-nous à leur place !

J’en viens au risque sismique : en France, il est modéré, mais il existe, du moins dans certaines régions. Et il est traité de façon extrêmement sérieuse. La première étape consiste à en évaluer l’importance, en commençant par réunir toutes les informations disponibles sur les séismes intervenus dans le passé. Par exemple, dans le fossé rhénan où est situé Fessenheim, l’événement pris en compte est le tremblement de terre qui a frappé Bâle en 1356. Nous recherchons également les paléoséismes, c’est-à-dire ceux dont on a perdu la trace historique, mais que l’on peut retrouver grâce à la géologie. Nous prenons alors pour référence le séisme le plus important jamais intervenu dans la région, nous le situons hypothétiquement à l’endroit où il ferait le plus de dégâts à l’installation concernée, et nous multiplions sa puissance par cinq. Les bâtiments doivent pouvoir résister à une telle épreuve.

L’aléa sismique est calculé au moment de la construction, puis réévalué régulièrement en tenant compte du progrès des connaissances. Si nécessaire, l’exploitant doit renforcer la résistance de l’installation.

Le risque sismique est donc pris en compte très sérieusement et les marges de sécurité sont considérables. Cela étant, nous sommes ouverts à l’hypothèse d’un nouvel examen de ces normes. Nous n’avons aucune raison d’avoir honte de notre travail dans ce domaine, et sommes toujours prêts à accomplir des progrès.

M. Jacques Repussard. S’agissant des risques sismiques, je partage l’analyse de M. Lacoste. Certains – notamment sur Internet – se demandent pourquoi le système de sûreté nucléaire n’utilise pas les référentiels en cours
d’élaboration au sein de l’Union européenne pour les installations classées Seveso : cartes des aléas sismiques et prescriptions pour les constructions. Il est vrai que les exigences en matière nucléaire procèdent d’un modèle intellectuel un peu différent – M. Lacoste l’a décrit en détail –, mais notre avis est qu’elles sont bien supérieures à celles qui devraient bientôt s’appliquer aux sites Seveso, lesquelles seront pourtant rehaussées par rapport aux normes actuelles. Nous tenons donc à préserver les acquis du système nucléaire français, en dépit de ses différences avec ce système européen, plutôt destiné à encadrer des constructions de génie civil classique. Cela pose toutefois un problème de communication : il conviendrait sans doute de donner davantage d’explications, sans quoi le public pourrait se demander si ce « particularisme » nucléaire est justifié.

M. André-Claude Lacoste. J’ajoute qu’une des particularités de la prise en compte du risque sismique dans le domaine nucléaire est que les études sont effectuées site par site : nous ne nous contentons pas de données régionales.

M. Jacques Repussard. On nous a interrogés sur la radioprotection des populations françaises suite à l’accident survenu au Japon. Les premiers concernés sont évidemment les membres de la communauté française de ce pays. L’IRSN a donc formulé des recommandations que l’ambassade a reprises et rendues publiques. Tout d’abord, en raison du risque de nouveau séisme et de la possible aggravation de la contamination atmosphérique, il est conseillé aux personnes n’ayant pas absolument besoin de rester dans la région concernée de se rendre pour quelque temps dans le sud de l’archipel, voire de rentrer en France. Les autres sont incitées à éviter de sortir quand il pleut, pour ne pas contaminer leurs vêtements, et à se mettre à l’abri si la situation s’aggrave. Des comprimés d’iode ont également été distribués, mais il s’agit plus d’une mesure de précaution, voire de réassurance à l’égard de nos compatriotes qui ont fait le choix de rester ou qui y sont obligés ; nous estimons en effet qu’il ne leur sera jamais nécessaire de les consommer.

En ce qui concerne le territoire français proprement dit, qu’il s’agisse de l’outre-mer ou de la métropole, il n’y aura pas de risques sanitaires, pas plus qu’il n’y en a eu lors des essais d’armes nucléaires. En outre, les délais sont très longs : il faudrait 25 à 30 heures pour qu’un nuage de particules atteigne Tokyo, et des semaines avant qu’il ne touche Saint-Pierre-et-Miquelon. Pendant ce temps, l’IRSN travaille d’arrache-pied pour affiner ses

M. Jacques Myard. Ma question risque de faire sourire les ingénieurs, mais la grande crainte, dans l’opinion publique, est que le réacteur n’atteigne un point de surchauffe tel qu’il explode, comme une bombe atomique. Ce scénario est-il possible dès lors que, malheureusement, le système de refroidissement ne fonctionne plus ?

M. Christian Bataille. L’avenir du nucléaire civil, au moins à l’horizon de cinquante ans, dépend d’une évolution vers plus de sûreté. Je me tourne donc vers M. Lacoste et vers les industriels : quel sera le destin de l’EPR, un réacteur plus sûr mais dont certains critiquent le coût excessif ? Quel sera celui de l’ATMEA, encore à l’étude ? Qu’en sera-t-il des réacteurs de faible puissance, dont on dit qu’ils ont le défaut de multiplier le nombre de sites ? Enfin, pour ce qui est de la génération IV, où en sont les recherches sur Astrid, qui doivent en quelque sorte marquer le retour des surgénérateurs après l’arrêt de Superphénix ?

J’aimerais également savoir ce que pense M. Lacoste du projet de coopération franco-chinoise destinée à construire des réacteurs « low cost », c’est-à-dire d’une génération antérieure, qui ne coûteraient pas cher mais seraient beaucoup moins sûrs ? La définition d’une norme internationale est-elle impossible ? La France, qui montre l’exemple en matière de sûreté avec l’EPR, va-t-elle continuer à subir la concurrence de réacteurs – coréens aujourd’hui, peut-être chinois demain – meilleur marché, mais moins sûrs ? Une telle perspective ne pourrait qu’inquiéter.

M. Jean-Pierre Door. Même si, depuis quelques jours, nos regards sont avant tout tournés vers le Japon, ils tendent à se déplacer vers notre pays. Certaines personnalités font des déclarations susceptibles d’inquiéter la population, notamment lorsqu’elles exigent la fermeture immédiate de plusieurs installations nucléaires. À Gien, dans le territoire dont je suis l’élu,
encadré par la centrale de Belleville et par celle de Dampierre, ces appels ont fait naître de nombreuses appréhensions. Quelles réponses peut-on leur apporter ?

M. André Chassaigne. La société japonaise TEPCO est la première compagnie privée d’électricité du monde. Ses profits, entre avril et décembre 2010, ont atteint 1,19 milliard d’euros après une perte du même ordre l’année précédente. On peut se demander d’où vient un redressement aussi spectaculaire… La gestion du nucléaire par des entreprises privées à la recherche de profits ne risque-t-elle pas d’être au détriment de la sécurité, notamment si elle se traduit par un manque d’entretien ?

Par ailleurs, plusieurs auditions ont montré un usage important de la sous-traitance dans les centrales françaises. Il en résulte des incidents de portée minime, mais nombreux. S’ils se cumulaient sur le même site, ils pourraient devenir particulièrement graves. Ils s’expliquent par un manque de formation du personnel et par l’emploi de matériaux de mauvaise qualité. La question du contrôle des sous-traitants doit être posée. Les interventions dans les installations nucléaires ne devraient-elles pas être réservées à des entreprises publiques, et ne faudrait-il pas faire preuve d’une plus grande rigueur dans le choix des intervenants ?

M. Bernard Lesterlin. Le fait de construire plusieurs réacteurs sur un même site ou à proximité les uns des autres augmente-t-il les risques ? Est-ce le cas à Fukushima ? Comment le problème se pose-t-il chez nous ?

On comprend que pour l’implantation des installations nucléaires, le littoral et les rives des fleuves soient préférés afin de faciliter le refroidissement par eau mais, même dans un pays tempéré comme le nôtre, nous ne sommes pas à l’abri d’inondations comme celle du Blayais en 1999 ou de tempêtes comme Xynthia en 2010. Compte tenu des risques, y a-t-il des solutions alternatives pour la localisation des centrales ?

M. Jean-Pierre Nicolas. Quelles dispositions ont été prises immédiatement après la catastrophe pour protéger la population japonaise ? Nous avons compris que la mesure d’évacuation avait été complétée par une invitation au confinement dans un rayon de 20 à 30 kilomètres, mais sera-ce suffisant ? Ne faudrait-il pas élargir le périmètre ?
D’autre part, les Japonais disposent-ils d’une quantité suffisante d’équipements individuels pour protéger la population ? Par exemple, ont-ils assez de pastilles d’iode ? Anne Lauvergeon a indiqué qu’un avion était prêt à décoller pour leur apporter du matériel. Ont-ils fait une demande en ce sens ?

Mme Catherine Procaccia, sénatrice. Immédiatement après le tremblement de terre et le tsunami, les médias ont évoqué des dangers dans plusieurs centrales nucléaires, mais aujourd’hui, l’attention est concentrée sur une seule. Les autres présentent-elles des risques ?

S’agissant des moyens d’intervention, j’avais le sentiment que des robots pouvaient remplacer les hommes. Or seuls ceux-ci interviennent aujourd’hui. Pour quelle raison ?

Enfin, vous nous avez dit que les vents soufflaient vers le Pacifique et restaient dans le même hémisphère. Est-on sûr qu’ils ne peuvent pas se diriger dans l’autre sens, vers l’ouest ?

M. Jean-Yves Le Bouillonnec. Que se passerait-il si les opérations de refroidissement se révélaient vaines ? Quelles seraient les conséquences pour le site lui-même, pour l’ensemble de l’archipel et pour les territoires français les plus proches ?

M. François Pupponi. Les incidents et accidents évoqués sont-ils dus au tremblement de terre ou au tsunami ? D’autres centrales auraient-elles pu être endommagées, et si oui, lesquelles ? Enfin, s’il se révèle impossible d’amener de l’eau dans la centrale pour refroidir le réacteur, combien de temps se passera-t-il avant qu’un événement encore plus grave ne survienne ?

Mme Frédérique Massat. En août 2007, un sismologue japonais qui faisait partie du comité d’experts chargé d’établir les normes sismiques des centrales a déclaré : « À moins que des mesures radicales ne soient prises pour réduire la vulnérabilité des centrales aux tremblements de terre, le Japon pourrait vivre une vraie catastrophe nucléaire dans un futur proche ». Aviez-vous été informés de ces propos ?
De même, l’Agence internationale de l’énergie atomique aurait averti le Japon des problèmes de sécurité auxquels étaient exposées ses centrales en cas de séisme. Quel est le rôle de l’AEIA, et de quels pouvoirs dispose-t-elle pour faire respecter les règles de sûreté nucléaire internationales ?

Le drame que vit le Japon va-t-il amener l’ASN à renforcer les exigences de sûreté nucléaire dans notre pays ?

M. Jean-Pierre Brard. Je souhaite que l’IRSN et l’ASN nous prodiguent toutes les informations dont elles disposent. Personnellement, j’ai jugé utile de mettre en ligne sur mon site celles que nous avons déjà reçues, parce que nos concitoyens souhaitent savoir. De même, Monsieur le président, il serait souhaitable que nous puissions obtenir le plus rapidement possible la transcription in extenso de ce débat.

En tant que responsables politiques, nous avons le devoir de réfléchir aux événements actuels, mais aussi de tenter d’anticiper ceux à venir. Et je suppose que nos interlocuteurs n’ont pas seulement un avis sur le nucléaire, mais aussi une vision plus globale des problèmes énergétiques auxquels nous sommes confrontés. Pour ma part, j’ai autant de compassion pour une personne tuée par les radiations que pour celle qui meurt de la silicose ou pour la victime de la désertification provoquée par le réchauffement climatique. Or l’Allemagne contribue cinq fois plus que la France à ce réchauffement, et à mon grand étonnement, cela n’indigne personne. Le piège dans lequel nous risquons de tomber est donc de limiter le débat à la question du nucléaire. Mourir, c’est toujours mourir ; il faut donc s’intéresser à tous les risques, et ne pas céder à l’agitation qui permet à certains d’occuper les écrans de télévision de façon plus ou moins honorable.

Nous devons non seulement avoir une vision de l’avenir de notre pays, mais aussi de celui de l’humanité. C’est pourquoi nous sommes en droit de discuter fermement avec les Chinois, les Polonais, les Allemands ou les Américains des risques auxquels ils exposent l’humanité sans avoir de comptes à rendre à personne.

De plus, le débat n’est pas seulement de nature environnementale. Il touche également à l’indépendance nationale.
Par ailleurs, où en est la réflexion sur la gestion des déchets nucléaires ? Est-il possible de pousser les efforts de recherche dans ce domaine ?

On sait bien qu’EDF et Areva, dans le passé, ne se sont pas toujours montrées exemplaires en termes de transparence. Me trouvant à Tchernobyl cinq ans exactement après la catastrophe, j’avais ainsi constaté qu’EDF lançait au moment même de cet anniversaire une campagne de communication destinée à justifier sans explication l’usage de l’énergie nucléaire. Selon moi, il ne faut pas confondre explications, transparence et propagande.

M. Yves Cochet. M. Repussard a comparé les éventuelles émanations de radioéléments à Fukushima avec ceux des essais nucléaires atmosphériques. Mais c’est avec Tchernobyl que cette comparaison doit se faire ! Et ce qu’a dit ce matin même M. Baroin, à l’issue du conseil des ministres, me conforte dans cette position : dans le pire des scénarios, a-t-il déclaré, les conséquences pourraient être pires que celles de la catastrophe ukrainienne. Dans ce cas en effet, le nuage produit ne serait pas du type de ceux qu’ont provoqués les bombes atomiques il y a quarante ans, mais bien plutôt de celui dont M. Pellerin, en 1986, niait qu’il ait franchi notre frontière avec l’Allemagne.

J’ai apprécié le discours de Mme Lauvergeon, qui a théorisé ce que l’on pourrait appeler le droit d’ingérence écologique – une notion que nous défendons depuis longtemps. Mais il se trouve qu’Areva a fourni le MOX utilisé pour alimenter le réacteur n° 3 de Fukushima. Or une étude menée en 1999 par le professeur Lyman, directeur scientifique du Nuclear Control Institute de Washington, montrait qu’en raison de la « vivacité » du MOX, son usage dans les réacteurs à eau bouillante était plus risqué que celui de l’oxyde d’uranium. Pourquoi, dans ces conditions, en avoir vendu à TEPCO ?

S’agissant d’EDF, le 2 novembre 2009, l’ASN et deux autres autorités de sûreté ont remis en cause la conception même du système de « contrôle-commande » des réacteurs EPR, et notamment l’indépendance des systèmes de sécurité. L’Autorité a adressé onze demandes précises à l’exploitant : ont-elles été étudiées ? Le système de contrôle-commande de l’EPR a-t-il été modifié conformément à ces recommandations ?
Ma dernière question s’adresse à l’ASN. À Cadarache, des stocks de plutonium dans l’atelier MOX ont été sous-évalués, et il s’est passé plusieurs mois entre le moment où cette sous-évaluation a été constatée et celui où elle a été rendue publique. Comment expliquer cette absence de transparence ?

M. le président Claude Birraux. Du point de vue des populations exposées, y a-t-il une différence entre une explosion nucléaire aérienne et un nuage radioactif comme celui qu’a provoqué la catastrophe de Tchernobyl ?

M. Philippe Folliot. Le nucléaire a des applications militaires et énergétiques, mais il en est également fait un usage quotidien dans le domaine médical, par exemple. L’ASN et l’IRSN interviennent-ils sur l’ensemble du spectre ? Le petit matériel de radiographie, disséminé un peu partout sur le territoire, parfois oublié, relève-t-il de leur compétence ?

M. André-Claude Lacoste. Il existe, selon moi, deux différences de fond entre le système japonais tel que je le connais et le système français : tout d’abord, et pour un certain nombre de raisons, nous avons une plus grande préoccupation de transparence. Ensuite, nous avons davantage le souci d’un progrès continu en matière de sûreté. Ainsi, les exigences imposées au fil du temps en la matière aux différents exploitants français, en particulier à EDF, se sont durcies – certains diront qu’elles ont empiré. Aujourd’hui, le niveau de sûreté requis pour la construction d’un réacteur en France est celui de la génération III, celle de l’EPR. C’est la vertu de la conception française, désormais acceptée au niveau européen via un club de responsables d’autorités de sûreté, la WENRA – Western European nuclear regulators Association : celle-ci a fixé pour la construction de nouveaux réacteurs des objectifs qui ressemblent beaucoup à ceux qui sont applicables aux réacteurs EPR. Je parle bien d’objectifs de sûreté, exprimés en termes généraux, et non de moyens. C’est à partir d’eux que l’on doit améliorer la sûreté des réacteurs existants, ce qui nous paraît tout à fait traduire la conception que nous avons du progrès en la matière. L’Autorité de sûreté nucléaire a, par ailleurs, indiqué qu’elle n’imaginait pas qu’il puisse être vendu dans le monde, sous le drapeau français, des reacteurs ne satisfaisant pas à ce niveau de sûreté.

Une question a été posée sur l’origine de l’accident au Japon. Le tremblement de terre a sûrement joué un rôle, même s’il semble que les bâtiments des centrales y aient résisté. Pour ce qui est du tsunami, cela ne

S’agissant des équipements individuels et des pastilles d’iode, j’ai visité suffisamment de centres d’intervention au Japon pour être tout à fait sûr qu’ils sont parfaitement approvisionnés à cet égard. En ce qui concerne les moyens d’intervention, il appartient aux Japonais d’en faire la demande s’ils le jugent nécessaire.

Quant aux vents, il s’agit de quelque chose que nous ne maîtrisons pas.

Le fait de construire plusieurs réacteurs sur un même site n’entraîne pas un risque supplémentaire. Au contraire, cela peut permettre de mutualiser les moyens d’intervention.

Dans le Blayais, on a clairement sous-évalué le risque d’inondation. Mais il faut garder raison : le début d’inondation survenu en 1999 a été classé au niveau 2 de l’échelle INES. Nous sommes très loin de ce qui s’est passé au Japon. L’exploitant, EDF, et l’Autorité de sûreté ont reconnu la sous-estimation du risque : la transparence implique aussi d’admettre les faits quand on est pris en défaut – c’est d’ailleurs ce qui motive pour progresser.

À titre personnel, la référence de M. Brard aux personnes qui meurent de la silicose m’a particulièrement frappé. Je sais ce qu’il en est pour m’être longtemps occupé d’inspection du travail et de surveillance de la sûreté dans les mines de charbon du nord de la France.

M. Jacques Repussard. Les explosions qui ont eu lieu à Fukushima n’ont pas, par elles-mêmes, porté atteinte à l’intégrité des bâtiments, ce qui,
du point de vue de la protection, est un point très important. Cela étant, cette intégrité pourrait être compromise en l’absence de refroidissement.

Il est trop tôt pour dire si des réactions violentes se produiront ou pas : cela dépend des scénarios, et de la capacité à ajouter de l’eau. S’il parvient à en apporter suffisamment, l’exploitant pourra, sinon arrêter, du moins limiter fortement les rejets radioactifs, étant entendu que les installations sont maintenant hors d’usage.

Cela étant, des scénarios plus inquiétants sont également plausibles. Par exemple, si le combustible fondu traversait la cuve, il finirait par arriver au contact de la paroi de béton – dont l’épaisseur est très importante dans les réacteurs japonais –, et l’interaction entre les deux matières produirait des quantités considérables de gaz.

M. Jacques Myard. Il n’y aurait pas d’effet de souffle ?

M. Jacques Repussard. Des explosions pourraient survenir localement, mais elles seraient de nature chimique, et non nucléaire. Cela n’aurait rien à voir avec l’explosion d’une bombe atomique mais ces explosions de gaz extrêmement chauds seraient néanmoins spectaculaires.

Une évacuation sur vingt ou trente kilomètres est-elle suffisante ? De telles décisions relèvent de l’autorité de sûreté et du gouvernement japonais, et nous devons être prudents quand nous les commentons. Il n’est pas question de faire la leçon aux autorités du pays. Il reste que, dans certains scénarios que nous étudions avec nos confrères américains, les dimensions de cette zone apparaissent insuffisantes. Pour autant, la région de Tokyo n’aurait pas besoin de faire l’objet de mesures extraordinaires contre la contamination. Et c’est a fortiori le cas des territoires français d’outre-mer ou de la métropole.

Si j’ai évoqué la pollution radiologique causée par les essais d’armes nucléaires, c’était de façon délibérée, pour éviter de comparer l’accident de Fukushima à celui de Tchernobyl.

M. Yves Cochet. C’est pourtant ce que fait M. Baroin.
M. Jacques Repussard. Chacun s’exprime comme il l’entend. Mais de notre point de vue, il est trop tôt pour établir des comparaisons. Nous savons qu’en termes de gravité, l’accident de Fukushima sera très au-dessus de celui de Three Mile Island, où il n’y avait pas eu de rejet radioactif notable. Il sera vraisemblablement au-dessous de celui de Tchernobyl si les mesures de récupération évoquées tout à l’heure sont menées à leur terme. Dans l’hypothèse contraire, on pourrait imaginer des rejets moins brutaux qu’à Tchernobyl – où les émanations avaient persisté une quinzaine de jours et étaient montées très haut dans l’atmosphère –, mais dont la diffusion serait plus durable et alimentée par plusieurs cœurs. Au final, la masse de césium libérée dans l’atmosphère pourrait être supérieure à ce qu’elle a été à Tchernobyl. Seul l’avenir nous le dira. C’est pourquoi Mme Lauvergeon et M. Bigot ont eu raison de souligner l’urgente des mesures destinées à rétablir, dans la mesure du possible, la sûreté des installations.

Pour répondre à M. Folliot, l’activité de l’ASN couvre l’ensemble des installations nucléaires civiles, y compris médicales. La sûreté de ces dernières obéit aux mêmes principes que la sûreté nucléaire, comme la défense en profondeur. Une forte réévaluation des exigences est d’ailleurs en cours en ce qui concerne la radiothérapie. Quant à l’IRSN, il constitue l’appui technique des pouvoirs publics en général, et plus particulièrement de l’ASN, mais aussi de l’Autorité de sûreté nucléaire de défense. Son expertise sert donc aussi à l’évaluation de la sûreté du domaine militaire, qu’il s’agisse des navires ou des usines contribuant à la production et à la maintenance des armes. Les modes de calcul, la philosophie et les experts sont les mêmes : il n’y a donc pas, du point de vue de la sûreté, deux poids, deux mesures entre les secteurs civil et militaire. Seul le degré de transparence diffère, ce que l’on peut comprendre.

L’AIEA a peu de pouvoirs contraignants, mais joue un rôle d’exemplarité et contribue à la transparence. Les peer reviews, ces missions internationales dépêchées dans différents pays et dont les rapports sont rendus publics, constituent potentiellement un outil très puissant pour harmoniser par le haut les bonnes pratiques. Les débuts ont été hésitants, les grands pays ne s’estimant pas concernés. Mais la France a donné l’exemple, imitée ensuite par les États-Unis et par la Russie.

Avec l’Agence, nous sommes en train de promouvoir un travail comparable concernant les milieux d’expertise. En effet, dans tous les pays,
Les autorités de sûreté se reposent sur des organismes scientifiques plus ou moins bien structurés – la France étant plutôt considérée comme exemplaire à cet égard. Dans les nouveaux pays nucléaires, de telles institutions risquent de fairegravement défaut, rien n’étant prévu pour les financer. On trouve l’argent pour construire les réacteurs, mais pas forcément pour mettre en place une autorité de sûreté. Et quand elle existe, son efficience risque d’être limitée si elle ne dispose pas d’un back up scientifique et technique. Il s’agit donc d’un enjeu extrêmement important.

Je terminerai par la question de l’influence du mode de gestion – privé ou non – sur l’exploitation des réacteurs. Cette problématique n’est pas nécessairement la plus pertinente. Le point important est plutôt, dans un système national, de savoir qui paie les risques et de quelle façon les décisions prises pèsent sur les équilibres. Au Japon, les conséquences de l’accident seront à la charge du contribuable, et il en serait de même dans n’importe quel autre pays. Il en résulte que, quel que soit son coût, la sûreté doit primer sur les intérêts financiers de l’exploitant. Le coût n’est qu’un des paramètres de la sûreté, et sa prise en compte relève de la décision politique. Ce qui est en cause, c’est donc moins le caractère privé ou public de l’exploitant de l’énergie nucléaire que la vision économique qui sous-tend cette exploitation, et qui n’est pas sans rapport avec la question de la sûreté.

M. Bernard Bigot, administrateur général du Commissariat à l’énergie atomique et aux énergies alternatives. Les robots destinés à intervenir sur les accidents existent, et la France en possède plusieurs, développés par un groupement d’intérêt économique constitué par le CEA,Areva et EDF. Ils sont prévus pour assurer un certain nombre d’opérations,mais pas celle qui est aujourd’hui indispensable à Fukushima, c’est-à-dire le refroidissement. En effet, la centrale comprend six réacteurs et autant de piscines de combustible usé. Un apport d’eau fraîche est nécessaire pour extraire la chaleur et éviter la montée en température des barres de combustible, leur éventuelle fragmentation et le relâchement de particules dans l’atmosphère. La capacité d’un des réacteurs est de 450 mégawatts électriques, celle des trois autres est de 780 mégawatts électriques – correspondant respectivement à 1200 et 2400 mégawatts thermiques. Ce sont des puissances considérables. Cependant, la chaleur qu’il faut extraire, environ 10 mégawatts par réacteur, ne représente pas un problème de même nature. Il faut apporter une dizaine de mètres cubes d’eau par heure, soit un débit relativement limité, mais si on n’y parvient pas, l’énergie libérée fera monter la température. Le véritable enjeu, aujourd’hui, est donc que nos
amis japonais restent les moyens de refroidissement par eau. Des dispositions ont d’ailleurs été prises il y a quelques minutes pour faire venir rapidement de puissantes motopompes.

Une explosion nucléaire est exclue mais, comme on l’a déjà expliqué, il peut y avoir des explosions de type chimique. En effet, dès lors que la température au sein de l’enceinte de confinement dépasse le millier de degrés, la vapeur d’eau est décomposée en hydrogène et en oxygène qui, à partir d’une certaine concentration, ne demandent qu’à se recombiner. Or une explosion chimique – que l’on appelle « brisante » – de l’hydrogène est susceptible de disperser des matières.

M. le président Claude Birraux. En apportant de l’eau à une centrale qui est, si j’ai bien compris, quasiment à ciel ouvert, ne risque-t-on pas de disperser des produits radioactifs ?

M. Bernard Bigot. À ma connaissance, aucune centrale n’est à ciel ouvert, mais la problématique n’est pas la même selon que l’enceinte de confinement est intacte ou non. Avant d’être injectée dans le circuit, l’eau passe dans un pressuriseur qui est, d’après ce que je comprends, connecté à l’enceinte de confinement, mais pas à l’intérieur de celle-ci. L’apport d’eau peut provoquer un lessivage, qui peut lui-même entraîner des rejets, mais pour éviter que les combustibles d’habitude ennoyés entrent en fusion, il est indispensable de refroidir, soit au moyen de cette eau, soit encore au moyen de matières solides comme du sable, pourvu qu’il soit suffisamment humide.

Les robots, pourquoi pas ? Mais ce n’est pas ce qu’il faut aujourd’hui, même si la contamination locale complique l’intervention humaine directe.

La recherche sur les déchets doit évidemment se poursuivre. Tel est d’ailleurs l’objet des lois que vous avez votées. Les réacteurs de quatrième génération, sur lesquels m’a interrogé M. Bataille, font partie des pistes à explorer pour réduire fortement la quantité de déchets ultimes.

La comparaison avec les rejets consécutifs à des essais nucléaires aériens vaut à quantité équivalente de matière transformée. Les composés sont de même nature et le danger provient non pas tant des radionucléides
que des rayonnements ionisants. Il convient bien évidemment dans les deux cas d’éviter toute contamination des populations à la suite d’émissions.

Le plutonium de Cadarache traité pour obtenir du combustible n’a jamais fait, monsieur Cochet, l’objet de quelque cachotterie que ce soit. Dès qu’il a eu à en connaître, le CEA a transmis l’information et le débat, technique, a porté plutôt sur la qualité des renseignements fournis initialement. Mais, que chacun se rassure, à aucun moment il n’y a eu à Cadarache de risque de dispersion de plutonium. Voilà ce que je voulais vous dire en toute sérénité.

M. Henri Proglio. La plupart des réponses ont été données. La discussion de « commerçants » sur l’avenir de tel ou tel type de réacteurs est hors débat. Quant à la coopération engagée avec la Chine, sachez qu’il n’est nullement question de créer du nucléaire low cost, pour reprendre votre expression : une telle attitude, à la fois méprisable et irresponsable, ne saurait être le fait d’aucun d’entre nous, à commencer par EDF. La question était sans doute mal posée, du moins je l’espère.

Pour répondre aux interrogations sur les conditions de fonctionnement de nos centrales, qui viennent de « spectateurs » plutôt que de responsables, les exigences de sûreté sont évidemment respectées. C’est un simple constat, et il n’y a pas de débat qui tienne sur ce point. Aucune centrale ne fonctionne sans respecter les critères fixés par les autorités de sûreté, et par nous-mêmes. Il y va du devoir de toute entreprise responsable, donc d’EDF, vis-à-vis de ses concitoyens.

La sous-traitance fait partie de la vie normale d’une entreprise. EDF a vocation à garder la maîtrise de tout ce qui se trouve dans son cœur de compétence, mais elle doit pouvoir sous-traiter ce qui n’en fait pas partie, comme le génie civil ou le nettoyage, qui sont les spécialités d’autres entreprises. Cependant, la sous-traitance ne doit pas servir à optimiser le compte de résultat et EDF n’a pas d’autre intention que de faire valoir le principe de compétence d’acteurs industriellement responsables.

En matière de formation du personnel, nous avons des exigences extrêmement fortes et nos standards sont très élevés, même auprès de nos sous-traitants qui doivent respecter le cahier des charges.
S’agissant de la localisation des sites, les autorités de sûreté peuvent répondre aussi bien que moi. Sur ce point, la concertation est très poussée avec les autorités nationales, avec les autorités de sûreté et avec les élus locaux : aucune implantation n’échappe aux règles.

Nous avons proposé notre assistance aux Japonais qui l’ont acceptée cet après-midi et nous comptons aller plus loin en liaison avec l’IRSN.

En matière de recherche, notre budget est le plus important au monde chez les entreprises d’énergie. J’ai décidé de renforcer encore nos moyens de R&D, tout particulièrement dans le nucléaire puisque c’est une des grandes spécialités de notre maison. Par conséquent, non seulement l’effort se poursuit, mais il s’accroît.

Enfin, je laisse les autorités de sûreté dire si nous avons répondu à leurs questions sur les systèmes de contrôle : exprimer mon autosatisfaction en me substituant à elles serait malvenu.

M. Philippe Knoche, responsable de l’activité réacteurs chez Areva. Je réponds à la place d’Anne Lauvergeon qui a dû nous quitter.

L’urgence d’aujourd’hui, qui a été bien identifiée par les intervenants précédents, est d’assurer la sécurité des centrales et de les refroidir. Bien qu’elle ne porte pas sur ce point, je répondrai néanmoins à la question relative au MOX. Premièrement, son utilisation dans un réacteur n’est pas plus dangereuse que celle de l’uranium. Deuxièmement, les caractéristiques sont différentes, notamment la concentration en plutonium, de 5 à 10 % dans le MOX. Mais, troisièmement, les règles aussi bien opératoires qu’« incidentelles » sont adaptées en conséquence et le niveau de sécurité est donc équivalent. D’ailleurs, quelle autorité au monde accepterait qu’il diminue si l’on change de combustible ? Quatrièmement, je me plais à souligner que le combustible MOX est issu du recyclage d’un combustible antérieurement utilisé en réacteur, ce qui est de bonne pratique.

M. André-Claude Lacoste. L’investissement ne leur paraissant pas suffisant, l’ASN ainsi que ses homologues finlandaise et britannique avaient manifesté leur insatisfaction face au dossier que leur avait présenté EDF sur le contrôle-commande de l’EPR. Depuis, EDF a fait des propositions
complémentaires, qui vont encore être précisées mais qui ont répondu à nos préoccupations, même si la solution finale retenue par chacun des pays n’est donc pas exactement la même, peut-être parce que l’ASN est plus habituée au contrôle-commande numérique.

J’avais omis de répondre à M. Door : la fermeture des centrales existantes peut être obtenue aujourd’hui par l’ASN, pour des motifs de sûreté, et par le Gouvernement, pour toute raison à sa convenance. L’ASN considère, pour sa part, qu’aucune centrale en France ne justifie une fermeture d’urgence.

M. le président Claude Birraux. En mon nom et en celui de mes collègues préidents de commission des deux assemblées, je me félicite de cette réunion particulièrement intéressante bien qu’organisée dans l’urgence. La qualité des questions et les réponses sans détourn des intervenants démontrent que la transparence est une préoccupation partagée. Si d’autres événements devaient survenir, tenez-vous prêts, Mesdames, Messieurs, à venir vous exprimer à nouveau devant nous. Je vous remercie toutes et tous.
M. le président Claude Birraux. Soyez tous salués. C’est avec plaisir que j’ouvre ces deux journées de travail consacrées à une réflexion sur la préparation de la gestion post-accidentelle des crises nucléaires.

L’événement est organisé de longue date puisque les premières demandes de l’ASN, pour réserver cette salle Victor Hugo, à l’Assemblée nationale, remontent à septembre 2010. Initialement, il s’agissait d’une manifestation purement technique, tournée principalement vers les différentes parties prenantes à l’effort de préparation de la gestion post-accidentelle. L’Office parlementaire a apporté son concours aux formalités de présentation du dossier devant les questeurs, mais tout a été géré comme une opération extérieure – y compris le paiement d’une location dont s’est acquitté M. le président de l’ASN. Mais les questions touchant à la sûreté nucléaire ont repris avec une intensité nouvelle à l’occasion des événements de Fukushima et les présidents de nos deux assemblées, Bernard Accoyer et Gérard Larcher, ont souhaité que l’Office parlementaire pilote une mission parlementaire spécifique sur la sûreté nucléaire.

Dès lors que nous étions engagés dans une série d’auditions publiques, il nous a semblé important que la réunion initialement prévue réserve une place à la mission parlementaire en profitant de la présence d’un grand nombre de spécialistes. L’ASN nous a bien volontiers cédé cette matinée, qui fonctionnera comme une audition de mission parlementaire. Je remercie particulièrement le président André-Claude Lacoste, pour son esprit de coopération, et je lui donne la parole.

M. André-Claude Lacoste, président de l’Autorité de sûreté nucléaire. Je souhaite la bienvenue à l’ensemble des participants à cette manifestation. M. Claude Birraux a dit l’essentiel de l’articulation entre le
projet initial de l’ASN et la réalisation effective de ce jour. L’ASN avait organisé un premier séminaire international sur le post-accidentel en décembre 2007. Nous avions dès ce moment-là annoncé la tenue d’un deuxième séminaire, que nous prévoyions effectivement d’organiser en ce début mai 2011. L’Office parlementaire s’étant vu confier conjointement par le Président de l’Assemblée nationale et le Président du Sénat une mission sur l’ensemble des sujets touchant à la sûreté nucléaire, qui comprennent à l’évidence le post-accidentel, il a paru extrêmement opportun de concéder à l’Office parlementaire une matinée pour qu’il organise une audition.

M. le président Claude Birraux. Je rappelle que les travaux de notre mission s’organisent sous forme d’auditions ouvertes à la presse, dont la première série, qui concerne la sécurité nucléaire, se terminera fin juin par la publication d’un rapport d’étape. Le second volet de nos travaux commencera en octobre et portera sur la place de la filière dans le système énergétique français.

L’Office parlementaire fonctionne, pour cette mission, en configuration élargie puisque huit députés et huit sénateurs, qui ont été désignés par les commissions permanentes compétentes de nos deux assemblées, sont associés à nos travaux.

Aujourd’hui, notre propos est de faire le point sur la préparation de la gestion des crises dans leur phase post-accidentelle, c’est-à-dire en supposant qu’un accident est survenu. Cette audition s’inscrit dans un cadre pratique, inédit pour nous puisque notre public sera composé de l’ensemble des participants au CODIRPA (Comité directeur pour la gestion de la phase post-accidentelle), dont je salue la présence. Nous manifestons de la sorte notre réactivité et notre adaptabilité, que nous avons déjà démontrées avec l’audition publique qui s’est tenue le 16 mars dernier pour faire le point sur Fukushima.

Je rappelle néanmoins qu’il s’agit ce matin d’une audition parlementaire, et non pas d’un colloque. Par conséquent, les députés et les sénateurs membres de la Mission auront une priorité d’utilisation du temps de parole. Les membres du Comité d’experts officiellement désignés le 14 avril dernier pourront également se manifester auprès de moi pour poser des questions. Les autres participants pourront, de la même façon, poser des questions, mais dans un second temps, par écrit et par mon intermédiaire.

André-Claude Lacoste reprendra la parole dans quelques instants afin d’une part de faire le point sur la situation à Fukushima, car notre mission parlementaire a convenu, le 14 avril dernier, qu’une actualisation de l’information sur cette situation serait indispensable à l’ouverture de chacune de nos réunions ; d’autre part de nous expliquer quels sont les enjeux de la préparation de la gestion post-accidentelle, dont on sent bien qu’elle répond à une préoccupation de haut niveau d’exigence en matière de sûreté. Il s’agit d’anticiper une situation d’accident qu’on s’emploie, par ailleurs, de toutes ses forces, à éviter. Mais ce travail d’anticipation renvoie en même temps à des schémas d’organisation assez globaux. Un des apports de cette matinée sera probablement de rattacher les illustrations et les exemples concrets à des anticipations *a priori* un peu abstraites pour les non initiés.
Première session

L’ÉTAT DE PRÉPARATION DE LA GESTION POST-ACCIDENTELLE EN FRANCE

Présidence de M. Christian Bataille, Député, membre de l’OPECST, rapporteur de la mission parlementaire

M. Christian Bataille. Cette audition est la première étape d’un travail dense, que notre mission parlementaire va fournir au cours des mois de mai et juin, dans la perspective du rapport d’étape. Dès juillet, nous nous remettrons au travail en prévision du rapport complet que nous espérons pouvoir boucler d’ici à la fin de l’année. Mon rôle de rapporteur, comme celui de Bruno Sido, n’est pas tellement de tenir des propos démonstratifs, mais d’écouter les uns et les autres et de remettre nos conclusions à la fin de notre travail.

Cette première session vise à faire le point sur l’état de préparation de la France à la gestion d’une situation post-accidentelle puisque ce problème s’est reposé, du fait de l’actualité, avec une acuité particulière. Certes, la meilleure des préparations consiste à éviter en amont la survenue d’une situation accidentelle. Mais il est de la responsabilité même des pilotes de l’exploitation nucléaire, c’est-à-dire des exploitants eux-mêmes et des instances de contrôle, d’imaginer le pire, donc de se projeter dans un futur hypothétique, où un accident serait survenu, pour prévoir dans ce cas les meilleures réactions possibles. L’exercice de planification de la gestion post-accidentelle est la marque d’un très haut niveau d’exigence dans l’élaboration des procédures de protection des populations.

Nous allons entendre et interroger successivement les instances de contrôle, puis les exploitants d’installations nucléaires. Aux instances de contrôle, la question principale qui est adressée est la suivante : comment vous y prenez-vous pour préparer ces scénarios du pire ? Quelle est la part purement hypothétique et celle du retour d’expérience ? Comment les situations survenues dans d’autres domaines d’activités dangereuses – notamment l’industrie chimique – peuvent-elles nourrir les réflexions sur les situations envisagées dans le domaine nucléaire ?
Je vais donc redonner la parole à M. André-Claude Lacoste à qui je demanderai de nous dire où en est ce travail de préparation de la gestion post-accidentelle en France. L’organisation même de cette réunion montre que nous progressons. Mais reste-t-il encore beaucoup de chemin à parcourir pour parvenir à cette première finalisation ?

La démarche de planification préparatoire et les problématiques associées

M. André-Claude Lacoste. Je commencerai par faire le point sur la situation à Fukushima, qui appelle trois observations préliminaires.

La première, fondamentale à mes yeux, est que le Japon a vécu et vit encore une crise globale, dont Fukushima n’est qu’un élément. Il faut garder en tête le fait que le tsunami et le tremblement de terre ont durement frappé le pays, qu’il y a au moins 25 000 morts et disparus et que des zones entières sont ravagées ; la situation humanitaire est donc difficile. À tout cela, qui est directement lié au tsunami et au tremblement de terre, est venue s’ajouter une crise nucléaire. Mais n’oublions pas ce qui n’est pas directement lié à la crise nucléaire.

Ma deuxième observation est que nous ne disposons, sur la crise nucléaire du Japon, que d’informations partielles. Ce n’est pas là une mise en cause de la conception japonaise de la transparence, mais le constat qu’au moins pendant la première partie de la crise, les responsables avaient d’autres soucis que de fournir des informations à l’étranger, et que beaucoup d’instruments de mesure et de contrôle ont disparu et ne sont plus disponibles sur le site, lequel se trouve par ailleurs difficile d’accès.

lancer les premiers retours d’expérience dès que possible. Mais sachons que cela va prendre dix ans.

Je vous rappelle brièvement ce qui s’est passé : un tremblement de terre et un tsunami ont affecté la côte Pacifique du Japon. La quinzaine de réacteurs en fonctionnement se sont tous arrêtés automatiquement, à la suite du tremblement de terre – y compris ceux de Fukushima. Très vite, l’attention s’est concentrée sur le site de Fukushima, tout au moins sur Fukushima 1, où se trouvaient six réacteurs : quatre en fonctionnement, deux à l’arrêt. Sur ces réacteurs, on a observé une perte de la source froide – les prises d’eau en mer avaient été détruites – et une perte d’alimentation électrique – les lignes électriques d’alimentation avaient elles aussi été détruites ; par ailleurs, les diesels n’avaient pas démarré, probablement parce qu’ils avaient été submergés par le tsunami.

Des difficultés sont rapidement apparues sur le combustible, à la fois dans les cœurs des réacteurs et dans les piscines. Alternativement, l’attention s’est portée sur tel cœur de réacteur ou sur telle piscine. Mais globalement, c’est l’ensemble de ces cœurs et de ces piscines qui a posé problème : il y a eu échauffement, endommagement de la gaine du combustible, endommagement du combustible, peut-être ou sans doute endommagement des cuves, peut-être ou sans doute endommagement de l’enceinte des réacteurs. Cela s’est traduit par deux phénomènes : d’abord, montée de la pression dans l’enceinte du réacteur, ouverture de certains évènts et diffusion de bouffées de radioactivité ; ensuite, explosions d’hydrogène, qui ont fait voler en éclat les superstructures de certains des réacteurs.

La priorité absolue, dans un cas de ce genre, est d’essayer de refroidir l’ensemble des systèmes. Les responsables japonais : Tepco l’exploitant, les autorités et le gouvernement ont décidé, au bout d’un certain temps, d’utiliser de l’eau de mer à cette fin. On l’a fait avec des moyens de fortune, depuis des grues ou des hélicoptères. Cela ne pouvait pas durer longtemps, ne serait-ce que parce que l’eau de mer est corrosive et risquait de colmater les canalisations qui fonctionnaient encore. Les responsables japonais ont bien réussi à mettre en place un système de refroidissement avec de l’eau douce, qui est captée dans un lac aux environs, mais cette eau douce est utilisée en circuit ouvert : elle est injectée, mais une grande partie ruisselle et devient un effluent de l’installation, parfois lourdement chargé en radioactivité.
Les Japonais effectuent donc un refroidissement en eau douce, avec des moyens de fortune, dans des conditions d’intervention très difficiles, globalement à cause des émissions radioactives, en particulier parce qu’une partie de l’eau qui s’échappe, très fortement contaminée, se retrouve dans les salles des machines. Une des priorités de l’exploitant est d’évacuer cette eau, évaluée aux alentours de 90 000 mètres cubes, d’essayer de la transférer, soit dans des barges, soit dans des bateaux citernes, soit dans des réservoirs amenés à cette fin.

L’objectif est d’arriver à un refroidissement en cycle fermé, dans lequel l’eau circule sans fuir, et de rétablir une source froide. Tepco indique qu’il lui faudra des mois pour y parvenir. La situation est infiniment plus sûre qu’elle ne l’était au plus chaud de la crise, mais elle n’est pas encore redevenue stable et normale.

Les conséquences radiologiques sont très intenses sur le site et très importantes autour des installations. Les autorités japonaises avaient décidé d’évacuer les populations vivant dans un rayon de 20 km, soit environ 80 000 personnes, et de confiner les populations vivant dans une zone comprise entre 20 et 30 km de distance – un confinement de longue durée, qui n’est pas conforme à la vision que nous avons en France. Mais il est vite apparu que les conditions de vie de ces habitants n’étaient pas tenables, ne serait-ce que parce qu’ils ne trouvaient pas de quoi satisfaire aux besoins de la vie courante.

Au-delà, le panache a dépassé le rayon des 30 km. On observe des « taches de léopard », des zones où la radioactivité est nettement plus forte qu’ailleurs. Cela dépend du relief et du sens du vent au moment de la sortie des bouffées radioactives. Une telle situation est évidemment complexe à gérer. En France, nous ne disposons actuellement que de données partielles sur le phénomène. Une des données principales que nous utilisons est la carte qui a été établie d’après une reconnaissance faite sur cette zone par un hélicoptère affrété par le département de l’énergie américain. Il est donc difficile de faire des pronostics et de connaître la quantité d’iode ou de césium 137 dans cette zone. Mais nous sommes conscients que la gestion de la zone contaminée prendra des années ou des décennies.

En résumé, le retour d’expérience complet durera dix ans ; le retour à un refroidissement normal des installations sur le site est espéré dans
plusieurs mois ; enfin la gestion des zones contaminées s’étalera sur des années ou des décennies. C’est une vision que nous partageons avec l’Institut de radioprotection et de sûreté nucléaire (IRSN).

Pendant la période de crise la plus aiguë, l’IRSN et l’ASN se sont attachés à analyser la situation et à informer le public. D’emblée, nous avons été amenés à dire qu’en France, un accident de ce genre aurait été classé au niveau 6 de l’échelle INES – entre celui de Three Mile Island et celui de Tchernobyl. Si nous avons pris cette précaution, c’est parce que l’échelle INES est une échelle de communication, largement liée aux conditions sociales du pays, et qu’elle doit donc être gérée par ses autorités. De fait, la gestion du classement a été assurée différemment par nos collègues japonais.

Enfin, même si le retour d’expérience doit durer dix ans, il faut le démarrer dès que possible, à partir de ce dont on est sûr. Dans cet esprit, deux initiatives ont été prises aux plans français et européen. En premier lieu, le Premier ministre nous a demandé, fin mars, de mener une batterie d’audits sur les installations nucléaires françaises ; nous avons réfléchi au contenu de ces audits et nous tiendrons prochainement une conférence de presse sur ce sujet. Parallèlement, au niveau européen, il a été décidé de lancer des stress tests, c’est-à-dire des tests de résistance, qui feront l’objet d’une mise au point. Nous ferons en sorte que ces deux lignes de demandes soient aussi proches que possible.

Vous l’avez constaté, je me suis attaché à ne pas tomber dans l’évènementiel. Néanmoins, toute bonne nouvelle mérite d’être accueillie : nous avons appris ce matin que Tepco avait réussi à entrer dans le réacteur numéro 1.

J’en viens à votre deuxième question : où en est-on concernant le post-accidentel en France ?

Nous menons dans notre pays toute une gamme d’exercices réunissant de nombreux intervenants, en particulier douze exercices nationaux par an. Jusqu’à présent, on se bornait à gérer la phase la plus aiguë, soit la phase accidentelle, et on s’arrêtait quand l’installation était supposée revenue à un état sûr. Or, c’était frustrant et ne correspondait pas à la réalité des choses : il fallait commencer à réfléchir à la gestion post-
accidentelle, en complément de la gestion de la phase d’urgence. De fait, personne ne peut garantir qu’il n’y aura jamais d’accident nucléaire en France. A nous tous, exploitants, autorités de contrôle et Gouvernement, de faire en sorte de réduire cette probabilité. Mais à nous tous de faire ce qu’il faut pour réduire et gérer les conséquences d’un tel accident. C’est ce qui a conduit le Premier ministre, en avril 2005, à charger l’ASN de réfléchir à un dispositif répondant aux situations post-accidentelles : d’où la mise en place du CODIRPA, la tenue du premier colloque de 2007 et l’organisation d’un deuxième colloque.

La caractéristique du programme CODIRPA est qu’elle associe des partenaires étrangers, des partenaires nationaux, des associations, des acteurs territoriaux : plus de 200 participants, dont au moins 25 % sont issus des cadres administratifs.

Nous examinons les conséquences d’un certain nombre d’accidents nucléaires. Les travaux du CODIRPA portent sur des sujets multiples, complexes et interdépendants, dont voici quelques uns : la levée de la mise à l’abri ; les denrées alimentaires ; l’eau ; les déchets ; la mesure de la radioactivité ; le suivi sanitaire ; l’indemnisation ; l’information, etc.

Il nous a semblé fondamental d’associer nos collègues étrangers et de faire preuve de transparence : tous les comptes rendus et les rapports des groupes de travail figurent sur notre site.

Nous avons également décidé d’associer toutes les parties prenantes, malgré la difficulté de l’exercice. C’est ainsi que nous avons engagé ce que nous appelons la « coconstruction » d’un guide national sur la sortie de la phase d’urgence, lequel est en cours d’expérimentation sur trois sites : Tricastin, Fessenheim, Civaux et quatre communes : Montbéliard, Fessenheim, Civaux et Orsan. Ce guide, qui devrait être publié en 2011, donnera également des lignes directrices pour les phases suivantes : après la phase d’urgence, la phase de transition, la phase de long terme, donc une vision globale de l’ensemble du processus à suivre après un accident.

L’année 2011 servira également à définir les suites à donner à ce séminaire. C’était du moins notre programme, avant l’accident de
Nous serons amenés à l’adapter en fonction de ce que ce dernier nous aura appris.

Monsieur Dederen, le risque d’accident nucléaire fait-il l’objet d’un traitement spécifique dans le cadre des procédures de sécurité civile mises en place par le ministère de l’intérieur ? Les travaux du CODIRPA sont-ils d’ores et déjà pris en compte par les services en charge de la sécurité des populations ?

M. Guillaume Dederen, chef du bureau des risques à la Direction de la sécurité civile. Je suis sous-préfet, chef du bureau des risques majeurs (BRM) à la Direction de la sécurité civile, au sein du ministère de l’intérieur. A l’intérieur de cette direction de la sécurité civile, existe une sous-direction de la gestion des risques et à l’intérieur de cette sous-direction, plusieurs bureaux, dont le mien, anciennement appelé « bureau des risques naturels et technologiques ». Je tiens par ailleurs à excuser M. le préfet Alain Perret, directeur de la sécurité civile, qui m’a demandé de le représenter.

Le BRM accueille une mission d’appui aux risques nucléaires, qui comprend trois personnes : M. Marc Leurette, ingénieur EDF, ancien patron de grandes centrales nucléaires ; Mme Catherine Guénon, mon adjointe ; enfin, le lieutenant-colonel Bertrand Domeneghetti, officier de sapeurs pompiers professionnels. M. Leurette et Mme Guénon participent l’un et l’autre aux travaux du CODIRPA et Mme Guénon interviendra demain matin sur l’intégration des recommandations du guide de sortie de la phase d’urgence dans le dispositif de gestion des crises au niveau local.

En premier lieu, je souhaite vous entretenir de ce qu’a fait la Direction de la sécurité civile à l’occasion de la crise du Japon.

La mission d’appui aux risques nucléaires (MARN), au nom du préfet Perret, a rédigé deux fois par jour, le matin et l’après-midi, des points de situation que l’on a voulu les plus concrets et les plus exploitables, notamment à la demande expresse du ministre de l’intérieur puis du Président de la République.
La crise a fait l’objet d’un suivi permanent, non seulement par les deux experts de la mission d’appui, mais également par Mme Catherine Guénon – je l’ai moi-même suivie le vendredi de sa survenue dans le cadre plus large du séisme et du tsunami.

La Direction de la sécurité civile a enfin envoyé des personnels sur place, en particulier des formations militaires de la sécurité civile. Bien entendu, elle a instauré une procédure de contrôle et de décontamination au retour de ces personnels.

En deuxième lieu, j’évoquerai l’implication de la MARN dans le nucléaire, en France, non seulement en cas de crise, mais aussi en phase post-accidentelle.

D’abord, la mission d’appui – donc le bureau des risques majeurs – a participé aux réunions de préparation de la circulaire interministérielle qui définit, avec le Secrétariat général de la défense et de la sécurité nationale (SGDSN), l’ASN, le ministère de la défense, l’IRSN, les exercices d’urgence nucléaire et radiologique. La DSC insiste particulièrement sur l’impérieuse nécessité de faire des exercices, évidemment à partir de modélisations. Il faut bien reconnaître, malheureusement, que l’accident nucléaire de Fukushima va nous aider à avancer sur le sujet.

Nous mettons en avant la nécessité d’élaborer des scénarios réalistes ; de travailler la communication entre le Centre opérationnel de défense (COD), c’est-à-dire la cellule de crise présidée par le préfet ou, au
nom du préfet par le directeur de cabinet, et le Poste de commandement opérationnel (PCO) qui est généralement dirigé par un sous-préfet d’arrondissement ; enfin, de mieux exploiter les « balises fixes », dont Mme Guénon pourra vous repasser demain.

Nous insistons également sur la distribution préventive d’iode autour des centrales nucléaires de production d’électricité (CNPE). Une circulaire est en préparation. La DSC a participé activement à la campagne préventive de distribution d’iode stable autour des CNPE, avec l’ASN, la Direction générale de la santé et EDF. Nous avons d’ailleurs tout lieu d’être satisfaits : le nombre de boîtes distribuées, soit un peu plus de 500 000, est supérieur à celui de la précédente campagne, soit 409 000 ; enfin, le taux de couverture est d’environ 93 %, ce qui signifie que le nombre de comprimés retiré par foyer est à peu près stable.

La position de la DSC à propos de la refonte de la circulaire iode est très claire. Elle considère que la distribution d’iode intervenant dans le cadre de la crise, donc de l’urgence, sous la direction du préfet, doit être intégrée au dispositif ORSEC, géré selon des critères et par les services ressortissant à la sécurité civile et à la sécurité publique, et passer à l’échelon local – dont le maire est un acteur incontournable – par le plan communal de sauvegarde.

Je terminerai par la phase post-accidentelle d’une crise nucléaire, donc par le CODIRPA, auquel participent Mme Guénon et M. Leurette. Pour le Comité, la sécurité passe par la vision la plus pragmatique possible de la gestion de la crise, mais aussi de la post-crise.

Nous considérons, pour parler comme Edgar Morin, que nous avons affaire à une boucle récursive et qu’il n’est pas possible de gérer la crise sans penser à la post-crise. Il faut s’efforcer de préparer une situation gérable après la crise. Cette préparation au post-accidentel doit donc s’intégrer à la phase d’urgence, qui est le cœur du dispositif ORSEC.

Le post-accidentel, pour la DSC, ne se planifie pas : il se prépare. Très concrètement, la planification est la mise en place de moyens permanents ou mobilisables à discrétion ; c’est ainsi que l’on pense souvent à préempter les terrains autour des installations nucléaires de base pour stocker du matériel, à réserver et à entretenir des espaces ou des salles. Le
problème est que toutes ces solutions reviennent cher et ne présentent aucune garantie de pérennité. En revanche, on pourrait décider que les lieux d’accueil mis en place dans un cadre de mise à l’abri en cas d’accident nucléaire pourraient servir en cas de crise naturelle ou technologique. Ce serait plus intéressant.

De la même façon, il vaut mieux avoir sous la main un paquet de fiches d’information pédagogique à destination de la population ou des médecins, plutôt que d’organiser des distributions préventives de fiches d’information ou des formations individuelles. En effet, le *turn over* de la population comme des médecins peut être important et en cas d’accident, certaines distributions et certaines formations auront été faites en vain. Par ailleurs, les pertes de documents ou les oublis auront tôt fait de réduire à néant les efforts de planification.

En conclusion, la DSC considère que la planification du post-accidentel, telle qu’on l’entend actuellement, risque d’être hors de prix et vouée à l’échec si elle n’est pas rationnelle et si on ne réfléchit pas à des solutions très concrètes, en se mettant à la place des gens et en se demandant ce qu’il faut faire, au moment de l’accident.

La préparation consiste à donner les moyens de savoir comment agir sur des sujets essentiels. Par exemple, la DSC milite pour un seuil de libération des déchets qui, sur le terrain, peut considérablement aider à la gestion post-accidentelle de ce que l’on appelle les produits « gris ». Ainsi, au moment de la crise japonaise, il a bien fallu que la DSC, qui avait envoyé des hommes et du matériel, établisse une distinction entre les déchets propres et les déchets sales, pour savoir quel matériel pouvait être rapatrié et celui qu’il fallait laisser sur place. C’est un exemple parmi d’autres. Nous sommes conscients que sur la question du seuil de libération des déchets, cette opinion n’est pas forcément partagée. En tout cas c’est la nôtre, et elle a le mérite de la clarté.

M. Christian Bataille. Merci.

M. Jacques Repussard est le directeur général de l’Institut de radioprotection et de sûreté nucléaire, dont l’expertise est essentielle pour établir une gradation dans les réponses organisationnelles aux situations de
crise, en fonction du degré de danger que courent les populations. Mais cela dépend de la préservation de la capacité de mesure des conditions d’environnement en situation de crise. Sur quels dispositifs peut-on compter dans ce cas ?

M. Jacques Repussard, directeur général de l’Institut de radioprotection et de sûreté nucléaire. Je vous donnerai d’abord, sur l’état de préparation de notre pays, l’appréciation que porte l’IRSN, expert public et l’un des acteurs de la gestion des incidents que nous avons pu connaître en France. Ces incidents, heureusement sans grande gravité, mobilisent les mêmes acteurs que ceux qui auraient à intervenir si un accident de plus grande ampleur se produisait.

Comme on l’a vu au Japon, l’ambiance autour d’un accident nucléaire de grande ampleur dans notre pays serait une très grande complexité. Alors que les informations arrivent au compte-gouttes, il faut prendre des décisions majeures en situation incertaine. Contrairement à beaucoup d’autres crises, par exemple quand un barrage se rompt, un accident nucléaire dure longtemps. Par ailleurs, les décisions que l’on prend rétroagissent sur la gravité de l’accident : si elles interviennent trop tard ou ne sont pas les bonnes, les conséquences seront pires. Une telle situation n’a pas vraiment d’équivalent. Elle est inconnue de la plupart des décideurs – décideurs politiques, administratifs, industriels, acteurs économiques, élus, associations, etc. – qui n’y sont pas si bien préparés que cela. Enfin, le climat de grande anxiété sociétale qui accompagnerait cette crise ferait peser un risque sur la rationalité de ce qui se déciderait comme de ce qui se dirait dans les médias.

Face à cette situation si complexe, trois éléments sont essentiels : premièrement, une culture de la gestion des risques partagée non seulement au niveau local, par les préfectures, les pompiers, mais aussi au plan national, en raison du très grand nombre d’acteurs impliqués. Deuxièmement, une organisation fiable et réaliste car la gestion de la crise doit être en partie planifiée, y compris dans sa phase post-accidentelle, pour que l’on dispense d’éléments de repère. Sans cette organisation, qui permet de maîtriser les accidents, un pays nucléaire court à la catastrophe. Troisièmement, des connaissances et des outils scientifiques et techniques sophistiqués, en raison de la complexité d’un accident nucléaire. L’IRSN progresse dans ses connaissances grâce à la détermination dont ont fait
preuve en la matière depuis très longtemps la Direction générale de sécurité nucléaire et de radioprotection (DGSNR), puis l’ASN. C’est essentiel dans un pays qui prétend être un grand pays nucléaire, même si un accident reste très improbable. Il convient de saluer les efforts qui ont été faits depuis plus de dix ans et continuer dans cette voie.

J’en viens au rôle de l’IRSN, qui est de développer les connaissances et les méthodes d’évaluation des accidents nucléaires et de leurs conséquences environnementales et sanitaires. Il faut réunir et écrire la doctrine et planifier, sur la base d’une réalité scientifique et technique. Mais pour ce faire, il faut avoir les moyens de comprendre quelle est la quantité de produits radioactifs rejetés et quelle est leur nature.

Après l’accident de Three Mile Island, personne n’avait d’idée de ce qui sortirait de la centrale, dans quelle quantité, ni quand. Aujourd’hui, l’IRSN, dont même les Américains reconnaissent la position de leader, a regroupé les spécialistes mondiaux des accidents graves dans les réacteurs nucléaires au sein d’un réseau d’excellence international, SARnet. Nous avons été les premiers et les seuls à publier sur notre site internet, le 21 mars, alors que les rejets les plus importants avaient eu lieu entre le 13 et le 18/19 mars, une opinion scientifique sur le terme-source des rejets des trois réacteurs accidentés de Fukushima, dans lesquels il y avait des cœurs : nous l’estimions à environ 10 % du terme-source de Tchernobyl. C’était courageux, parce qu’il s’agissait surtout d’avis d’experts. Je suis heureux de constater que le gouvernement japonais est arrivé à un ordre de grandeur équivalent, en faisant un rétro calcul à partir des dépôts constatés sur le terrain par les Américains. Nous ne disposions pas, à l’époque, de données de terrain ; ces résultats cohérents sont pour moi une validation de notre maîtrise scientifique au meilleur niveau.

Il faut également pouvoir prédire ce que deviendront les rejets radioactifs hors du confinement. C’est essentiel pour prendre les bonnes décisions de protection des populations et de l’environnement. Nous y travaillons donc. Là encore, l’IRSN est le leader scientifique international.

Je salue par ailleurs la qualité de notre coopération stratégique avec Météo-France, acteur indispensable pour la compréhension des transferts atmosphériques. Ainsi, au moment de l’accident de Fukushima, avons-nous pu modéliser le transport des polluants à moyenne distance dans la zone
Japon, ainsi que dans l’hémisphère nord. Ce dernier exercice n’avait d’ailleurs pas de vocation sanitaire, mais il a prouvé qu’il n’était pas question de passer sous silence le nuage de Fukushima – il fallait racheter la mauvaise gestion administrative d’il y a vingt-cinq ans…

Nous continuons à progresser sur la connaissance de la dispersion des rejets radioactifs, et à travailler, notamment, sur le très court terme, la courte distance et les zones urbaines, où les modèles ne sont pas très performants. Nous avons encore beaucoup à faire, mais les outils existent.

Il faut enfin évaluer les doses. Le but est, à terme, de connaître la nature des doses pouvant affecter la population. C’est un sujet extrêmement sensible, d’autant qu’il n’est pas enseigné dans les écoles et que tout le monde s’y perd, entre les becquerels, les millisieverts (mSv) ou les sieverts. Cette évaluation des doses est aussi un savoir-faire de l’IRSN, à la fois en termes de calculs prédictifs – qui permettront de prendre des décisions de mise à l’abri des populations, de prise d’iode, d’évacuation, etc. – et de gestion au long cours – par exemple, si l’alimentation s’avérait contaminée sur la durée. Les outils existent. Ils sont de très bonne qualité, parmi les meilleurs au monde, et nous nous en servons.

Il demeure qu’à la suite des accidents précédents certaines idées fausses circulent, qu’il conviendrait de démentir. Par exemple, les rapports internationaux sur Tchernobyl indiquent que les doses moyennes reçues par les enfants qui ont été exposés juste après l’accident étaient de l’ordre de quelques centaines de mSv au niveau de la thyroïde. On sait qu’il y a 7 000 à 8 000 cancers de la thyroïde parmi ces enfants. Mais ce qu’on ne dit pas et qu’on ne voit dans pratiquement aucun rapport, c’est que les enfants qui ont des cancers de la thyroïde n’ont pas reçu des doses de quelques centaines de mSv, mais de quelques milliers ! Pendant ce temps, certains discutent sans fin pour savoir si telle dose dépasse ou non 1 mSv !

Même parmi les décideurs, les ordres de grandeur ne sont pas compris. C’est une des raisons pour lesquelles l’IRSN est – tout à fait officiellement – favorable à des seuils de libération. Leur absence rend non seulement les choses compliquées, mais induit une compréhension fausse de la relation entre la radioactivité et la vie humaine. C’est tout à fait néfaste. Nous espérons être entendus, ou tout au moins que notre point de vue figurera dans le rapport de l’Office.
J’en viens aux pistes d’amélioration que nous pourrions envisager, sachant que l’IRSN, dans son quotidien, participe aux exercices, qu’il est un pilier du CODIRPA, qu’il contribue aux travaux de préparation, d’écriture de la doctrine et aux discussions avec les parties prenantes et qu’il apporte un appui technique aux pouvoirs publics, lorsque des incidents se produisent. Cet appui fait aussi partie de l’entraînement des équipes et des experts : même si ces incidents sont sans gravité, comme ceux que l’on a connus à Saint-Maur-des-Fossés, ils mobilisent, en échelle réduite, toutes les composantes d’une gestion accidentelle et post-accidentelle. Il est donc très intéressant d’observer ce qui se passe et d’optimiser la façon dont on gère ce type de situations, dans un pays possédant une industrie nucléaire d’ampleur considérable.

Première piste : il faut accepter de se préparer à des situations complètement inimaginables. Car la menace existe.

Nos opérateurs nucléaires sont parmi les plus compétents au monde. A partir des programmes d’analyse de tous les incidents qui se produisent chez EDF, nous avons pu constater que le comportement des équipes travaillant dans les salles de contrôle était très satisfaisant, qu’il s’agisse de leur rapidité à corriger un dysfonctionnement ou de leur aptitude à prendre la bonne décision. Il est donc peu vraisemblable que nous soyons confrontés à un accident standard, et très vraisemblable que le soyons à un accident absolument extraordinaire, lié par exemple à des effets domino avec d’autres installations industrielles proches, à des aléas, à des actes de malveillance, à des catastrophes climatiques, etc.

Nous devons donc nous préparer à de telles éventualités et monter des scénarios réalistes dans un contexte que nous avons du mal à imaginer. Les Japonais n’avaient pas non plus imaginé qu’un tsunami de 15 mètres pouvait se produire ! Je souhaite donc qu’on encourage l’IRSN à proposer des scénarios intéressants.

Deuxième piste : il convidrait de faire évoluer le positionnement institutionnel de l’IRSN – qui découle des circulaires du Premier ministre – et le mettre en adéquation avec la réalité. En pratique, les experts de l’IRSN sont appelés pour conseiller l’ASN ou le Délégué à la sûreté nucléaire et à la radioprotection pour les activités et les installations intéressant la défense (DSND), mais aussi le préfet et les ministères. Tous ces acteurs
administratifs ont leur rôle à jouer dans ces situations complexes, et l’expertise, le savoir-faire scientifique et technique de l’IRSN leur sont indispensables. Il conviendrait de mieux le reconnaître, sans nuire bien entendu à la capacité d’action des autorités de sûreté nucléaire compétentes.

Troisième piste : notre capacité d’action sur le terrain mériterait d’être améliorée, même si des progrès ont déjà été réalisés, notamment grâce aux crédits exceptionnels que le Parlement a bien voulu voter à cette fin. Un exemple : en cas d’accident, nous avons la responsabilité de coordonner, auprès du préfet, les mesures environnementales. Nous avons conçu des moyens aérotransportables, mais nous ne parvenons pas à obtenir de la Direction de l’aviation civile le certificat d’aérotransportabilité. Si nous avions besoin demain de ces matériels, nous ne pourrions pas les emporter sur le terrain, ce serait dommage…

Quatrième piste : il est clair que la gestion sociétale d’une crise nucléaire impliquerait, non seulement l’administration et les industriels du nucléaire mais aussi tout le monde. Cela nécessite non pas de développer la communication, mais d’organiser des interfaces avec l’ensemble des parties prenantes : secteur associatif, entreprises, syndicats, élus locaux, etc. Cela prend du temps et coûte cher. On l’a vu au moment de la crise japonaise, lorsque nous avons dû mobiliser des ressources extrêmement importantes avec les équipages d’Air France ou avec les journalistes qui craignaient la contamination. Ne pas le faire ou le faire de façon brouillonne contribue à la dégradation de la situation et compromet la bonne gestion de la suite des événements. Il y a là des progrès à faire – notamment au niveau organisationnel – qui doivent être discutés avec les autres parties prenantes essentielles que sont les autorités publiques. Il faut donc développer et entretenir cette notion de culture partagée, qui est au cœur de ce que fait le CODIRPA : les outils scientifiques et techniques doivent pouvoir servir à tous ceux qui en ont besoin.

Enfin, il faut pouvoir intervenir sur le terrain dans de bonnes conditions après l’émission des rejets radioactifs. Le travail est difficile – au Japon, les données de terrain, les relevés dosimétriques, les relevés de dépôts sur le terrain ont mis du temps – mais il est absolument essentiel si l’on veut ramener la confiance de la population. Voilà pourquoi il doit aussi être préparé en amont.
L’organisation des exploitants face à l’éventualité d’une crise nucléaire

M. Christian Bataille. Merci. Je vais donner la parole aux exploitants nucléaires français, pour qu’ils nous indiquent comment ils se préparent eux-mêmes à l’occurrence d’un accident et jusqu’où vont, dans la phase post-accidentelle, leurs anticipations de réorganisation de leurs structures de fonctionnement. Je souhaiterais savoir plus particulièrement comment ils se positionnent par rapport aux travaux du CODIRPA : s’ils s’en inspirent ou s’ils les nourrissent d’une manière ou d’une autre, ou si leurs efforts, dans le domaine de la gestion post-accidentelle, relèvent uniquement de leurs responsabilités ultimes d’exploitant, dans une démarche qui leur est propre.

M. Dominique Minière, directeur du parc nucléaire à EDF. La gestion d’un accident ne peut être réellement évaluée ou appréciée que si on la place dans le champ plus large de la sûreté nucléaire, c’est-à-dire de l’ensemble des dispositions techniques et des mesures d’organisation relatives à la conception, à la construction, au fonctionnement, à l’arrêt, au démantèlement des installations nucléaires, prises en vue de prévenir les accidents ou d’en limiter leurs effets. En pratique, il s’agit de protéger l’homme et son environnement contre la dispersion des produits radioactifs.

Je tiens à rappeler que la première responsabilité en matière nucléaire est celle de l’exploitant. Pour lui, assurer au quotidien la sûreté nucléaire de meilleur niveau, c’est garantir l’acceptabilité du nucléaire. Concrètement, nous devons éviter que ne survienne en France une contamination du territoire qui contraindrait la vie quotidienne des populations pour de longues décennies, comme c’est le cas à Tchernobyl, et comme ce sera sans doute le cas à Fukushima.

Je m’attacherai tout d’abord à vous montrer, à la lumière des exemples de Three Mile Island, Tchernobyl ou Fukushima, ce que nous faisons pour empêcher tout accident sévère, l’essentiel étant d’éviter toute fusion de cœur. À Three Mile Island, cette fusion était très partielle ; à Tchernobyl, elle était quasiment complète ; à Fukushima, la situation était intermédiaire.
Nous observons des principes de sûreté à la conception et à l’exploitation – surveillance des installations, procédures pour faire face à des incidents ou des accidents, etc. Je m’arrêterai aujourd’hui sur un principe de sûreté qui est pour nous fondamental : celui de l’amélioration continue.

Une sûreté normale doit progresser en permanence, tant à la conception qu’en exploitation. Pour cela, nous avons nous-mêmes, dès le début du parc et avant même que ce soit institutionnalisé par la loi relative à la transparence et à la sécurité en matière nucléaire (loi TSN) de 2006, mis en place des réexamen périodiques de sûreté. Il ne faut pas oublier en effet que des centrales telles que les nôtres sont construites pour plusieurs dizaines d’années et qu’en plusieurs d’années, le monde change. D’abord, certains événements, incidents ou accidents se produisent. Il est alors de notre devoir de prendre en compte le retour d’expérience de ces événements et de ces accidents. Ensuite, les connaissances évoluent : les ordinateurs actuels ne sont pas ceux des années quatre-vingt, époque où l’on a construit nos réacteurs. Il est normal d’utiliser les progrès des moyens et des connaissances pour améliorer la sûreté des centrales. Enfin, et c’est fondamental, les risques externes ne sont pas stables entre le moment où on a construit nos centrales et quelques années après, qu’il s’agisse de l’environnement industriel autour de nos centrales ou de l’environnement naturel qui se modifie – pensez aux tempêtes de ces dernières, qu’on n’avait jamais connues. Il est donc de notre responsabilité de prendre en compte ces évolutions pour améliorer continuellement notre sûreté.

Concrètement, comment s’y prend-on ?

Nous faisons des réexamen de sûreté tous les dix ans, voire un peu plus souvent en cas d’événements graves dans le monde. Ces réexaminons nous ont conduit à faire un certain nombre de modifications depuis que le parc nucléaire existe. De ce point de vue, notre modèle « concepteur exploitant » renforce la défense en profondeur. Un exploitant qui peut compter sur plus de 3 000 ingénieurs, qui ont fait la conception et sont capables de renforcer au quotidien cette conception, se trouve dans une situation bien meilleure que d’autres exploitants qui sont parfois complètement dans les mains des vendeurs de centrales nucléaires.

Le risque de fusion de cœur se mesure. Depuis la construction des centrales nucléaires françaises, pour tous les événements d’origine interne –
c’est-à-dire propres à la centrale – nous avons divisé ce risque par 10, ce qui est considérable.

Nous avons pris en compte le retour d’expérience des accidents, en traitant les causes de défaillance. Par exemple, l’accident de Three Mile Island aux États-Unis, qui est pour nous une référence, a montré qu’une des soupapes du circuit primaire du réacteur était restée bloquée ouverte, ce qui avait conduit les opérateurs à un mauvais diagnostic. Depuis, nous avons changé le type de soupape de circuit primaire sur l’ensemble des centrales françaises.

Cet accident nous a enfin amenés à donner aux opérateurs le moyen de traiter des défaillances multiples de réacteurs, quelle qu’en soit la cause.

D’une part, nous avons complètement modifié la physionomie des salles de commandes, pour les rendre bien plus ergonomiques que ce qui avait été prévu à l’origine. En effet, il est important que les opérateurs réagissent au plus vite. Pour cela, une salle de commandes ergonomique constitue un élément clé.

D’autre part, nous avons modifié notre approche des conduites accidentelles, ce que n’ont pas fait la plupart des autres pays. A l’origine, nous avions adopté une approche dites « par évènement », qui suppose que l’on connaît l’évènement de départ, et qu’on le gère. Or dans la pratique, cela ne se passe pas tout à fait ainsi. En salle des commandes, quand un évènement surgit, un certain nombre d’alarmes, d’indicateurs de pression et de température apparaissent, et il vaut mieux agir à partir de ces indicateurs qu’à partir de l’évènement, dans la mesure où l’on n’est pas forcément en
mesure d’en connaître la cause dans l’instant. C’est ce que l’on appelle l’approche « par état ». Cette approche, développée par EDF, en liaison avec l’IRSN et l’ASN, constitue une vraie force française. Elle a été adoptée récemment par nos collègues chinois.

Nous avons également pris en compte le risque de fusion du cœur en améliorant nos moyens d’exploitation, sur deux points, toujours les mêmes : l’eau et l’électricité.

Pour pallier le manque d’eau, nous avons pris des mesures simples : des pompes mobiles de secours, des pompes thermiques fonctionnant au fioul peuvent être rapidement transportées sur un site pour pomper de l’eau dans un endroit, la déverser dans un autre et continuer d’assurer le refroidissement du réacteur ; des manchettes, c’est-à-dire des tuyauteries, permettent de faire les raccordements nécessaires. Pour pallier l’excès d’eau, des moyens mobiles contre les inondations ont été mis en place.

Pour pallier le manque d’électricité, nous disposons de groupes électrogènes de secours, mobiles, qui viennent en complément des groupes fixes, ainsi que d’éclisses, c’est-à-dire de rallonges, pour raccorder les moyens mobiles aux pompes et aux tableaux électriques qui en ont besoin. Nous disposons enfin de généphones et d’éclairages de secours. Les généphones sont des téléphones qui fonctionnent manuellement et permettent de communiquer en interne. Ils sont complétés, pour communiquer avec l’extérieur, par des téléphones satellitaires, également présents sur nos sites.

Ainsi, nous prenons en compte les retours d’expérience des incidents et des accidents dans le monde, tout comme le progrès des connaissances. Nous tirons profit des méthodes les plus modernes de modélisation informatique des séismes et des conséquences que ceux-ci peuvent avoir sur les installations. Par exemple, au moment de la troisième visite décennale du réacteur numéro 1 de Fessenheim, nous avons fait des modifications liées à une nouvelle modélisation des effets de séisme, notamment de torsion sous les bâtiments, pour renforcer la capacité de résistance de cette centrale aux séismes.
Enfin, nous procédons à un certain nombre d’améliorations continues pour nous prémunir de l’évolution des agressions externes de l’environnement naturel. Par exemple, après ce qui s’est passé à Blayais avec la tempête Martine, nous avons très fortement renforcé, sur Blayais et sur l’ensemble des réacteurs français, les moyens de prévention contre les inondations. De la même façon, après la canicule de 2003, nous nous sommes demandé si des températures encore plus élevées auraient pu affecter la sûreté nucléaire. Comme c’est le cas, nous avons défini et nous sommes en train de renforcer la résistance de nos centrales aux grandes chaleurs – d’autant que ces dernières risquent d’être de plus en plus fréquentes, si l’on en croit les experts en matière de changement climatique.

Mais nous ne nous arrêtons pas là. Non seulement nous améliorons la prévention pour éviter le risque de fusion de cœur, mais nous avons mis en place des mesures de conception pour limiter, dès les premières heures, l’impact d’un accident de fusion de cœur. Car même si cet accident est très improbable, nous avons fait le choix de supposer qu’il pourrait tout de même se produire.

Au bout de quelques heures, les interactions entre la vapeur et les gaines d’assemblage combustible conduisent à produire de l’hydrogène – on l’a observé à Fukushima, comme à Three Mile Island et à Tchernobyl. Nous avons donc rajouté, dans l’ensemble de nos centrales nucléaires, des recombineurs d’hydrogène passifs dans l’enceinte des réacteurs – une centaine de recombineurs passifs dans un bâtiment réacteur d’une tranche 1 300 mégawatts, pour vous donner un ordre de grandeur. Ces recombineurs passifs sont destinés à éviter les explosions d’hydrogène dans le bâtiment réacteur, car celles-ci pourraient endommager l’enceinte de confinement.

Dans les quelques dizaines d’heures qui suivent un accident de ce type, si l’eau et l’électricité ne reviennent pas, on court un risque de montée en pression de l’enceinte, puis de détérioration de cette enceinte. Pour l’éviter, nous avons mis au point un dispositif de décompression, le « filtre U5 » ou « filtre à sable ».

Ainsi, en cas de montée de la pression, on ouvre l’enceinte pour qu’elle ne soit pas endommagée, mais on l’ouvre à travers le « filtre U5 » ou « filtre à sable ». Ce dispositif permet de récupérer une large partie des iodes, mais surtout 99,9 % des césiums, dont vous avez entendu parler au moment
des accidents de Tchernobyl et de Fukushima, parce qu’ils sont les principaux responsables de la contamination à long terme des territoires. C’est un point fondamental. Nous sommes en train de réfléchir au moyen de récupérer la quasi totalité des iodes. Cette réflexion est déjà bien avancée, mais nous comptons l’accélérer pour aboutir dans les années qui viennent.

Nous intégrons également de manière permanente le retour d’expérience des exercices et des situations réelles. Nous procédons à plus de 300 exercices par an sur l’ensemble du parc, dont plus d’une dizaine au plan national.

Nous disposons de moyens de crise locaux et nationaux régulièrement testés comprenant, là encore, des équipes-action et des équipes-réflexion.

Il conviendra d’intégrer le retour d’expérience de Fukushima. Non seulement nous revisiterons la conception de nos installations, sous l’égide de l’Autorité de sûreté nucléaire, mais nous inscrirons également dans le temps la leçon de ces événements dès que nous en aurons pris connaissance dans les détails. De plus, nous renforcerons notre organisation de crise, tant sur site qu’au plan national, pour faire face à la perte éventuelle de l’alimentation électrique sur l’ensemble d’un site, laquelle provoque un accident majeur en entraînant la dégradation du combustible dans le réacteur. Nous créerons une force opérationnelle nationale d’intervention rapide avec, à l’échelle d’un site, des matériels complémentaires d’apport en eau et en électricité et des moyens humains adaptés, entraînés et mobilisables dans les
24 à 48 heures. Fukushima a démontré combien il était important de retrouver la production d’électricité sur un site dans les 24 heures.

Nous avons travaillé dans le cadre du CODIRPA à la stratégie d’exploitation des autres sites en cas d’accident sur un site donné : l’effet-pallier de notre parc nucléaire nous permettrait notamment de récupérer des équipes de soutien sur d’autres sites. Nous avons également travaillé aux suivis sanitaire et psychologique du personnel présent sur un site accidenté ou à la mise en place de robots ou de moyens héliportés pour établir une cartographie dont il n’est plus besoin de démontrer l’importance. Nous travaillons avec nos opérateurs, dont Matra, pour disposer demain de ces moyens héliportés.

La gestion des installations nucléaires doit répondre à une approche globale. La prévention, qui est intégrée à la conception même des installations, reste un souci constant durant tout le temps de leur l’exploitation : c’est à cette seule condition qu’on peut les gérer correctement et maîtriser les risques. L’existence et la mise en place de lignes de défense sont donc, de la conception à l’exploitation, les fondamentaux de la sûreté.

Le spectre de nos installations, donc des risques auxquels nous sommes confrontés, est très large. En aval, les risques sont liés au retraitement des combustibles issus des centrales nucléaires. En amont, nos installations associent le nucléaire et la chimie : la cinétique des risques, avec effets potentiels sur l’extérieur, y est beaucoup plus rapide que dans le cas des réacteurs nucléaires.

Il nous faut non seulement surveiller quotidiennement notre travail en y intégrant les retours d’expérience pour éviter des accidents graves, mais, s’ils se produisent, être capables de réagir pour en limiter les conséquences. A cette fin, il faut avoir prévu l’organisation de cellules de crise adaptées et entraînées.
L’organisation de crise repose, en premier lieu, sur l’exploitant local du site : c’est lui en effet qui connaît le mieux son installation. Chaque exploitant local dispose d’un plan d’urgence interne qui, non seulement, vise à prévenir les risques pris en compte lors de la conception mais intègre également des situations hors dimensionnement. Le retour sur expérience de Fukushima nous incitera à aller encore plus loin en ce sens. L’exploitant local doit également régler ses relations avec les services de l’État, c'est-à-dire le préfet : en situation de crise, l’action doit être menée d’un commun accord.

L’organisation locale est évidemment soutenue par une organisation nationale. Areva gère deux grandes plateformes dans le pays : Tricastin et La Hague, dont les moyens d’intervention (pompiers, secours aux populations, assistance médicale) sont analogues à ceux d’une ville de 30 000 habitants. Ils peuvent être complétés par ceux de l’État. Les sites du CEA disposent également de moyens importants.

En interne, nos équipes d’ingénierie nous ont permis de concevoir, de développer et d’améliorer nos installations. Elles constituent une force à dimension internationale, comme l’a montré la crise de Fukushima : Areva a pu capter, en provenance de nos équipes allemandes et américaines, un grand nombre d’informations qui ont enrichi notre compréhension de la situation et nous ont permis de gagner du temps.

Areva est également un spécialiste de l’assainissement, pour son propre compte comme pour celui d’EDF. Nous disposons d’équipes mobilisables notamment dans la mise en œuvre des moyens du GIE Intra (intervention robotique sur accident).

Nous transportons, par ailleurs, pour un grand nombre d’exploitants, des matières nucléaires à travers tout le pays, ce qui est très contraignant en termes de risques. C’est pourquoi nous avons prévu, en matière de transports, la même organisation de type PUI qu’en matière d’installations : nous pouvons ainsi gérer, partout dans le pays, une crise éventuelle en liaison avec les autorités préfectorales. Cette organisation nous permet également d’agir sur le plan logistique. Nous avons pu mettre à la disposition de nos homologues japonais des moyens importants en affrétant des avions dans des délais record.
Je suis responsable de la gestion centrale de crise : une fois le PUI déclenché au plan local, nous l’appuyons en aidant à la prise de décision et en veillant à la fois aux relations avec les pouvoirs publics et à la mise en œuvre des moyens techniques. Nous veillons en permanence à ce qu’Areva soit correctement gréé sur les différents établissements en matière d’organisation comme de moyens. Nous validons nominativement les listes d’astreinte et assurons l’animation des exercices réalisés sur l’ensemble de nos établissements.

Nous effectuons entre douze et quinze exercices de niveau national par an, deux à quatre étant organisés avec l’ASN et l’administration. Si nous incluons l’entraînement des forces d’intervention, nous arrivons à plus d’un exercice par semaine.

Areva a également expérimenté en 2010 un exercice sur trente-six heures, pour améliorer la tenue dans la durée : nous nous sommes soumis à une forte pression tout en imaginant l’implication du politique dans la crise, ce qui est trop rarement le cas.

Nous participons évidemment au CODIRPA. Du reste, cet après-midi, un responsable de notre activité « assainissement » fera un exposé sur nos capacités en la matière.

M. Hervé Bernard, administrateur général adjoint du Commissariat à l’énergie atomique et aux énergies alternatives (CEA). Je tiens tout d’abord à rappeler que la sûreté des installations nucléaires repose sur deux piliers. Le premier est le plan technique, qui prend en considération toutes les situations anormales, incidentelles ou accidentelles. Le second est la chaîne décisionnelle et opérationnelle qui doit être, à fortiori en cas de crise, robuste et réactive : elle va de l’exploitant sur site, qui est au plus près du problème, jusqu’aux responsables gouvernementaux, en passant par le directeur du centre, le préfet du département et le préfet de région.

Le principe de défense en profondeur est appliqué dans toutes les installations nucléaires françaises. Il est particulièrement contraignant car il vise non seulement à assurer la prévention des défaillances des installations et à surveiller leur fonctionnement mais également à limiter les conséquences de l’accident le plus improbable, au cas où il se produirait. Ce
principe structure notre mode de fonctionnement quotidien, y compris dans la culture de sûreté de nos opérateurs, au plus près de la matière nucléaire ou des installations.

Le CEA a également la possibilité de gréer un centre national de crise – le centre de coordination en cas de crise (CCC) –, situé à Saclay. Ce centre, qui entretient un contact visuel permanent avec le poste de commandement local du site en difficulté, permet de confronter l’action menée sur le terrain avec l’expertise qui doit être effectuée avec le recul nécessaire. Action et expertise constituent en effet les deux phases essentielles du diagnostic et du pronostic.

Le CEA, l’ASN et le préfet de région participent à la prise de décision, s’agissant notamment de la mise à l’abri des personnes, de leur évacuation éventuelle ou des mesures compensatoires à prendre en termes d’alimentation. Nous entretenons également une liaison permanente avec les équipes de l’IRSN : comme nous ne disposons pas des mêmes logiciels de calculs d’évolution, nous confrontons nos arguments techniques pour trouver la meilleure solution à la crise.

Nous avons volontairement réduit notre chaîne de responsabilité interne pour gérer nos soixante-dix-neuf installations nucléaires de base et installations nucléaires de base secrètes (qui comprennent des installations individuelles) : la chaîne, courte, comprend, outre les soixante-dix-neuf chefs d’installations, les directeurs des neuf centres entre lesquels les installations sont réparties et le responsable au plan national, l’administrateur général du CEA. Avant même Fukushima, nous avions déjà mis en place des fiches d’information immédiate d’une seule page, qui permettent de faire remonter l’information de manière sécurisée. Cette organisation est applicable non seulement au secteur nucléaire mais également à la chimie – en tant qu’organisme de recherche, le CEA doit faire face à des incidents dans ce domaine.

Nous avons dû également faire face à un accident dont l’occurrence était jugée très improbable : la perte totale, le 30 août 2006, de l’alimentation électrique sur le site de Cadarache. Les vingt et un groupes électrogènes fixes accolés à chacune des installations nucléaires se sont automatiquement mis en fonctionnement. Trois de ces groupes, qui n’étaient pas liés à une installation nucléaire, ont rencontré des difficultés et nous aurions pu, si nécessaire, recourir aux neuf groupes électrogènes mobiles que nous avions en réserve. Trois heures plus tard, nous avons pu rétablir une des deux lignes électriques de 63 000 volts défaillantes.

Il est important de mutualiser les moyens lourds et de les prépositionner si nécessaire. Le GIE Intra regroupe EDF, le CEA et Areva, ce qui est essentiel pour gérer le mieux possible les crises à venir.

Il ne s’agit pas tant de prévoir l’imprévisible que de s’entraîner à lui faire face. Fukushima nous incite à persévérer dans ce sens. Comme l’a rappelé le chef du bureau des risques de la Direction de la sécurité civile, procéder à des exercices répond à une impérieuse nécessité, pour pouvoir profiter d’un retour d’expérience important.

Notre devise, en cas de crise, est : « prévoir en stratège mais agir en primitif », c’est-à-dire avoir des réflexes immédiats et efficaces.

Nous participons évidemment aux groupes de réflexion du CODIRPA.

M. le président Claude Birraux. M. Christian Bataille et moi-même tenons à féliciter EDF de chercher à améliorer en permanence la sûreté sans plus évoquer le coût de celle-ci, ce qui nous avait conduits, au mois de janvier dernier, à faire quelques rappels à la loi.

Je vais vous poser quelques questions.
Combien d’exercices impliquent la population ou un échantillon test de celle-ci ?

Les centres de crise du CEA et de l’IRSN sont-ils en relation entre eux et avec l’ASN ?

Durant la catastrophe de Fukushima, la Direction de la sécurité civile a régulièrement publié des communiqués, tout comme l’IRSN, qui a géré un centre de crise, et l’ASN, qui est elle-même en liaison l’IRSN. Des liens sur internet renvoient-ils aux différents sites de ces établissements ou ces derniers se livrent-ils à la guerre des communiqués ?

M. Dominique Minière. Sur la douzaine d’exercices nationaux conduits l’année dernière par l’Autorité de sûreté nucléaire et l’ensemble des autorités, trois ou quatre ont impliqué la population.

M. Jean-Luc Andrieux. Il en est de même d’Areva : deux à quatre exercices ont impliqué la population.

M. André-Claude Lacoste. Les exercices impliquant des fractions limitées de la population sont d’autant plus difficiles à organiser qu’ils supposent le sentiment partagé d’une ardente obligation. La catastrophe de Fukushima devrait y contribuer.

M. Jacques Repussard. Les centres de crise obéissent à des fonctions différentes. Chaque exploitant, dont le CEA, a besoin de son dispositif de crise, avec ses exercices internes, ses procédures et ses outils propres. Quant à l’IRSN, son centre de crise lui permet de se mobiliser rapidement pour appuyer les pouvoirs publics. Toutefois, les centres de crise de l’IRSN, de l’ASN et de l’exploitant interagissent, notamment au moyen d’audioconférences, et nous comparons avec EDF nos résultats de modélisation et les avis de nos experts respectifs.

M. Guillaume Dederen. Sur les douze exercices prévus par la circulaire de 2010, dix ont pu être réalisés et la population a participé à huit d’entre eux. La direction de la sécurité civile milite en permanence pour que la population et les élus locaux soient étroitement associés parce que c’est au
cours de tels exercices que la pédagogie porte les meilleurs fruits. De plus, on apprend beaucoup de ses échecs. Il est normal que différents communiqués soient publiés, d’autant que l’ASN est une autorité indépendante. Toutefois, le préfet étant, au plan local, le directeur des opérateurs de secours, il a une fonction de coordination des messages transmis.

M. le président Claude Birraux. Je vais vous lire les questions de la salle.

Des exercices de crise ont-ils également lieu dans d’autres pays, comme les États-Unis et le Japon ? Partagez-vous les retours d’expérience au plan international ?

EDF a mis en place une distribution préventive de comprimés d’iode aux populations dans les périmètres des plans particuliers d’interventions (PPI) des centrales nucléaires : qu’en est-il des sites d’Areva et du CEA ?

Quelle est l’utilité des analyses coûts-bénéfices en matière d’amélioration de la sûreté, compte tenu de la très faible probabilité des événements ?

Quelles sont les améliorations envisagées dans la prise en charge du suivi sanitaire des intérimaires du nucléaire en situation normale et en situation de crise ?

Outre la gestion de l’objet technique défaillant, il ne faut pas oublier les questions relatives à l’accompagnement des populations riveraines, en matière de protection, d’évacuation et d’indemnisation à court, moyen et long termes. Qu’en est-il des moyens provisionnés par l’exploitant et l’État ?

EDF, le CEA et Areva ont-ils procédé dans chacun de leur site à une réflexion relative à la liste nominative de salariés « envoyés au front » en cas de crise majeure et risquant d’être soumis, en cas de fusion du réacteur, à des doses excessives de radioactivité ? Si oui, sur quels critères ? Sinon, sera-t-elle improvisée le moment venu ?
Jusqu’où une centrale peut-elle être « rafistolée » sur le plan technique ? Après Fukushima, la France cherchera-t-elle à établir de nouveau scénarios de catastrophes ?

Devant l’irrationalité de foules incultes en matière nucléaire, que prévoit l’élite savante et bien-pensante pour juguler la panique autour d’une INB (installation nucléaire de base) accidentée ?

Que signifient « assainissement », « seuil de libération des déchets radioactifs » et « seuil d’évaluation des doses » ?

Pourquoi le Réseau national de mesure de la radioactivité n’a-t-il pas été alimenté par les mesures effectuées par l’IRSN et les exploitants après l’accident de Fukushima ?

M. Dominique Minière. L’analyse des coûts-bénéfices permet de prioriser les modifications à effectuer en vue d’obtenir le meilleur gain en termes de sûreté et de réduire les risques de fusion nucléaire. Dans d’autres pays, ces analyses sont effectuées pour rendre indisponibles des matériels de sauvegarde pour faire de la maintenance : ce n’est pas notre approche. Nous ne faisons pas de maintenance tranche en marche, s’agissant notamment de diesels ou d’équipements de secours qui ne sont pas inscrits dans les spécifications d’exploitation.

Je tiens à préciser que le pourcentage d’intérimaires travaillant en zone contrôlée dans les installations d’EDF s’élève à 5 % et non à 50 % comme on l’entend parfois. Ils bénéficient du même suivi radiologique et médical que nos agents. Nous avons du reste signé avec les organisations professionnelles, dont une représentant les sociétés d’intérim, une charte les concernant.

La liste nominative des intervenants en situation de crise ne sera pas improvisée, puisque l’exposition d’urgence fait l’objet depuis 2005 d’un arrêté. Celui-ci prévoit, dans les situations accidentelles, l’exposition à des doses pouvant aller de vingt à 100 millisieverts. Le cadre réglementaire est précis : les volontaires devront s’être déclarés et auront dû subir un suivi médical particulier avant l’accident. L’enregistrement des doses est
également prévu. Il n’y aura donc, je le répète, aucune improvisation en la matière.

M. Jean-Luc Andrieux. Il n’y a pas de risque lié à l’iode autour des installations d’Areva : à La Hague, si de l’iode était émis, il ne serait pas de même nature que celui qui peut s’échapper d’une centrale nucléaire ; quant au Tricastin, l’iode émis proviendrait de la centrale et non des installations d’Areva : les conséquences d’un accident sur le site d’Areva seraient d’ordre chimique, avec l’émission éventuelle de fluorure d’hydrogène, qui est un gaz très corrosif et exige une protection des voies respiratoires (masques et tenues appropriées).

Nous avons des listes nominatives de salariés susceptibles d’être engagés dans des opérations particulières. Quant à ceux que nous avons envoyés au Japon, ils ne sont pas encore allés à Fukushima mais à Tokyo. Lorsqu’ils devront se rapprocher des installations accidentées, nous avons confirmé, en relation avec la direction générale du travail, que les règles qui leur seront appliquées sont celles qui les régissent en France, ce qui impliquera de notre part un suivi constant.

Enfin, l’assainissement recouvre tous les gestes de décontamination, voire de déconstruction, qu’on peut être conduit à pratiquer dans des milieux par définition hostiles, que ce soit dans le cadre de la maintenance ou dans celui de la gestion de crise. L’assainissement suppose des conditions d’intervention spécifiques – tenues, surtenues et assistance respiratoire – permettant de protéger complètement les intervenants. Il constitue une spécialité à part entière.

M. Hervé Bernard. Des personnels étrangers participent aux exercices de crise français conduits pas le CEA, ce qui permet de partager les retours d’expérience. J’ai moi-même participé à un exercice de crise dans une centrale américaine. L’Union européenne a monté un programme de centre commun de recherches européen – une clearing house européenne – en vue de partager les retours d’expérience.

L’iode n’a besoin d’être distribué qu’en cas de contact des combustibles irradiés avec l’extérieur. Tous les sites du CEA, même expérimentaux, n’ont pas de réacteurs nucléaires. Seuls les sites de
Cadarache, Saclay et Marcoule sont concernés. Pour donner un ordre de grandeur, la puissance du réacteur Osiris est de soixante-dix mégawatts thermiques, alors que celle des réacteurs EDF atteint 4 000 mégawatts thermiques, soit 1 300 mégawatts électriques.

S’agissant du Réseau national de mesures de la radioactivité de l’environnement (RNM), il a été alimenté par les données des exploitants nucléaires et de l’IRSN.

La liste nominative des salariés intervenant en cas de crise est établie sur la base du volontariat et leur action est encadrée – cela a été dit et je n’y reviens pas.

M. le président Claude Birraux. Je vous livre une autre salve de questions.

Il y a vingt ans, en cas d’incident ou d’accident nucléaire, des intermédiaires médicaux ou paramédicaux étaient prévus pour informer la population. Or ils semblent avoir disparu des organigrammes. En cas de nécessité, qui aujourd'hui répondra aux inquiétudes de la population ?

On évoque souvent, en cas d’accident majeur, l'iode et le césium : peut-on aborder la question des radioéléments à vie longue, générateurs de radioactivité alpha, dont la toxicité chimique est importante ?

Qu’en est-il du droit de retrait des personnels devant intervenir en cas d’accident ?

Quel est le nombre des redondances prévues sur les installations de sécurité ?

M. André-Claude Lacoste. Le partage international du retour d’expérience des exercices de crise n’est pas toujours aisé, parce que la crise nucléaire n’est qu’une composante de l’ensemble des crises pouvant affecter un pays. C’est ainsi que les États-Unis ne pratiquent pas la mise à l’abri mais recourent systématiquement à l’évacuation, en cas de crise nucléaire comme de cyclones ou d’inondations.
Les pays européens s’efforcent d’être aussi homogènes que possible : la France a abaissé le seuil à partir duquel la prise de comprimés d’iode est recommandée de façon à rejoindre la moyenne de ses partenaires.

Par ailleurs, des stress tests, pratiqués en Europe, visent à pousser aussi loin que possible les sollicitations auxquelles les installations sont susceptibles de répondre. Il importe de les harmoniser entre les différents pays.

Il importe également que nous préparions, en temps de paix – c’est l’objet du CODIRPA –, l’encadrement réglementaire de l’action à mener dans des situations d’urgence ou extrêmes. La radioprotection des intervenants est déjà encadrée, de même que la gestion des déchets. Nous devons nous occuper désormais de la gestion du post-accidentel.

On ne peut pas gérer, ni même se préparer à la gestion de crises comme celle de Fukushima, si les différents acteurs ne sont pas disposés à assumer leurs responsabilités. On ne devrait pas laisser construire des installations nucléaires dans des pays dont les exploitants, loin d’être disposés à le faire, en portant le projet continu, se réfugient derrière des références étrangères ou les gouvernements. On est en droit de s’interroger de ce qu’un responsable de haut niveau de General Electric ait affirmé n’être que le fournisseur des matériels de la centrale de Fukushima pour se dégager de toute responsabilité en matière d’exploitation et justifier le fait que l’entreprise ne soit pas intervenue une seconde dans la gestion de la crise. Il convient de déterminer si le pays candidat à l’énergie nucléaire offre un cadre suffisant sûr, qu’il s’agisse des fournisseurs, des exploitants ou de l’organisation de crise.

M. Jacques Repussard. L’IRSN est un des grands acteurs de la clearing house européenne : nous y examinons en commun les incidents qui se produisent dans des réacteurs nucléaires pour en tirer des enseignements. Ce système d’échanges est particulièrement riche pour les pays qui ont peu d’installations : ils peuvent ainsi bénéficier des retours d’expérience de pays plus expérimentés. Cette mutualisation, qui est très utile, fait progresser une culture commune.
La plateforme scientifique Nerys est dédiée à la mutualisation des questions qui se posent en mode post-accidentel ainsi qu’à celle des outils de gestion de crise.

De plus, il existe entre la France, l’Allemagne et le Royaume-Uni un réseau des laboratoires destinés à se prêter main-forte en cas de dépassement de leurs capacités respectives. L’IRSN participe à ce réseau aux côtés de ses homologues allemand et britannique. C’est ainsi que, l’empoisonnement au polonium d’Alexandre Litvinenko ayant provoqué un début de panique à Londres, un vendredi après-midi les Britanniques nous ont demandé si nous pourrions, le lundi matin suivant, procéder à des centaines d’analyses d’urine en cas d’aggravation de la crise. Nous avons passé le week-end à coordonner la métrologie afin d’être prêts.

L’Europe est un petit continent. Après Fukushima, les investissements communs, le rapprochement des doctrines et la mutualisation des moyens paraissent d’autant plus souhaitables.

S’agissant de l’information des populations, je tiens à rappeler qu’internet n’existait pas il y a vingt ans : il a joué un rôle majeur au Japon. En France, au plus haut de la crise japonaise, le nombre des connexions jour au site de l’IRSN a atteint 1,5 million, contre quelques dizaines de milliers habituellement, ce qui nous a contraints à résoudre quelques problèmes informatiques. Internet est un outil très puissant. Les médias ont également un rôle important à jouer, mais il convient surtout de coordonner la parole publique : les messages des différentes autorités publiques (notamment le préfet et l’ASN), des autorités médicales et des différents experts doivent se recouper pour que le public garde confiance : il est en effet spontanément méfiant devant la parole institutionnelle (celle d’un président de l’autorité nucléaire ou d’un directeur général de l’IRSN). Seul le croisement des sources et la répétition, par elle-même pédagogique, des explications fournies permettent de construire un capital de confiance collectif, qui ne saurait plus être l’apanage d’aucune personne ni d’aucune institution. Internet a permis, lors de la crise de Fukushima, à un grand nombre d’experts, notamment à des retraités du CEA, de communiquer et d’atteindre différents cercles, alors qu’après Tchernobyl, en absence d’internet, les médecins généralistes ont véhiculé l’affirmation selon laquelle les problèmes de thyroïde étaient liés à la catastrophe nucléaire, ce qui est scientifiquement faux.
En ce qui concerne les éléments radiotoxiques à vie longue, tels que le plutonium, la physique des accidents permet de comprendre qu’il s’agit-là de composants lourds qui ne sortent pas facilement. À Fukushima, le plutonium et l’américium sont restés dans les combustibles – l’accident de Tchernobyl sort de l’ordinaire. Les produits de fission volatiles, qui sont les premiers biodisponibles, ne sont pas les plus radiotoxiques, exception faite de l’iode.

M. Guillaume Dederen. S’agissant du seuil de libération des déchets radioactifs, la sécurité civile, qui a emporté des matériels à Fukushima, a été obligée de les laisser sur place. Elle doit, avant de pouvoir les remporter, mesurer leur radioactivité pour savoir s’ils atteignent le seuil de libération, lequel permet d’obtenir un nihil obstat garantissant que des déchets a priori « sales » sont en réalité « propres ».

En tant que représentant assumé des élites bien-pensantes, je pense qu’il faut cesser de supposer systématiquement que l’ensemble de la population sera, en cas d’accident nucléaire, dans un état de panique confinant à l’hystérie. La réponse à la question, qui est d’ordre pédagogique, tient dans une information régulière, voire dans la formation du public. La planification de la gestion de crise est déjà bien rôdée : elle doit d’autant plus tenir compte du rôle essentiel que joueront les media, notamment Radio France et les chaînes de télévision, que la doctrine de protection prévoit, à côté de la mise à l’abri, l’écoute de la radio.

Je tiens également à rappeler les responsabilités des institutions nationales, des exploitants et des collectivités territoriales, notamment des maires. N’oublions pas non plus que la loi de modernisation de la sécurité civile, votée par le Parlement en 2004, prévoit que chaque citoyen est acteur de sa propre sécurité. De même qu’on n’habite pas impunément au bord d’une rivière susceptible de provoquer des inondations catastrophiques, de même on ne vit pas sans prendre les garanties nécessaires dans le périmètre d’une centrale nucléaire. Il est nécessaire de connaître les bons réflexes et de tenir compte des informations qui sont régulièrement données. L’iode fait partie des garanties à prendre en cas de nécessité.

M. Dominique Minière. S’agissant de la redondance électrique, en cause dans la catastrophe de Fukushima, les centrales nucléaires d’EDF possèdent deux lignes électriques externes, pour chaque réacteur, deux
diesels de secours et un groupe d’ultime secours (une turbine à combustion) sur chaque site. De plus, hors dimensionnement, nos consignes prévoient de dévier de l’électricité d’une tranche vers une autre en utilisant un des diesels. Nous disposons également de turboalternateurs, permettant de produire à partir de la vapeur de la centrale suffisamment d’électricité pour éviter la fusion du cœur.

M. le président Claude Birraux. Je remercie les orateurs qui se sont exprimés.
Deuxième session

L’IMPLICATION DES PARTIES PRENANTES FRANÇAISES ET ÉTRANGÈRES

Présidence de M. Bruno Sido, Sénateur, premier vice-président de l’OPECST, rapporteur de la mission parlementaire

M. Bruno Sido, premier vice-président de l’OPECST. La seconde session de cette audition vise à faire le point sur l’implication des différentes parties prenantes dans la gestion d’une situation post-accidentelle, laquelle concerne deux groupes d’acteurs assez différents.

La première partie de la session donnera la parole aux associations. Il ne s’agit pas de prendre position sur l’énergie nucléaire ou sur la sûreté des centrales en général, mais de connaître la façon dont chaque association juge l’avancée des travaux de préparation à la gestion post-accidentelle. L’idée est de faire ressortir combien la participation des associations au processus d’élaboration du CODIRPA en améliore le contenu et la performance.

La seconde partie de la session visera à montrer comment l’effort français de préparation à la gestion post-accidentelle se situe dans le contexte international.

Elle le fera tout d’abord en indiquant l’éventuelle part de coopération internationale qu’implique ce genre de travaux de préparation. On sait que cette coopération est hautement souhaitable, dans la mesure où les difficultés induites par un accident nucléaire ne connaissent pas les frontières. Chacun a encore en mémoire les conséquences de l’accident de Tchernobyl sur toute l’Europe.

Elle le fera ensuite en donnant des indications sur l’état d’avancement des travaux équivalents au CODIRPA dans les autres pays dotés d’installations nucléaires. Il s’agit de savoir non seulement si la France est en avance, en retard ou dans le peloton mais également s’il existe des modèles étrangers déjà bien élaborés dont la France peut s’inspirer, ou si
notre pays ouvre la voie, comme il l’a déjà plus ou moins fait, par exemple avec les deux lois Bataille et Birraux de 1991 et de 2006 visant à créer un cadre structuré et transparent de gestion des déchets nucléaires.

Je donnerai la parole aux acteurs locaux en leur demandant comment ils voient leur implication dans les travaux du CODIRPA. Nous sommes également intéressés par leur jugement sur le degré d’avancement de ces travaux. Il serait utile d’avoir des exemples concrets des points sur lesquels ils attirent l’attention des membres du groupe de travail. Je ne doute pas que les associations remplissent une fonction de vigilance vis-à-vis de problèmes pratiques, dont la résolution sera de l’intérêt de toute la collectivité.

L’implication des associations en France

Pour remplir nos missions d’information et de suivi des installations nucléaires, nous avons désormais non seulement des droits mais aussi, et surtout, des obligations. En France, c’est connu, nous sommes meilleurs que les autres ! C’est donc sans moyens que les CLI travaillent. L’Autorité de sûreté nucléaire et l’IRSN nous fournissent assurément une aide précieuse, mais nous serions plus efficaces si l’État nous accordait les moyens prévus dans la loi. Or, depuis cinq ans qu’elle a été adoptée, nous n’avons toujours rien reçu. J’espère que M. Bertrand Pancher, qui vient de remettre au Président de la République un rapport, sera entendu : il préconise qu’1% de la taxe sur les INB, versée par les exploitants, et qui rapporte à l’État quelque 500 millions d’euros par an, soit fléché en direction des cinquante CLI, ce qui leur permettrait d’améliorer leur fonctionnement.
En attendant, nous faisons respecter nos droits et remplissons au mieux nos obligations. D’ailleurs, le chef du bureau des risques de la Direction de la sécurité civile m’a rassuré, puisque, en cas d’incident ou d’accident impensables en France, les populations dans les périmètres concernés ont acquis depuis longtemps une vraie culture du risque et sauront se confiner dans les maisons. J’ignore si Alexis Calafat, maire de Golfech, est du même avis, deux jours seulement après le déclenchement intempestif de l’alarme de la centrale nucléaire située sur le territoire de la commune. Ce déclenchement a suscité au sein de la population un véritable vent de panique. Or, ce n’est pas à la sécurité civile que les habitants ont téléphoné ! Bien qu’ils aient la culture du risque, ils se sont tournés vers les élus locaux pour obtenir des réponses que ces derniers étaient bien en peine de leur donner.

La catastrophe de Fukushima nous inspire plusieurs réflexions.

Cet accident résulte de la conjonction d'événements qui, pour être peu probables, restent possibles. Fukushima est tout d'abord un rappel brutal de la vulnérabilité associée aux activités nucléaires, quel que soit leur niveau de sécurité. Nous pouvons réduire les risques, mais la vulnérabilité créée par la présence d'une installation nucléaire est une donnée constante, ce qui nous fait mesurer l’exigence de vigilance – vous l’avez évoquée dans votre propos introductif – qui, d'une façon ou d'une autre, s'impose à tous ceux qui contribuent au suivi de ces installations et à la préparation des réactions en cas d’accident.

C’est particulièrement vrai pour les personnes qui participent au fonctionnement des quelque cinquante commissions locales d'information, qui regroupent près de 3 000 personnes dont 1 500 élus territoriaux : tous sont attachés à leur territoire, à ses modes de vie et à ses activités. Or celles-ci seraient totalement bouleversées par un accident nucléaire, Fukushima nous le prouve.

La vulnérabilité de nos territoires et du territoire français en général n'est pas liée au voisinage d'une seule installation mais à l'ensemble des installations nucléaires présentes en France et en Europe. Il découle de ce constat que la prise en compte d'un scénario accidentel de forte gravité en France doit faire partie de notre cadre de préparation post-accidentel, comme l'ont d'ailleurs souligné depuis très longtemps les représentants des CLI.
En matière de transparence, il est encore trop tôt pour savoir exactement dans quelles conditions ont été prises en compte, dans le contexte japonais, les informations disponibles pour évaluer et gérer les risques, avant, pendant et après l’accident.

Il est d’ores et déjà clair, cependant, que la transparence démocratique est un enjeu essentiel. Les questions de sécurité ne concernent pas seulement les opérateurs, les experts et les autorités – jusqu’à la loi de 2006, les trois piliers du nucléaire –, mais également l’ensemble de la société civile, représentée par les CLI qui, depuis la loi de 2006, constituent le quatrième pilier, d’autant que la gestion d’une catastrophe et de ses conséquences touchera un nombre considérable de personnes dans leur vie quotidienne et, souvent, à très long terme et de façon irréversible, au moins à l’échelle d’une vie humaine.

N’oublions pas que la soudaine contamination radioactive d’un large territoire provoque une situation à long terme. Savez-vous que vingt-cinq après Tchernobyl, des sangliers en provenance d’Ukraine contaminent la faune allemande ? Cela nous fait mesurer, dans le contexte du CODIRPA, combien la question de la préparation des acteurs des territoires est l’un des principaux enjeux de la gestion post-accidentelle. Si l’éducation est importante, l’art de la répétition est capital.

La préparation à la situation post-accidentelle ne saurait se faire sans une participation active de tous les acteurs : or nous devons aujourd’hui faire le constat de notre impréparation sur nos différents territoires. Les CLI, qui sont présentes sur une partie du territoire national au moins, devront apporter leur contribution à ce chantier qui est, pour l’essentiel, encore devant nous, même si le CODIRPA travaille activement sous l’impulsion du Président de l’ASN depuis dix ans. Les événements, et ce séminaire, prévus avant Fukushima, nous permettront d’aller plus loin.

Or Fukushima, après Tchernobyl, doit permettre à ceux qui s’interrogent de se sentir concernés par cette convention même s’ils sont responsables du nucléaire, car elle fera désormais partie de leur quotidien. Favoriser la montée en puissance et en compétence de la société civile au voisinage de chaque installation nucléaire en Europe est un élément essentiel de notre sécurité. L'ANCCLI s'y est engagée depuis plusieurs années avec l’IRSN, que je remercie.

Avec le soutien de l'ASN, nous souhaitons organiser à Luxembourg une table ronde européenne à l'automne 2011 sur l’évaluation des conditions de mise en œuvre de la convention d’Aarhus en situation accidentelle et post-accidentelle, dans le cadre de la démarche que nous avons initiée, depuis trois ans, à savoir bien avant l’accident de Fukushima, aux côtés de la Commission européenne et de l’ASN et avec le soutien du Haut comité à la transparence. Se pose la question des réactions que l’Europe devrait avoir face à des fournisseurs ou des pays qui n’ont pas la même culture que nous : la France a élaboré un guide des bonnes pratiques, que nous devrions mettre en application au niveau européen.

La catastrophe de Fukushima conditionne nos choix énergétiques à venir et les conditions d’exercice des activités nucléaires. Cet événement a provoqué des débats dans le monde entier, particulièrement dans les pays qui produisent de l’énergie nucléaire ou dans ceux qui s'apprestaient à la développer. C’est particulièrement vrai en Europe. Certains de nos voisins ont d'ores et déjà reconsidéré leur position. En France, les mêmes débats ont lieu. J’ai participé à l’accueil du Président de la République mardi dernier à Gravelines : il est clair que les positions prises aussi bien au plan régional qu’au plan national l’ont été dans la perspective de la prochaine élection présidentielle.

Les CLI et l'ANCCLI ont pour mission le suivi des installations nucléaires et les éventuelles conséquences de leur exploitation. Il ne nous appartient pas de prendre position en matière de choix énergétiques. Au sein des CLI les opinions sont partagées. En revanche, tous se retrouvent autour de la même table pour assurer leur mission, qui consiste notamment à observer les évolutions des activités nucléaires à moyen et long termes.

Nul n’ignore que, quels que soient les scénarios de production énergétique envisagés, compte tenu du niveau actuel de son développement
en France, l'énergie nucléaire fera partie de notre paysage national pour plusieurs décennies encore en matière de production, et à très long terme s’agissant de la gestion des déchets radioactifs et de la contamination radioactive de l'environnement. Nos sociétés devront donc veiller encore longtemps à assurer la sécurité nucléaire et la protection de l'homme et de l'environnement du risque radioactif. Dans ce contexte particulièrement grave, notre devoir est de nous donner les moyens d’assurer effectivement notre mission.

Nous veillerons à avoir, à côté de l’aide importante que nous obtenons de l’ASN et de l’IRSN, les moyens d’accomplir notre mission. Les États généraux que les CLI et l’ANCCLI tiendront à l’automne 2011 leur permettront d’évaluer les moyens nécessaires à l’accomplissement de leur mission dans le champ du suivi des installations nucléaires, de la gestion accidentelle et post-accidentelle et de celle des déchets radioactifs. Messieurs les parlementaires, nous avons besoin de votre aide pour obtenir davantage de moyens car l’impossible est toujours possible !

M. Pierre Barbey, de l’Association pour le contrôle de la radioactivité dans l’Ouest (ACRO). M. Repussard a fustigé les médecins qui ont établi un rapport entre les rejets d’iode liés à la catastrophe de Tchernobyl et les cancers de la thyroïde. Ses propos me heurtent et j’aimerais qu’il les clarifie.

Fort heureusement, la France n’a pas connu d’accident majeur depuis vingt-cinq ans. Néanmoins, il est utile de tirer les conclusions des retours d’expérience. Je ne prendrai qu’un exemple franco-français, avant d’aborder la question japonaise.

En 2001, autour du site de La Hague, un rejet incidentel de ruthénium s’est produit dans l’atmosphère. L’exploitant a donné sa version des faits, et l’ASN a classé l’événement au niveau zéro. Or la surveillance exercée par notre laboratoire a permis d’établir un terme source mille fois supérieur à celui déclaré par l’exploitant. L’ASN a alors décidé de créer un groupe pluraliste, auquel nous avons participé, qui a confirmé nos mesures et décrit le mécanisme selon lequel l’analyse de l’exploitant n’avait pas permis d’apprécier de façon juste le rejet de ruthénium. Sans le travail de l’ACRO, cet incident serait passé inaperçu et n’aurait pas été reclassé.

À la suite de la catastrophe de Fukushima, qui est un événement majeur, nous avons été extrêmement sollicités par les médias et par des citoyens très inquiets. Nous avons déclenché un plan de surveillance à l’échelle du territoire, et nos réseaux de préleveurs ont procédé, à intervalle d’une semaine, à des campagnes d’analyses séquentielles du couvert végétal. Avant l’arrivée des masses d’air, les résultats de nos mesures étaient négatifs. Puis, notre première campagne a établi la présence de l’iode 131 ; la deuxième, de l’iode à des niveaux plus élevés, ainsi que du césium 137 ; et la troisième, du césium 134. Ces niveaux étaient modestes – mais n’oublions pas que la France est située à 15 000 kilomètres de Fukushima –, et il n’y a pas eu de grandes divergences entre les différents acteurs institutionnels ou non institutionnels sur la contamination du territoire français.

Nous nous sommes surtout préoccupés des populations et des travailleurs japonais concernés. Après avoir lancé une campagne de collecte de fonds pour aider les associations japonaises à s’équiper et à développer dans leur pays un laboratoire identique au nôtre, nous avons développé des campagnes d’analyses avec ces collaborateurs japonais.

Nos prélèvements effectués dans la zone des 40 à 50 kilomètres autour de Fukushima ont révélé des spectres de radionucléides considérables et inconnus jusqu’alors : des millions de becquerels par mètre carré. Nous avons rendu publics ces chiffres. Nous avons immédiatement informé l’ambassade du Japon et les associations japonaises et, le jour même, le
gouvernement japonais a décidé de proposer l’évacuation de villages, comme celui d’Itate, où la contamination était la plus forte.

En accord avec France 2 pour l’émission Complément d’enquête, nous avons fait des analyses sur une zone située à 85 kilomètres de la catastrophe. Nos résultats ont montré que tous les légumes analysés étaient, selon les valeurs instituées par le gouvernement japonais, impropre à la consommation.

Quels sont les premiers enseignements de Fukushima ?

Notre rôle n’est pas de dire aux citoyens ce qu’ils doivent penser : ils doivent se forger eux-mêmes une opinion et pouvoir être acteurs des décisions dans un processus démocratique. Notre rôle est de participer à un débat sous la forme d’un questionnement.

En phase d’urgence, quelle est la priorité majeure ? La sauvegarde de réacteurs endommagés ou la protection sanitaire des populations, des travailleurs et de l’environnement ?

Comment construire des scénarios d’accidents – je pense aux exercices de crise évoqués tout à l’heure ? Actuellement, ils sont toujours construits à partir d’événements à cinétiques rapides. Or la crise de Fukushima est loin d’être terminée, tandis que l’exploitant a annoncé pouvoir peut-être maîtriser le refroidissement au bout de trois mois et faire baisser significativement la radioactivité au bout de neuf mois. Ces scénarios sont totalement différents de ceux que nous avions anticipés.

Quelle est la réalité de l’application des dispositions de crise dans une telle temporalité ? Il y a eu une « mise à l’abri » entre 20 et 30 kilomètres de l’accident de Fukushima. Or ce genre de dispositif de confinement ne peut se concevoir qu’un ou deux jours, mais pas durant plusieurs semaines.

Jusqu’à quelle élasticité des limites réglementaires une situation d’urgence radiologique peut-elle conduire ? Après Fukushima, la limite de 100 millisieverts a été poussée à 250 mSv pour les travailleurs volontaires.
Or pour l’ouverture des crèches et des écoles, la limite a été fixée à 20 mSv. Pour nous, ce mode de gestion japonais est profondément choquant et doit être discuté. Ainsi, la poussière prélevée dans les crèches et les écoles par les représentants des parents d’élèves a révélé des niveaux de contamination très élevés. C’est pourquoi nous nous sommes associés à des campagnes de pétitions.

Dans cette phase d’urgence et post-accidentelle, je m’appuierai sur la revue *Nature*, qui, dans son numéro du 21 avril reprenant un travail des universitaires de Columbia, déclare : « Aujourd’hui, 152 installations nucléaires dans le monde sont installées à moins de 75 kilomètres d’au moins 1 million d’habitants. »

Par conséquent, quelle est la crédibilité de la mise en œuvre des plans de protection des populations lorsque l’on a de grandes quantités de populations à gérer ? Quel est le potentiel des structures d’accueil dans un processus d’évacuation ?

Ne risque-t-on pas, à travers des niveaux admissibles de doses, d’avoir une approche de la protection sanitaire en fonction de la taille des populations concernées ? J’entends des niveaux qui peuvent être protecteurs si la taille des populations est très faible, mais qui seront laxistes si la taille des populations est importante.

Selon le quotidien japonais *Asahi Shimbun* daté du 4 mai, le gouvernement japonais estime à 33 milliards d’euros le montant total des indemnisations liées à l’accident de la centrale de Fukushima. Quelle est alors la responsabilité des exploitants en matière d’indemnisation ? Cette question est fondamentale. TEPCO a déjà clairement fait savoir que c’est à l’État de payer…

En France, la responsabilité d’un exploitant se limite à 95 millions d’euros ! Or les estimations pour Tchernobyl s’élèvent à quelques centaines de milliards d’euros – et elles seront certainement équivalentes pour Fukushima.

À l’évidence, les coûts humains, sociétaux, économiques et environnementaux ne sont couverts que de façon dérisoire. Les études de
sûreté traitent les événements potentiels de façon séquentielle. Or il est nécessaire de concevoir des scénarios cumulatifs, ou à « effet domino », et d’en évaluer les conséquences de façon déterministe, autrement dit en considérant que les mesures de protection des accidents sont successivement mises en défaut. Il faut imaginer l’imaginable. Un événement majeur initiateur, une catastrophe naturelle, pourrait affecter tout un territoire si une usine Seveso venait alors à rejeter des gaz toxiques qui empêcheraient tout accès au site pendant un certain temps. Il faut donc penser aux effets domino, et pas seulement au défaut de refroidissement d’un réacteur, et imaginer des scénarios très complexes. Tous ces aspects ne sont pas pris en compte parce que nous sommes dans une approche probabiliste.

La question n’est pas seulement technique, elle est aussi sociétale et éthique. Là encore, je resterai dans un questionnement.

Peut-on en rester à une approche stochastique, raisonner sur la seule notion de risque ? N’y a-t-il pas un niveau de danger potentiel où la société peut considérer que, même si le risque est très faible, la pratique ne peut être développée ?

Quid de l’application du principe de justification, élaboré par la Commission internationale de protection radiologique (CIPR) au début des années soixante-dix, introduit dans le droit français depuis 2001 et intégré au code de la santé publique depuis avril 2002 ? Selon nous, ce principe n’est pas appliqué.

Le lancement d’un programme nucléaire relève d’une décision nationale, mais les conséquences peuvent être internationales. Un accident nucléaire n’a pas de frontière : quels sont alors les choix pour les pays riverains ?

Enfin, au nom de l’éthique, ne doit-on pas intégrer le caractère transgénérationnel des décisions que nous prenons aujourd’hui – pour le confort de la génération actuelle ?

En tout état de cause, la décision de poursuivre un programme nucléaire ne peut, selon nous, relever que d’un processus entièrement démocratique et transparent, au terme d’un authentique débat national qui
devra au préalable éclairer les citoyens sur tous les tenants et les aboutissants.

M. Bruno Sido. Je constate que le représentant de la CRIIRAD est absent.

Je donne maintenant la parole aux organisations internationales, que je tiens à remercier car elles ont fait l’effort d’envoyer des représentants et ont accepté de se prêter à notre audition parlementaire.

Je souhaiterais que chacun des intervenants nous parle de la coopération internationale en matière de préparation à la gestion post-accidentelle et nous informe du degré d’avancement des principaux pays dans ce domaine.

À cet égard, où en était le Japon au moment du tsunami de mars ? Quelles ont été, dans la gestion de la situation à Fukushima et ses environs, la part de réaction anticipée à travers une préparation antérieure et la part de décisions non planifiées ?

Monsieur Augustin Janssens, vous qui représentez la Commission européenne, pouvez-vous nous indiquer si l’effort français de préparation à la gestion post-accidentelle a son équivalent dans d’autres pays d’Europe ?

L’effort de préparation au niveau international

M. Augustin Janssens, de la Commission européenne. Je représente la Commission européenne, mais seulement sous l’angle de la protection radiologique des populations dont j’ai la responsabilité. Mon intervention ne consistera donc pas en des prises de position officielles de la Commission.

Fukushima est un accident majeur qui a été classé au niveau 7 de l’échelle INES. On peut cependant se demander si le niveau 6 n’aurait pas
été plus approprié, comme l’avait préconisé l’ASN dès le début de l’accident. Les rejets représentent en effet 10 % de ceux de Tchernobyl et la direction des vents a poussé les émissions radioactives vers l’océan, ce qui a limité les conséquences radiologiques pour le Japon.

Bien que majeur, l’accident de Fukushima n’est qu’un élément d’une catastrophe naturelle de très grande ampleur. Il présente des particularités dont il faudra tirer les leçons. Nous ne nous attendions pas, en effet, à une telle situation, avec de nouveaux éléments inquiétants ou rassurants tous les jours, voire plusieurs fois par jour. En outre, même s’ils représentent aujourd’hui moins de 1 % de ceux de la première semaine, les rejets se poursuivent. Cet élément très important doit être pris compte dans la gestion de l’accident. Surtout, la situation des réacteurs est encore instable, ce qui est un facteur important en matière d’évacuation de population.

Les mesures de confinement et d’évacuation reposent sur des critères de court terme, alors que la situation actuelle contraint le Japon à maintenir cette évacuation. Celle-ci durera tant que les réacteurs ne seront pas stabilisés. Autrement dit, une grande partie de la population ne pourra pas réintégrer ses habitations avant une longue période.

Je pense que la dose n’est pas un élément prépondérant dans les décisions. D’ailleurs, l’interprétation de la dose est un facteur qui prête à confusion dans la mesure où existent des limites de doses en situation normale, définies par des normes de base européennes, et des limites en situation d’urgence bien supérieures pour les travailleurs et la population.

Au niveau européen, les normes de base de protection radiologique définissent les niveaux. Une nouvelle norme de base, fruit de cinq années de travail de notre groupe d’experts, sera proposée cet été par la Commission et définira plus clairement les situations normales, les situations d’urgence et les situations existantes telles que définies par la CIPR, en particulier dans sa publication 111 sur la gestion post-accidentelle.

Sous la pression politique et celle des médias, l’Union européenne a été contrainte, après l’accident, de prendre des mesures relatives à l’importation de biens en provenance du Japon, en particulier de denrées alimentaires, et à l’entrée des bateaux en Europe.
S’agissant des denrées alimentaires, le règlement Euratom n° 3954 prévoit des valeurs prédéfinies et des contrôles en cas accident majeur sur le territoire européen. Le volume d’importation en Europe de produits japonais étant habituellement très faible, il n’y avait, à première vue, aucune raison de mettre en œuvre ce règlement, mais la pression était telle que nous avons dû instaurer des contrôles. Ils ont d’abord été menés par référence à nos valeurs préétablies. Mais le Japon ayant des valeurs plus basses, nous avons ensuite été amenés à introduire, à titre provisoire, les valeurs japonaises avec l’engagement de ce pays de ne pas exporter ses denrées alimentaires, et nous avons effectué les vérifications en Europe sur la même base.

S’agissant de l’entrée des bateaux en Europe, nous ne disposions d’aucun texte. Une information non obligatoire a alors appelé les États membres à vérifier l’absence de toute contamination dans les cargos et les conteneurs. Mais les critères ont été improvisés après une consultation rapide des États membres et devront donc être confirmés par nos experts scientifiques au mois de juin.

Je pense qu’il serait très intéressant d’étendre l’initiative CODIRPA à d’autres pays européens, où elle n’a pas d’équivalent. La plupart d’entre eux demandent, pour le contrôle des bateaux par exemple, à gérer ce genre de crise comme une situation normale et d’appliquer le règlement relatif aux transports, comme pour le transport de substances radioactives ! C’est la preuve qu’une réflexion plus approfondie sur la gestion post-accidentelle et une harmonisation européennes s’imposent.

M. Bruno Sido. Monsieur Ted Lazzo, vous qui répresentez l’Agence de l’OCDE pour l’énergie nucléaire, pouvez-vous nous dire si l’état de préparation du Japon dans la gestion de la phase post-accidentelle d’un accident nucléaire est à l’image de la remarquable capacité de ce pays à anticiper les séismes ?

questions relatives à la préparation et à la conduite à tenir en cas d’urgence. Il est donc de notre mission d’aider les pays membres à échanger leurs expériences et leurs informations.

Depuis 1993, nous avons mené quatre exercices internationaux d’urgence, intitulés INEX, auxquels ont participé une trentaine de pays. Ces exercices permettent d’appréhender les aspects internationaux d’une crise comme celle de Fukushima en matière de communication et de traitement de l’information. Récemment, notre groupe d’experts sur les cas d’urgence s’est réuni pour discuter des modalités permettant aux pays membres de mieux partager leur expérience.

Même si certaines choses sont bien faites, je centrerai mon intervention sur trois points que nos pays membres doivent améliorer.

La préparation, d’abord.

Il faut revoir les actions en matière de préparation et de protection au regard des rejets longs, car nous savons désormais que les rejets peuvent être beaucoup plus longs que ce que nous croyions. Par conséquent, nos pays doivent rediscuter de l’évacuation, de l’éloignement, de la mise à l’abri et de la protection des travailleurs, afin d’améliorer leur capacité à mieux protéger les populations, les travailleurs et l’environnement.

En outre, il faut revoir en profondeur la préparation dans un contexte d’urgences multiples –récemment, une série de tornades a dévasté les États-Unis et provoqué l’arrêt de réacteurs nucléaires – afin que les États membres puissent mettre en commun leurs informations et augmenter leur capacité de réaction.

La disponibilité de l’information, ensuite.

Après l’accident de Fukushima, tous les pays ont demandé à disposer d’une information immédiate en provenance du Japon. En effet, nombre d’entre eux n’avaient pour seule source d’informations que les médias, notamment CNN, la BBC ou des stations japonaises, et ne disposaient donc que d’informations plus ou moins fiables.
Un accident nucléaire dans un pays touche le monde entier. Nous devons donc être prêts à affronter, chez nous, un accident survenu ailleurs. Cela signifie que nous devons être prêts à fournir un grand nombre d’informations à l’international, traduites en anglais. Sur ce dernier point, je salue l’effort des Japonais. Nous avons noté un grand nombre de relations bilatérales et d’échanges d’informations entre le Japon et les autres pays au sujet de l’accident, du terme source, des résultats de la surveillance et des contrôles. Ainsi, tous les États représentés à l’AEN ont réalisé leurs propres calculs pour protéger leurs populations respectives présentes au Japon et prévoir le passage du nuage sur leur territoire. C’est la preuve que les États membres peuvent et doivent être prêts à produire ce genre d’informations et à les communiquer de façon claire et transparente aussi tôt que possible.

En outre, il est très important que les États soient prêts à discuter avec les parties prenantes des décisions majeures, comme celle de rouvrir ou non les écoles. Les niveaux de référence utilisés dans ces contextes peuvent en effet être discutés.

La coordination des décisions, enfin.

Tous les pays de l’AEN ont formulé des recommandations et pris des décisions pour leurs citoyens présents au Japon. L’AIEA nous ayant chargés de la collecte de ces décisions et recommandations, nous avons constaté que toutes étaient cohérentes. Ainsi, les Japonais ont proposé l’évacuation entre 20 et 30 kilomètres de l’accident. Toutefois, les Américains ont proposé un rayon de 80 kilomètres, et plusieurs pays les ont suivis. C’est la preuve que les discussions entre États sur ce type de décisions, avant qu’elles ne soient rendues publiques, sont très utiles. Certes, les pays protègent d’abord leurs propres intérêts, mais ils peuvent coordonner, à défaut de les harmoniser, ce type d’informations afin d’être capables de prévoir des mécanismes visant à les échanger en temps réel.

Autre exemple : tous les pays ont réagi à peu près de la même manière, en prenant des décisions s’appliquant aux cargaisons et aux voyageurs en provenance du Japon et en recommandant à leurs populations respectives d’éviter de se rendre au Japon si cela n’est pas nécessaire. Il aurait cependant été utile pour les gouvernements de savoir ce qu’avaient décidé les autres pays avant de prendre eux-mêmes leurs décisions.
Pour terminer, je tiens à souligner que les trois points que je viens d’évoquer sont traités par le CODIRPA. Ils sont très importants et doivent être débattus afin de prévoir des mécanismes et des approches crédibles.

M. Bruno Sido. Maintenant, M. Finn Ugletveit, de l’Autorité de radioprotection norvégienne, va s’exprimer au nom de l’Association des responsables des autorités européennes compétentes en radioprotection (HERCA). Je précise que M. Finn Ugletveit remplace M. Ole Harbitz.

M. Finn Ugletveit, de l’Association des responsables des autorités européennes compétentes en radioprotection (HERCA). Mon directeur général, M. Ole Harbitz, ne peut être présent aujourd’hui et m’a demandé de le remplacer. Je vous indique également que je travaille au sein de l’Autorité norvégienne de radioprotection.

L’Association des responsables des autorités européennes compétentes en radioprotection, HERCA, a été mise en place en 2007 à la suite d’une proposition de l’ASN. L’objectif premier de cette association est de s’assurer de l’efficacité du réseau et de l’existence d’échanges d’informations entre les autorités compétentes afin que puissent se dégager des consensus sur des questions importantes et d’un intérêt commun.

Ce réseau a créé cinq groupes de travail, dont un sur les situations d’urgence et les réactions à adopter en la matière.

Je voudrais insister, dans mon intervention, sur le mécanisme de prise de décision en Europe.

Nous reconnaissions que chaque pays est responsable de ses propres décisions. Néanmoins, nous pensons que si les pays européens prennent des décisions différentes, cela peut avoir une influence négative sur la crédibilité de celles-ci. C’est pourquoi un groupe de travail a été créé afin d’étudier cette question et d’aboutir à une harmonisation des réactions européennes en cas de situation radiologique d’urgence.

Ce groupe de travail a fait une proposition, mais sous la forme d’une approche théorique. C’est pourquoi nous mettons actuellement sur pied un
nouveau groupe qui travaille à l’élaboration d’une méthode pratique susceptible de permettre aux autorités de prendre des décisions cohérentes entre elles au sein de l’Europe.

Lorsque l’accident de Fukushima est survenu, le mandat de ce nouveau groupe de travail était en cours de rédaction. La situation était extrêmement complexe pour les États européens, puisqu’en réalité cinq ou six accidents parallèles se déroulaient.

Nous reconnaissons également que les États ont la responsabilité de leurs citoyens à l’étranger. De fait, tous les États d’Europe ont pris des décisions au sujet de leurs citoyens présents au Japon.

Nous reconnaissons aussi que les pays ont produit des évaluations et des conclusions différentes. Et c’est bien pour cette raison qu’ils n’ont, parfois, pas pris les mêmes décisions.

En outre, les autorités compétentes en matière de radioprotection ont joué des rôles différents dans le processus de prise de décision. Dans certains pays, ce processus est très intégré ; dans d’autres, ce genre d’organisme n’a qu’un rôle de conseiller. Nous devrons en tenir compte dans nos conclusions.

Par conséquent, nous avons légèrement amendé le mandat du groupe de travail pour le concentrer sur le processus de prise de décision en matière d’accident nucléaire. En effet, certaines des dispositions prises en Europe après l’accident se sont révélées absurdes.

Le groupe de travail sera bientôt totalement opérationnel et pourra remplir son mandat. Il jouera un rôle important en vue de l’élaboration d’un processus de prise de décision plus cohérent à l’échelle européenne en matière d’urgences radiologiques. Cela nécessitera bien sûr un travail de coordination et de collaboration avec les autres organisations internationales.

M. le président Claude Birraux. Je vais maintenant lire quelques questions émanant de la salle.
« Il a été dit à trois reprises que la catastrophe de Fukushima est due à un séisme suivi d’un tsunami. Mais pourquoi ne pas mentionner la décision humaine de construire un objet technique aussi dangereux dans un territoire dont les fragilités sont connues ? C’est pourtant le seul paramètre sur lequel nous avons prise. »

Personnellement, j’ignore sur quoi nous avons prise dans de telles catastrophes…

Maintenant, une question qui s’adresse plus particulièrement à M. Barbey, le représentant de l’ACRO : « À quel titre peut-il parler des cancers radio-induits de la thyroïde ? Que connaît-il de la physiologie de la thyroïde, de la physiopathologie et des différents types de cancers de la thyroïde ? N’admet-il pas que seuls les spécialistes sont habilités à s’exprimer et à engager personnellement leur responsabilité sur les propos tenus ? »

Je rappelle que M. Barbey a demandé à M. Repussard de clarifier sa déclaration sur les médecins généralistes qui se trompent sur l’iode.

M. Pierre Barbey. J’ai demandé à M. Repussard de préciser son propos, mais je ne me suis pas permis de parler des cancers de la thyroïde.

Je ne suis pas seulement un représentant associatif. En tant qu’universitaire, maître de conférence en biochimie et en biologie cellulaire, je donne des cours à l’université, en particulier sur la thyroïde ! Par conséquent, ce discours selon lequel seuls des spécialistes nommés « médecins » peuvent s’exprimer sur certains sujets m’horripile !

M. le président Claude Birraux. Lorsque je suis malade, je préfère aller voir mon médecin !

M. Pierre Barbey. La médecine est une chose. Les mécanismes biologiques et physiologiques en sont une autre.

M. le président Claude Birraux. Voici d’autres questions dont je donne lecture.
« L’approche probabiliste dans le domaine de la filière nucléaire a été rejetée et est préconisée une démarche déterministe. Au nom de quoi réserver cette démarche du tout ou rien au nucléaire, élargie à tous les autres domaines industriels ou sociaux ? Une telle approche ne nous condamnerait-elle pas à l’immobilisme, voire à s’interdire toute action ? Poussée à ses limites ultimes, une telle démarche philosophique conduirait à renoncer à toute innovation. »

« En cas d’accident nucléaire grave, il est prévu de mettre à l’abri les enfants dans les écoles et les crèches, les parents dans les bureaux. Mais si l’évacuation doit se faire ensuite, selon quelle priorité doit-elle être organisée : les enfants et les femmes d’abord, puis les adultes valides ? Peut-on construire démocratiquement ces priorités ? ». Cette question entrait plutôt dans le cadre de la table ronde précédente…

Une question porte sur le coût élevé des précautions

Enfin, une autre question pour savoir qui décide, et quand, de l’implantation de multiples entreprises de type Seveso ou nucléaires.

M. André-Claude Lacoste. Plusieurs questions ont porté sur les limites des approches déterministe et probabiliste.

En France, notre position doctrinale s’appuie depuis fort longtemps sur une démarche déterministe, éclairée par des compléments fondés sur des probabilités.

Selon moi, Fukushima va nous conduire à dépasser l’affirmation selon laquelle on ne prend pas en compte un scénario totalement improbable, et à adopter une approche tout à fait nouvelle et extrêmement complexe. Celle-ci consistera à dire : peu importe par quel moyen on aboutit à tel état, voyons comment l’installation résiste et ce qui se passe.

Une question a porté sur le choix de construire des centrales nucléaires au Japon dans des zones soumises aux séismes et aux tsunamis. N’y a-t-il pas des choses, dont les conséquences même improbables sont tellement insupportables, que l’on refuse a priori de les envisager ? C’est
une vraie question sur laquelle chacun a le droit de se déterminer, soit en scientifique, soit en citoyen.

M. Jacques Repussard. L’interpellation de M. Barbey est tout à fait légitime. Je ne suis ni médecin, ni spécialiste de la thyroïde.

Cela dit, il a été démontré de manière déterministe que des expositions assez fortes à de l’iode radioactif génèrent des cancers de la thyroïde. Cela s’est révélé exact en Biélorussie, en Russie et en Ukraine.

À la suite de l’accident de Tchernobyl, des dépôts radioactifs ont été détectés dans les Vosges, le Jura, une partie des Alpes et en Corse : ils atteignaient plusieurs dizaines de milliers de becquerels par mètre carré.

Pour autant, on ne peut déduire de la quantité de dépôt au sol la dose de radioactivité reçue par les habitants de lieux. Cette erreur de raisonnement, fréquente, a créé nombre de polémiques.

Aurait-il fallu, au nom du principe de précaution, prendre des mesures de limitation ? Je n’entre pas dans ce débat.

En France, il existe plusieurs types de cancers de la thyroïde, mais aucun d’entre eux n’a une signature radiologique automatique. Les cancers radio-induits ont la même forme que des cancers spontanés, pour des raisons que l’on ne comprend pas.

On peut calculer le nombre de cancers de deux façons.

D’abord, à partir d’une estimation des doses de radioactivité reçues par la population, en appliquant les règles de la CIPR et les données théoriques sur la radioprotection – la relation linéaire sans seuil, qui est la doctrine de la radioprotection. On arrive ainsi à la conclusion – et c’est tout le travail qui a été validé par le Conseil scientifique de l’IRSN – que les doses de radioactivité que reçoit la population en France sont davantage gouvernées par l’alimentation que par l’exposition directe aux dépôts. En France, où les gens se nourrissent généralement de produits achetés au supermarché, la dose se situe en moyenne à des niveaux très bas. Par
ailleurs, les personnes qui vivaient sur des territoires plus contaminés que d’autres n’avaient pas forcément reçu des doses significativement plus élevées.

En partant de ces doses, reconstituées de manière théorique, et en appliquant la relation linéaire sans seuil, on a calculé que le nombre de cancers de la thyroïde liés à Tchernobyl est compris entre 50 et 70 sur une période de vingt-cinq ans. On a même des prévisions jusqu’en 2025. Il se trouve que ce nombre de cancers est le même que celui de la variation naturelle. Cette conclusion a été validée scientifiquement. On ne peut donc pas, d’un point de vue épidémiologique, parler d’un effet attendu.

Ensuite, on peut calculer le nombre de cancers en constatant les cas. À cet égard, le rapport de l’Institut de veille sanitaire, dont les conclusions ont été établies à partir des registres relatifs aux cancers des enfants, conforte les prévisions calculées par l’IRSN. Ce rapport mentionne une tendance à l’accroissement de l’incidence du cancer de la thyroïde dans la population française – incidence antérieure à Tchernobyl et dont on ne comprend pas la cause –, mais il indique aussi que la densification des équipements permettant de détecter les cancers doit être prise en compte. Toutefois, je ne m’arrêterai pas sur ce dernier point qui ne relève pas de mon domaine de compétences. Or les médecins généralistes n’ont pas eu accès à toutes ces données.

Nous ne prétendons pas qu’il n’y a pas eu de cancers radio-induits. Nous disons seulement qu’une épidémie de cancers de la thyroïde liée aux dépôts de Tchernobyl n’est pas avérée.

Il nous a paru indispensable de voir Gravelines, le plus important centre de production nucléaire d’électricité (CNPE), non seulement en France, mais dans toute l’Europe occidentale. Six réacteurs y représentent une puissance totale de 5 400 mégawatts, soit 9 % de la production nucléaire nationale. La centrale nous intéresse également en raison de sa situation en bord de mer et de sa proximité avec plusieurs sites industriels classés Seveso, d’où d’éventuels effets domino des risques. Nous l’avons visitée hier en présence de l’Autorité de sûreté nucléaire (ASN), après avoir rencontré les membres de la Commission locale d’information (CLI) et des représentants syndicaux.

Enfin, parce qu’une population importante vit dans les agglomérations voisines de Calais et de Dunkerque, il nous a paru nécessaire d’entendre ce matin les représentants des principaux services publics locaux qui devraient gérer une éventuelle crise. Les intervenants évoqueront les
plans particuliers d’intervention (PPI) et la protection de la population, la gestion de la communication de crise nucléaire, l’intégration des dispositifs spécifiques dans le cadre ORSEC.

Je remercie M. Dominique Bur, Préfet du Nord et de la région Nord-Pas-de-Calais, de nous accueillir aujourd’hui à la préfecture ; les services ont organisé cet événement avec une grande disponibilité, malgré la visite récente du président de la République, concomitante de l’arrivée du nouveau préfet.

M. Dominique Bur, préfet du Nord, préfet de la région Nord-Pas-de-Calais. – Je souhaite la bienvenue aux parlementaires membres de l’Office, dont je sollicite l’indulgence, étant en poste ici depuis à peine huit jours !

Votre mission prend un relief particulier après les événements récents au Japon. La sécurité dans le Nord est un enjeu à la mesure de ce département frontalier, très peuplé – 2,5 millions d’habitants – et fortement urbanisé. Le profil de risque est également exacerbé par le milieu naturel et l’histoire économique de la région. Les inondations sont fréquentes dans les vallées de la Sambre et de la Lys, dans la plaine de la Flandre maritime... À faible relief, forte durée de submersion. La tornade à Hautmont en août 2008 (4 morts), les inondations à Cambrai en septembre 2008 (1 mort), ont marqué les esprits.

En 2002, le littoral a été touché par la pollution consécutive à la collision entre *Le Tricolore* et un autre navire, au large de Dunkerque. L’opération de relevage du bateau échoué a duré un an ! Le corridor maritime entre la Manche et la mer du Nord est intensément fréquenté, 800 navires par jour, dont 250 transportant une cargaison dangereuse, 25% du trafic mondial de marchandises et de passagers. Le front de mer est soumis aux risques de submersion marine par des vagues déferlantes. Enfin, autre risque naturel, 113 communes, dont Cambrai, Lille, Valenciennes, risquent d’être affectées par des mouvements de terrain, effondrements ou affaissements qui causent des dommages aux bâtiments.

Sur cette terre industrielle, les entreprises sont juxtaposées, certaines dangereuses ; 23 sont classées en Seveso seuil haut et autant en seuil bas. Le
tissu urbain est très dense autour. Gravelines est implantée à égale distance de Calais et de Dunkerque. Ce pôle nucléaire comprend 6 unités, qui représentent 9% de la production française. La sécurité du site est une préoccupation constante des pouvoirs publics. L’exploitant est en charge de la sûreté des installations, l’Etat assure la protection des populations, les élus sont les relais indispensables de toutes les mesures prises. Un élu de Gravelines est du reste présent dans la salle ce matin.

Des contrôles constants sont réalisés sur 20 000 points et exposés à la CLI. Le 18 janvier dernier, un exercice préalable à la refonte des plans particuliers d’intervention a eu lieu. Un certain nombre de communes doivent également se doter de plans communaux de sauvegarde. Dans le Nord, sur les 147 PPI obligatoires, 105 sont déjà réalisés. Les autres communes sont incitées à se doter d’un document plus succinct, mais indiquant les dispositions à prendre en cas de crise.

La sécurité est l’affaire de tous, rappelle la loi du 13 août 2004, et il faut communiquer intelligemment pour agir efficacement. La perfection est difficile à atteindre, mais votre rapport, mesdames et messieurs les parlementaires, sera extrêmement utile pour renforcer la transparence de notre action.

L’improvisation n’est pas possible. L’organisation doit être claire, lisible, logiquement articulée, et les plans d’urgence directement exploitables. La souplesse est nécessaire pour adapter l’action à la crise en cours. Des exercices réguliers sont indispensables ; nous en avons fait un en début d’année.

Fukushima, après AZF, nous enseigne qu’il faut aussi prendre en compte les risques à infime probabilité d’occurrence. Voilà non pas une prémonition du risque, mais bien notre hypothèse de travail, afin de nous hausser à un très haut niveau d’anticipation. Il est important d’identifier une seule autorité légitime et pertinente. Le préfet, directeur des opérations de secours, assume un rôle de coordonnateur entre les services de l’État, les collectivités locales, les associations de secouristes, les opérateurs et les entreprises privées.
Vous avez reconnu les trois thèmes essentiels qui forment le tronc commun des problématiques que vous allez aborder ce matin.

M. Christian Choquet, préfet de la zone de défense et de sécurité Nord. – Le décret du 4 mars 2010 a défini l’échelon zonal comme celui de la préparation et l’exécution des mesures de sécurité nationale : analyse des risques, planification interministérielle, exercices, veille opérationnelle, coordination de la sécurité civile, coordination des forces militaires et maritimes, action et relations transfrontalières, relations avec les opérateurs d’importance vitale, information de circulation routière, qui a une grande importance dans de telles circonstances… Le principe de subsidiarité s’applique et la zone ne se substitue au département que lorsque la crise à gérer dépasse le cadre départemental.

En cas de crise dans la Manche ou en mer du Nord, le préfet de zone est ainsi en relations avec le préfet maritime. Le préfet de zone assure les relations transfrontalières. Songez ainsi qu’une crise à Gravelines aurait aussi pour conséquence de concrétiser le rêve napoléonien, elle provoquerait un blocus continental, isolerait l’Angleterre. Dans les relations avec la Belgique, il ne faut pas oublier que la sécurité concerne deux autorités provinciales, la Flandre occidentale et le Hainaut – nous étions lundi dernier avec le gouverneur de Flandre occidentale. Enfin, la manœuvre de circulation, manœuvre macro, dépasse toujours le cadre départemental, dans cette région où circulent 15 000 poids lourds, dont une bonne part en transit international. L’évacuation de la population excède aussi le cadre du département.

M. le président Claude Birraux. – Vous l’avez compris, aujourd’hui est un jour exceptionnel ; c’est d’ailleurs l’anniversaire de notre rapporteur, Christian Bataille. *(Applaudissements)*

M. Christian Bataille, député, rapporteur de l’OPECST. – Nous n’avons pas pour ambition de mener une étude exhaustive sur tout ce qui touche à l’industrie nucléaire française. Vous serez les seuls à témoigner de la mobilisation dans un département en cas d’accident nucléaire. Nous nous penchons ainsi sur les cas les plus représentatifs, qu’il s’agisse de la

La protection de la population

M. Stéphane Dhée, directeur par intérim, Service interministériel régional des affaires civiles et économiques de défense et de la protection civile (SIRACEDPC). – L’alerte est le premier acte en cas d’accident. Les sirènes PPI sont mises en œuvre par le préfet, voire par le directeur de la centrale nucléaire en cas d’événement à cinétique rapide. Elles ont une portée de 2 kilomètres théoriquement – moins, en fait, car le son est étouffé dans les bâtiments. Le réseau national d’alerte – les sirènes du mercredi – sera refondu d’ici 2017.

Moyen le plus moderne, le SAPPRE, système d’alerte des populations en phase réflexe, consiste à appeler par automate tous les numéros fixes dans un rayon de 2 kilomètres. En l’occurrence, à Gravelines, le périmètre a été étendu à toute l’agglomération. On sait qui a répondu et reçu l’alerte – uniquement ceux dont les coordonnées figurent dans l’annuaire universel. Le 18 janvier, 6 000 abonnés au téléphone ont été appelés en cinq minutes ; si personne ne décrochait, l’appel a été renouvelé, six fois. Finalement, environ 71% des appels ont abouti. Le système a été imaginé pour les événements à cinétique rapide, mais il est à envisager également en cinétique lente, car les deux types de crise comportent une phase réflexe – il faut le prévoir dans le plan particulier d’intervention de la centrale.

Il y a aussi les conventions passées avec les médias locaux ou nationaux, ici les radios France Bleue Nord et Delta FM. Le 18 janvier dernier, l’expérience a été un succès. La collaboration en amont est essentielle ; le message doit être ferme, mais pas anxiogène ; le cahier des charges simplifié prévoit une alerte diffusée toutes les 15 minutes, insérée intelligemment dans les émissions. Des véhicules avec haut-parleurs
sillonnent aussi les zones concernées pour donner des consignes sur le comportement à tenir.

Après l’alerte, les mesures de protection de la population consistent essentiellement en l’évacuation et la mise à l’abri. La doctrine nationale est concrétisée dans les PPI, qui distinguent, dans la phase d’alerte, un scénario à cinétique rapide, avec mise à l’abri de la population dans un rayon de 2 kilomètres, et deux scénarios lents, dans lequel la population est évacuée dans les 5 kilomètres ; au-delà de 5 kilomètres, il s’agit non d’évacuation, mais de mise à l’abri. Le préfet peut adapter les mesures, décider par exemple l’évacuation d’une zone excédant 5 kilomètres.

Dans les périmètres où la mise à l’abri consiste en un confinement au domicile, il faut éteindre les systèmes de ventilation, boucher les ouvertures, écouter la radio. Le 18 janvier, la population s’est pliée à l’exercice au point que la presse a parlé de Gravelines comme d’une « ville morte ». Le travail de préparation mené avec le maire et la CLI a été relayé par le SAPPRE et les radios.

La mise à l’abri de la radioactivité ambiante ne règle pas définitivement la question de la protection de la population. Au fur et à mesure des rejets radiologiques, l’efficacité des mesures tend à diminuer. Du point de vue de la communication, il convient d’éviter que les recommandations soient perçues comme attentistes, éloignées des grandes manoeuvres d’évacuation spectaculaires. On considère qu’il n’est pas possible de recommander aux gens de se calfeutrer chez eux pendant plus de 48 heures, pour des raisons psychologiques.

Or l’évacuation, en milieu urbain, exige un positionnement préalable des forces de l’ordre, pour organiser la circulation sur les routes. À Gravelines, l’évacuation, à proximité de la mer, de la Belgique, excède le cadre départemental. Le préfet ne l’ordonne que si l’atmosphère n’est pas contaminée, d’où l’intérêt des mesures.

L’exercice du 13 mars 2007 ne comprenait pas une évacuation réelle, mais il a mis en évidence le fait que la population évacuait par elle-même, spontanément. La question est donc de savoir comment accompagner les flux. Le travail conjoint mené sous l’autorité du préfet a abouti à un
dispositif réaliste. L’exercice de 2011 incluait l’évacuation réelle, soit 1 750 foyers et 1 000 écoliers.

Sont présents, dans les centres de regroupement, du personnel municipal et des secouristes. Le maire de Gravelines a voulu qu’un élu soit présent dans chaque centre de regroupement et qu’une traçabilité des personnes soit organisée, afin de pouvoir informer les proches via la cellule du département. Ce travail très lourd gagnerait à être automatisé, grâce à Sinus, système d’identification des victimes numérique standardisé. Des autocars ont emmené les personnes hors de la zone.

Les gens, contrairement à ce qui avait été escompté, ont peu participé à l’exercice, peut-être parce que celui-ci avait lieu en journée et dans une zone résidentielle où se trouvaient peu de personnes. Quelques centaines au maximum ont été évacuées. Mais il a été ainsi possible d’étudier la typologie des personnes qui dépendent des secours, personnes âgées, ou ne possédant pas de voiture. Un dispositif plus léger, s’adressant aux personnes dépendantes, a donc été jugé préférable et confié aux maires.

Le 18 janvier, 55 autocars avaient été affrétés. La direction départementale des territoires et de la mer (DDTM) tient à jour une base de données des entreprises de transport et des entreprises de travaux publics avec des coordonnées pour les joindre jour et nuit. Leur participation est de plus en plus importante dans la gestion des crises : ainsi, pendant l’épisode neigeux, des autocars ont été mobilisés pour aller secourir les automobilistes bloqués par la neige.

Il y a toujours des refus d’évacuer. En l’occurrence, peut-être était-ce dû au fait qu’il s’agissait d’un exercice ? Mais il faut prévoir cet aspect. Pour les établissements scolaires, un plan particulier de mise en sûreté est prévu et l’on demande aux parents de ne pas venir chercher leurs enfants à l’école. On peut douter du respect de cette consigne… Sous la conduite du maître, les élèves sont conduits vers d’autres établissements scolaires. Les classes forment le public idéal pour les exercices d’évacuation, puisqu’il s’agit d’un public qu’on peut dire captif.

Les plans d’évacuation des maisons de retraite et maisons médicalisées sont établis en concertation avec l’Agence régionale de santé
(ARS). En janvier dernier, deux personnes étaient intransportables. Il faut prévoir une présence médicale pour celles-là.

Quant aux activités industrielles non interruptibles, Gravelines compte essentiellement des entreprises sidérurgiques comme Rio Tinto Alcan. Il y a aussi Total. Ces deux entreprises sont du reste représentées au sein de la CLI, qui a mené des travaux innovants et conduit des actions d’information en mai 2008, septembre 2009 et décembre 2010 – nous avions alors distribué à une soixantaine de chefs d’entreprise les fiches prévues dans le PPI et établies par la Dreal. Ces documents comprennent des recommandations sur la prise en compte du risque nucléaire dans les plans d’organisation interne, les dispositions à prendre pour être certain de recevoir une alerte, la mise à l’abri du personnel, son évacuation, la distribution de comprimés d’iode. Un fonctionnement minimum des entreprises industrielles est prévu dans le plan particulier. Le sous-préfet de Dunkerque gérera cela de manière fine.

Commandant Laurent Maillard, référent risques radiologiques, SDIS du Nord. – Notre mission, dans de telles crises, est de présenter un état radiologique des territoires. Cette aide à la décision dans l’action menée en direction de la population s’efforce de conforter ou corriger les évaluations fournies par l’Institut de radioprotection et de sûreté nucléaire (IRSN), dans la phase de menace, la phase d’urgence et la phase post-accidentelle. La direction des opérations de secours s’appuie d’abord sur les données fournies par des balises fixes implantées en périphérie du centre comme à un, cinq et dix kilomètres autour de Gravelines. Des cellules mobiles du SDIS effectuent aussi des relevés, tout comme des détachements de la sécurité civile, les équipes mobiles de l’exploitant, de l’IRSN, du CEA, du groupe Intra-intervention robotique sur accident… Les mesures et les prélèvements sont tous effectués en des points prédéterminés, inscrits dans le PPI.

L’IRSN dispose d’un outil informatique (Criter) capable d’intégrer tous les résultats, quels que soient les moyens de mesure, quelle que soit l’origine des mesures. On peut ensuite, par photographie aérienne, suivre l’évolution : les balises qui apparaissent en jaune sur les clichés signalent une radioactivité anormale. On connaît alors le périmètre dans lequel se répandent les émissions. On peut de la même manière connaître l’heure de début – et de fin – des émissions radioactives. Le suivi des résultats
intervient quasiment en temps réel, les données étant transmises aux centres opérationnels départementaux et nationaux.

Docteur Patrick Hertgen, médecin-chef adjoint du SDIS du Nord. – Dans la phase pré-hospitalière, les opérations de sauvetage ont lieu en milieu dangereux, contaminé ; les sauveteurs sont équipés en conséquence. Dès que possible, des soins médicaux sont administrés aux victimes, sur le lieu même de la contamination. Il n’y a pas seulement les radiations, mais aussi des blessures. L’identification et le suivi des victimes prises en charge est utile, pour assurer une « traçabilité ». Dans les points de regroupement des personnes contaminées, on procède à un tri médical. Il y a en effet les urgences absolues, nécessitant une intervention chirurgicale – les personnes sont alors évacuées avant décontamination, enveloppées dans deux feuilles de vinyle pour éviter la dispersion des particules radioactives, et emmenées vers le CHU de Lille ou un autre hôpital. Il y a ensuite les urgences relatives : les personnes passent par des chaînes de décontamination, puis sont transportées vers un établissement de soins. Les moyens d’intervention sont fournis par le Samu et les sapeurs-pompiers.

M. Pascal Forcioli, directeur général adjoint de l’Agence régionale de santé du Nord-Pas-de-Calais. – Les deux Samu du Nord et du Pas-de-Calais, les 10 Smur du Nord et les 7 du Pas-de-Calais interviennent non pas sur le site de l’accident, mais aux points de regroupement. Quatre unités mobiles, deux du SDIS et deux du Samu, montent en 20 minutes des tentes susceptibles de traiter une vingtaine de personnes valides par heure, ou six invalides. Parmi les structures fixes, la plus importante se situe au CHU de Lille, mais il en existe d’autres, à Dunkerque, à Roubaix ; une autre est en devenir à Calais.

Un mot des comprimés d’iode : ils visent à saturer la glande thyroïde et à empêcher la fixation de l’iode radioactive. L’administration se fait, sur
prescription médicale ou préfectorale, aux personnes de moins de vingt ans et aux femmes enceintes. La prise, qui doit avoir lieu entre une heure avant l’exposition et 24 heures après, ne suffit pas à écarter le danger, elle doit s’accompagner d’une mise à l’abri ou d’une évacuation. Dans le système antérieur, les communes détenaient des stocks de comprimés, aujourd’hui périmés. Désormais, un stock par zone sera conservé dans un lieu central classé confidentiel défense, permettant une distribution à toute la population dans un délai de 12 heures. Le préfet, dans chaque département, avec l’appui de l’ARS, construit le schéma de distribution des comprimés, à partir d’environ trente points par département. Il est indispensable de faire savoir à la population que l’ingestion d’iode se fait sur ordre du préfet, et non à n’importe quel moment – il ne s’agit pas non plus d’absorber n’importe quelle solution iodée dont l’effet n’est pas garanti…

M. le président Claude Birraux. – Je salue la présence de notre collègue M. Christian Vanneste, député du Nord. Les élus se préoccupent de cette question !

M. Dhée a parlé des moyens d’évacuation : combien d’autobus civils, militaires sont-ils mobilisables ? Si un élu doit se trouver dans chaque cellule de crise, qu’en est-il des membres des CLI et quel rôle ont ceux-ci dans la phase accidentelle ou post-accidentelle ? Combien de véhicules de secours et d’assistance aux victimes (VSAV) sont-ils disponibles ? Combien y a-t-il de places dans les hôpitaux ? De quels équipements de décontamination ces derniers disposent-ils ?

M. Patrick Delebecque, responsable du Service sécurité risques et crises. – Pour l’exercice de janvier dernier, 55 autobus ont été mobilisés. On pourrait en réquisitionner 150 dans l’ensemble du département, sans compter une centaine d’autobus urbains mobilisables en une heure. Nous n’avons pas exploré une mobilisation au-delà, l’exercice ayant été circonscrit à un périmètre de 2,5 kilomètres.

M. Stéphane Dhée. – Nous travaillons dans la plus complète transparence avec la CLI. Celle-ci, durant la phase accidentelle et post-accidentelle, a constamment accès au centre opérationnel, qu’il s’agisse du centre placé sous l’autorité du sous-préfet de Dunkerque ou du centre départemental. Pour moi, son rôle est essentiellement de transmettre aux
populations des informations organisées par des gens aguerris, en complément de celle des autorités publiques.

M. le président Claude Birraux. – Certes, mais encore faut-il que la CLI figure expressément dans le dispositif de crise ! Sinon, en cas d’incident majeur, on répondra aux membres de la commission qui se sont déplacés au centre opérationnel : « Nous avons beaucoup à faire, merci de repasser demain. »

M. Stéphane Dhée. – Le rôle de la CLI est précisé dans le plan particulier d’intervention (PPI).

M. Daniel Paul, député. – En cas de crise, les Belges nous prêteraient main-forte, avez-vous indiqué. La réciproque est-elle prévue ? Les moyens mis à disposition se limitent-ils à du matériel ou impliquent-ils l’envoi de personnels spécialisés ?

Mme Marie-Christine Blandin, sénatrice. – Votre description du scénario de crise aigue était très exhaustive. Qu’en est-il des scénarios de moyen terme ? Si l’on évacue la population, quid de son logement et de son approvisionnement dans l’arrière-pays ? De même, après les premières mesures de radioactivité, qui sera responsable de l’évaluation des fourrages ou encore des fruits et des légumes ? Passerez-vous le relais à la direction départementale de la protection des populations et aura-t-elle les moyens humains de remplir cette mission dans la durée ?

Une proposition de loi, récemment adoptée par le Sénat, impose la prise en compte des effets cumulés des risques, entre autres de submersion marine. Dieu sait si Dunkerque est concernée ! Une marée noire pourrait entraîner l’obstruction des arrivées d’eau de la centrale de Gravelines… Un petit boudin pour protéger la centrale paraît dérisoire. Ne faut-il pas renforcer notre équipement en bateaux Abeille ?

M. Paul Durieu, député. – Grâce aux automates d’appel, vous avez réussi à transmettre l’alerte à 71% de la population. Vous pourriez, comme on le fait dans la région PACA pour les inondations, inciter les personnes inscrites sur liste rouge ou joignables exclusivement par téléphone mobile à
déposer leurs numéros pour ce seul usage à l’autorité compétente. C’est très efficace.

M. Christian Bataille. – Le 3 mai 2011, vers 20 h 30, une sirène d’alerte s’est déclenchée de manière intempestive à la centrale de Golfech. Les riverains, au lieu de rester confinés, sont sortis voir ce qui se passait. Malgré les exercices réussis, toute la question est donc celle-ci : en cas d’événement inattendu, la population aurait-elle la réaction appropriée ?

M. le président Claude Birraux. – J’ajoute : les consignes ne pourraient-elles pas figurer sur l’almanach du facteur ou des pompiers afin que l’information pénètre dans chaque foyer ? Ce peut aussi être une fiche distribuée dans les écoles.

M. Christian Chocquet. – La situation est différente en Belgique : leurs sites nucléaires sont éloignés de la frontière française ; la Flandre est plus proche des Pays-Bas. Nos contacts en matière de sécurité civile et de protection des populations consistent en une coopération directe entre les services. Pour les développer, la zone de défense et de sécurité intègre la dimension transfrontalière depuis plus d’un an.

Avec la province du Hainaut, il existe un programme d’aide à la préparation des plans opérationnels des risques transfrontaliers (APPORI) financé par les crédits européens Interreg. Celui-ci dépasse le problème nucléaire pour concerner l’ensemble des installations classées. Son objectif est de dresser un inventaire des risques, de mettre en phase les plans et de procéder à des exercices communs. Bref, le but est que chacun joue sa partition en cas de risque pour l’environnement de part et d’autre de la frontière. Nous nous sommes réunis lundi dernier avec le gouverneur, M. Paul Breyne, pour lancer une coopération du même type avec la Flandre-occidentale, via d’autres financements pour des questions de délais.

M. Pascal Forcioli. – En fonction de l’accident, le préfet peut déclencher un plan blanc local ou élargi au département, aux deux départements ou encore à la zone de défense et de sécurité. Celui-ci permet de gérer les flux de patients et les admissions dans les établissements qui concourent au service public hospitalier. Le principe est la déprogrammation de l’activité afin d’accueillir les hospitalisations en urgence. Celles-ci ne devraient pas être nombreuses, l’essentiel de la prise en charge relevant du travail ambulatoire pré-hospitalier sur les points de rassemblement des victimes. La décontamination des victimes est assurée par les quatre unités mobiles projetables – Lille, Arras et les deux services départementaux d’incendie et de secours (SDIS) – et celles des personnes à hospitaliser par les trois unités fixes, auxquelles s’ajoutera bientôt celle de Calais. L’urgence absolue, tel un infarctus nécessitant une intervention cardiologique immédiate, donne lieu à un transfert du patient protégé par un double film vinyle et son admission directe au bloc placé sous confinement.

M. Bruno Sido, sénateur, premier vice-président. – En cas d’évacuation, les enfants, avez-vous dit, sont emmenés dans d’autres établissements scolaires afin d’éviter un changement brutal de cadre. Quelle serait la destination des autres personnes évacuées ? Si l’évacuation des 15 000 Gravelinois s’impose, comment les nourrirà-t-on ? Où seront-ils logés ? Une évacuation est toujours délicate ; on se souvient de la pagaille de 1940…

M. Ivan Renar, sénateur. – En cas de crise, comment garantir la fourniture d’électricité indispensable à la mise en œuvre du dispositif de protection des populations ? Les hôpitaux, par exemple, ont besoin de cette énergie pour fonctionner. Bref, quid de l’opérateur public ?

la prévention des pollutions industrielles (S3PI), de la CLI et des services de la préfecture, notamment le service interministériel régional des affaires civiles et économiques de défense et de la protection civile (SIRACEDPC), représenté par M. Stéphane Dhée. Chaque année, sont organisées des distributions de brochures dans les boîtes aux lettres, des actions en lien avec l’inspection d’académie et des expositions – la sous-préfecture en accueille une en ce moment. Pour autant, la culture du risque est inégalement répartie au sein de la population. Plus de 80% de la population n’a pas vécu les crises terribles de 1917, 1940 et 1945 ; la mémoire du risque s’efface. Les collectivités territoriales en ont conscience : le territoire dunkerquois est sans doute le mieux couvert par les plans communaux de sauvegarde (PCS). Pour que l’information percole, il faut relever le défi permanent de la sensibilisation des populations aux risques : hier, le public était nombreux dans le hall de la sous-préfecture, mais les panneaux de l’exposition suscitaient peu de curiosité. L’information passe difficilement.

J’en viens aux effets cumulés des risques. La région Nord-Pas de Calais a engagé une réflexion sur le risque de tsunami depuis trois ans ; depuis la tempête Xynthia et la catastrophe de Fukushima, nous travaillons sur le risque de submersion marine et la cartographie des séismes. La confiance dans EDF et les équipes du centre nucléaire de production d’électricité (CNPE) est particulièrement forte. En revanche, nous devrions mieux anticiper l’accumulation des difficultés en cas de crise, soit l’immense désorganisation de la communication, des infrastructures, de la logistique, de l’informatique et de l’approvisionnement des populations que le Japon a connues. Le problème est d’autant plus aigu que 13 sites classés Seveso, bientôt 14, et une centrale nucléaire sont concentrés sur le polder. Pour construire une véritable culture du risque, il faudrait identifier ces effets cumulés et consentir les investissements nécessaires pour les prévenir.

M. le président Claude Birraux. – Faut-il voir dans ces propos une question ou une autocritique ?

M. Jérôme Gutton. – J’incarne l’État dans mon arrondissement. À dire vrai, aucun système national n’anticipe les effets cumulés, car cela coûte trop cher. Ce n’est pas seulement une question d’investissements. Rassurez-vous, le territoire dunkerquois est bien équipé en pompes et en groupes électrogénés et nous travaillons à la surélévation des digues. En revanche,
pour prévenir les effets cumulés, nous devons éprouver nos réflexes dans la gestion de crise.

M. le président Claude Birraux. – Un sujet important, que nous avons abordé avec les représentants de la CLI hier !

Mme Anita Villers (Association Environnement développement alternatif). – Mon expérience de présidente de l’association « Environnement développement alternatif » et de membre de l’association nationale des comités et commissions locales d’information (ANCCLI), me laisse à penser que, pour être efficaces, les dispositifs de protection doivent se concevoir avec les populations. Le travail en amont est important pour une imprégnation, une connaissance partagée des risques.

Mme Marielle Rengot, conseillère municipale déléguée de la ville de Lille. – Je suis conseillère déléguée municipale à la ville de Lille à la réduction des nuisances et des risques urbains. Pour la distribution des comprimés d’iode, pourquoi un périmètre restreint de 10 km quand le rayon des 30 km s’est vite imposé à Fukushima ? Comme Mme Blandin, j’aimerais en savoir davantage sur le scénario prévu pour l’arrière-pays. Enfin, vous avez indiqué que certains stocks étaient périmés. Comment acheminer les comprimés d’iode en plusieurs points du département dans les douze heures ? Avec l’évacuation, les routes risquent d’être bien encombrées.

M. Ludovic Finez (Liberté Hebdo). – Le réseau « Sortir du nucléaire » a informé la rédaction de Liberté Hebdo, qu’il n’avait pas été invité à participer à cette réunion. Comment cette matinée a-t-elle organisée ?

M. le président Claude Birraux. – La préfecture a organisé cette matinée, tenue à l’initiative de l’OPECST. « Sortir du nucléaire » avait refusé de discuter du plan national de gestion des déchets radioactifs ; nous lui avions adressé un courrier en lui demandant de nous envoyer ses commentaires par écrit, nous n’avions jamais reçu de réponse. En 2005 déjà, lors de l’évaluation de la loi sur les déchets radioactifs, nous avons reçu les associations. « Sortir du nucléaire » nous a expliqué qu’elles refusaient cette parodie de débat démocratique.
M. Jean-Michel Quilichini, directeur du CNPE de Gravelines. – La fourniture d’énergie a posé un énorme problème à Fukushima, ce qui a compliqué la gestion de crise et la reprise des activités ; les difficultés n’étaient pas tant liées à l’accident nucléaire qu’à l’importance du séisme, conjugué à un tsunami de grande ampleur.

Docteur Carole Ben Brahim-Berthelot (ARS). – Je suis responsable du pôle veille et sécurité sanitaire à l’Agence régionale de santé. La population habitant dans un rayon de 10 km autour de la centrale de Gravelines possède des comprimés d’iode – leur quantité varie selon le poids – qui ont été récemment renouvelés. Les stocks pré-positionnés dans les chefs-lieux de canton et les centres hospitaliers des deux départements sont, eux, périmés. Néanmoins, il y a des stocks au niveau de la zone de défense et de sécurité. La distribution dans des délais rapides à la population est prévue, y compris dans le rayon des 30 km. Tout dépend des mesures de la radioactivité et de l’évolution du nuage. L’important est le respect de la consigne préfectorale ; il n’est pas question d’ingérer de l’iode dès que l’on entend à la radio qu’un accident est survenu.

M. Stéphane Dhée. – L’évacuation est prévue pour les personnes habitant dans le rayon des 10 km autour de la centrale, voire davantage si besoin est. Elles seront accueillies dans d’autres communes, en fonction des moyens disponibles dans le plan départemental d’hébergement. La loi de modernisation de la sécurité civile confie au maire la charge de subvenir aux
besoins des évacués en lien avec les indispensables associations de secourisme. Les déplacements importants de population relèvent d’un plan national, non du PPI de la centrale de Gravelines.

La communication de crise nucléaire

Deux raisons expliquent la difficulté de la communication de crise nucléaire. D’abord l’unité de mesure de la radioactivité, le millisievert. Comment expliquer l’écart de 1 à 20 entre la dose annuelle admise pour les travailleurs du nucléaire et celle pour les populations ? D’autant qu’il n’existe pas de seuils en dessous duquel le risque cancérigène avéré est nul. D’où la difficulté à délivrer un message intelligible. Même logique concernant les mesures en cas de crise : pourquoi privilégier la mise à l’abri des personnes âgées dans les maisons médicalisées quand on évacue d’autres catégories ? Tout simplement, parce que l’évacuation présenterait un plus grand risque, mais encore faut-il l’expliquer. Autre difficulté qu’a révélée l’exercice, le phénomène d’accoutumance à l’information préventive au sein de la population habitant à proximité de la centrale complique la mobilisation des populations en cas de crise.
En cas de crise, préfet, ASN et EDF partagent la responsabilité de la communication : il revient au préfet d’informer les populations des mesures de protection, à l’ASN de faire connaître aux habitants, à l’industriel et au Gouvernement son analyse de la situation et, enfin, à EDF de communiquer sur l’état de l’installation accidentée et son évolution. S’il n’y a pas d’articulation entre les trois acteurs, une crise de communication s’ajoute à la crise nucléaire. D’où la nécessité de la coordination.

Mme Astrid Tombeux, chef du bureau de la communication interministérielle. – Le préfet organise la communication de l’État sur les dispositions relatives à la protection de la population. Celle-ci passe par les médias et la cellule d’information du public. En cas de crise, le préfet désigne les personnes habilitées à communiquer avec les médias : l’autorité préfectorale, le directeur de cabinet, les services de l’État, les sous-préfets ainsi que les officiers des services opérationnels ou encore des médecins. L’important est de prendre l’initiative de la communication dans un délai court – on parle souvent d’une heure. Le préfet détermine la périodicité et les modalités de la communication ; la pression est constante avec l’existence de chaînes d’information en continu et des nouveaux médias. Tout au long de l’événement, il faut communiquer sur les faits, les mesures de protection, les consignes aux populations, le plan d’action, les moyens mis en œuvre, l’origine supposée du sinistre ; il est aussi nécessaire de dresser, à l’issue de la crise, un bilan provisoire de la situation. L’information doit être transparente, continue et factuelle afin de couper court aux rumeurs et à la désinformation.

Le bureau de la communication interministérielle, dont j’ai la charge, est présent au sein du centre opérationnel départemental. Il coordonne la communication avec l’appui des autres services de l’État, du CNPE et de l’ASN en lien avec le niveau national. Il répond aux appels des journalistes, rédige et diffuse des communiqués, organise des points presse et assure une veille permanente afin d’anticiper les demandes des médias. Une bonne communication suppose en amont un travail d’identification des journalistes et des chargés de communication et la mise au point de boîtes à outils : modèles de communiqués et foires aux questions.

Le préfet peut également décider la mise en place d’une cellule d’information du public et d’un numéro unique communiqué par voie de presse. Cette cellule a vocation à répondre aux familles des victimes, aux
élus et aux entreprises ainsi qu’au grand public et à faire monter l’information de terrain. Le numéro unique a pour objectif de traiter les appels et de les orienter : ainsi, les questions opérationnelles, émanant d’élus, sont adressées au centre opérationnel départemental pour réduire la pression sur la cellule d’information.

M. Jean-Michel Quilichini. – Pour EDF, la communication est un devoir, un besoin et une nécessité. Un devoir vis-à-vis de l’ASN, des pouvoirs publics, des élus et des populations. Le nucléaire, un secteur de haute technologie, n’est pas une industrie comme les autres. Le risque est faible – une occurrence sur un million –, mais les conséquences sont importantes et de longue durée. Chaque accident dans le monde, même si la technologie incriminée et le cadre réglementaire différent, provoque de nouvelles craintes.

Un besoin, ensuite, car il faut informer sur la conception, les améliorations de conception, la gestion des situations accidentelles. Nous devons dédramatiser sans banaliser.

Enfin, une nécessité. Avec 1 700 salariés et plus de 2 000 prestataires à certaines périodes de l’année qui disposent de téléphones intelligents, de Twitter et de Facebook, comment imaginer que l’information reste maintenue derrière des barbelés ? Ce temps est révolu.

Nous devons structurer l’information de sorte que des informations fiables soient délivrées à intervalles réguliers. Les salariés d’EDF, dont 50% vivent dans un rayon de 20 km autour de la centrale, sont les premiers concernés par un éventuel accident. Nous devons donc assurer une communication à froid sur nos modes de fonctionnement, nos préparations à la gestion de crise, les incidents mineurs, tel un départ de feu dans une corbeille, et les incidents classés sur l’échelle INES (*International Nuclear Event Scale*). Ces derniers sont rares, on en a dénombré trois à Gravelines l’an dernier.

L’organisation de la communication est calquée sur celle des pouvoirs publics : le plan d’urgence interne d’EDF est le parallèle du PPI. En temps de crise, la coordination est indispensable pour éviter contradictions et imprécisions ; Fukushima l’a encore démontré. Pour alimenter l’information
en éléments factuels, nous déployons camions, balises fixes et postes de commandement de crise. Il convient de partager et analyser cette information avec l’ASN et la préfecture. Enfin, parce que l’essentiel, en cas de crise, ce sont les actions « réflexes », nous procédons à une dizaine d’exercices par an. Nous faisons tout pour être prêts en cas de besoin.

M. le président Claude Birraux. – Je me réjouis qu’EDF ait appliqué les recommandations de l’Office à la suite de l’incident de Golfech. La centrale n’avait pas osé communiquer. Résultat, d’une puce était sorti un éléphant médiatique…

Mme Marie-Christine Blandin, sénatrice. – Une suggestion : pourriez-vous envoyer aux élus des informations précises par SMS ? Nous sommes très sollicités en temps de crise ; avoir pour seule réponse « Regardez la télé » me semble un peu court…

M. Jean-Claude Delalonde, président de l’Association nationale des comités et commissions locales d’information (ANCCLI), ancien président de la CLI de Gravelines. – Permettez-moi de revenir sur le rôle des CLI en raison de mes fonctions à l’ANCCLI et à la CLI de Gravelines. Aux termes de la loi de 2006 et du décret d’application de 2008, elles doivent communiquer sur le fonctionnement des centrales nucléaires et la situation du site après leur fermeture. Notre mission dépasse donc largement le cadre d’une génération. Pour communiquer, encore faut-il obtenir l’information. En cas de crise, celle-ci sera d’abord délivrée par le Président de la République, le Premier ministre, le président d’EDF. Ensuite, viennent les informations ciblées. Si l’on multiplie les relais d’information, ce sera la panique. Lors du 18 janvier dernier, le communiqué de l’Etat et d’EDF n’étaient pas identiques… Quel est le rayon pertinent lorsque 80% des Français habitent à moins de 100 km d’une centrale nucléaire ? L’information ne se limite donc pas aux populations à évacuer. Former la nation au risque nucléaire, qui relève de l’éducation à la santé, via l’école et la télévision est indispensable pour éviter la panique en cas de pépin. Rappelons que le Système d’alerte des populations en phase réflexe (SAPPRE) fonctionne pour les seuls téléphones fixes dans le rayon de 2 km. Avec le développement des téléphones portables, peut-être faut-il réfléchir à des moyens plus rapides pour transmettre l’information.
Pour conclure, nous remercions les autorités d’avoir toujours associé les « enquiquineurs » de la CLI aux exercices de Gravelines. Si nous n’avions rien demandé, nous aurait-on invités ? Je crains que non. Notre rôle n’est pas prévu dans les textes si bien que tout dépend de l’attitude des préfets et sous-préfets. Une prise de position identique serait souhaitable, sinon nous ne parviendrons jamais à gérer la crise qui, bien sûr, ne se produira jamais…

M. le président Claude Birraux. – En effet, il faut ménager une place dans le dispositif au président de la CLI, c’est-à-dire au successeur de M. Delalonde, celui-ci ayant renoncé à son mandat de conseiller général.

M. Daniel Paul. – Cela a été dit hier et ce matin, il y a une accoutumance au risque. Dans ma circonscription, la zone industrielle de l’estuaire du Havre compte plusieurs entreprises à risque. Or, progressivement, l’attention se délite. La connaissance n’est pas présente chez nos concitoyens, contrairement à ce qu’on pouvait penser. La communication passe aussi par l’éducation. Nous vivons dans un monde où le danger existe, et il faut le connaître pour le prévenir. Ne devrait-on pas y sensibiliser dès le plus jeune âge ? L’Éducation nationale a sans doute un rôle à jouer, mais, d’après notre programme, elle n’est pas représentée ce matin. On donne bien au collège des cours de sécurité routière, et jadis de morale, pourquoi pas d’éducation au risque ? J’ai coutume de dire que la meilleure communication est celle que l’on va chercher et, pour cela, il faut en avoir développé l’appétit. Je lance un appel à la communication et à l’éducation.

M. le président Claude Birraux. – Vous avez raison, cher collègue : lors du tsunami de Banda Aceh, une petite fille a sauvé sa famille et une partie de son village parce qu’elle avait appris à l’école qu’en pareille circonstance, il fallait partir. Mais Mme Yvette Thellier, du rectorat de Lille, est ici pour parler au nom de l’éducation nationale.

Mme Yvette Thellier, chargée de mission « risques majeurs » au rectorat de Lille. – Particulièrement importante, l’éducation au risque fait partie de tous les programmes d’enseignement, à l’école primaire comme au collège et au lycée. Mais on n’explique pas suffisamment quelles mesures prendre pour se protéger. Il est regrettable et inquiétant que les coordonnateurs « risques majeurs » n’aient plus le temps de former le
personnel. Leurs missions sont confiées au niveau national à l’inspecteur d’hygiène et de sécurité : le plan particulier de mise en sûreté est considéré comme relevant du droit du travail, alors qu’il relève de la sécurité civile – c’est une aberration. Il faut reconnaître le coordonnateur « risques majeurs ». Je suis une privilégiée, car à l’académie de Lille on m’accorde une décharge des deux tiers de mon temps de travail pour accomplir cette mission. Nous essayons, par des expositions, comme les panneaux à l’entrée de cette salle, ou par d’autres moyens ; nous créons des outils pour faire en sorte que les enseignants sachent quoi faire en cas de danger et l’expliquent aux élèves, en espérant que ces derniers diffuseront l’information auprès de leur famille.

M. Jean-Christophe Bouvier. – Pour répondre à Mme Blandin, les élus et parlementaires ont naturellement accès à l’information. Mais, en temps de crise, il faut hiérarchiser les priorités, et nous n’avons guère le temps d’envoyer des SMS aux vingt-trois députés et onze sénateurs du département.

M. le président Claude Birraux. – Par les programmes informatiques, il n’est pas si difficile de nous tenir au courant. Nos groupes parlementaires le font.

M. Jean-Christophe Bouvier. – Nous diffusons l’information auprès de toutes les personnes dont nous avons l’adresse électronique. Il suffit d’ailleurs de téléphoner à la préfecture, le directeur de cabinet est là pour informer les élus.

Quant à la CLI, elle contribue de manière essentielle à l’information préventive, et elle a été complètement associée au récent exercice à Gravelines. Mais la communication institutionnelle en situation de crise appartient à l’Etat et à l’exploitant ; l’inclure dans notre schéma risquerait de mettre en doute son indépendance. Elle peut cependant obtenir toutes informations auprès du centre opérationnel départemental, et elle est libre de les exploiter comme elle l’entend.

M. le président Claude Birraux. – Comme l’indique son nom, le rôle de la CLI est d’informer : je ne suis pas sûr que nous nous entendions sur le sens de ce terme...
M. Jean-Claude Delalonde. – Les CLI ne revendiquent absolument aucun rôle opérationnel en phase de crise : elles demandent seulement à être informées, tout au long de la durée de vie des centrales.

M. Jean-Michel Quilichini. – Cela ne fait pas partie des modes de gestion retenus parce que la gestion particulière pour alimenter un compte facebook ou twitter serait trop complexe. Lors d’une crise, il faut se fixer des priorités. L’essentiel est de structurer l’information car salariés et riverains en diffuseront. Nous collaborons bien sûr avec l’Etat, avec l’ASN, avec la CLI, même si celle-ci n’a pas de rôle opérationnel : c’est un partenaire essentiel, « à froid » comme en temps de crise.

Orsec, chaîne de décision et expertise

M. Salvador Perez, secrétaire général de la préfecture du Nord. – La gestion de crise recherche une mobilisation optimale des ressources et des compétences afin de protéger rapidement et efficacement la population. L’organisation du commandement fait l’objet d’un chapitre du plan Orsec, arrêté par le préfet et mis en œuvre chaque année à plusieurs reprises. Tous les centres de commandement sont liés par la main-courante « Synergie » du ministère de l’intérieur, par le biais du portail informatique Orsec de la sécurité civile.

Se superposent le poste de commandement communal (PCC), le poste de commandement opérationnel (PCO) et le centre opérationnel départemental (COD). Le PCC, d’abord. Le maire, qui a en charge la sécurité publique, est l’interlocuteur immédiat des citoyens, fortement mobilisés en cas d’incident nucléaire. Grâce au développement des plans communaux de sauvegarde (PCS), pour lesquels le service de protection civile mène dans le Nord une action extrêmement volontariste, les
communes se sont dotées d’un outil de gestion de crise, d’une organisation structurée et d’un poste de commandement ; la commune de Gravelines est exemplaire à cet égard. Le maire connaît les quartiers les plus fragiles, il sait quelles sont les populations les plus exposées – les personnes âgées par exemple, et de ce point de vue les registres ont été fort utiles pour le plan canicule –, et il dispose de moyens d’intervention. L’exercice du 18 janvier a montré qu’il était le mieux placé : c’est auprès de lui que sont placées les associations de secouristes qui accompagnent l’évacuation, c’est à lui qu’a été confiée la gestion des autocars : l’exercice a montré la pertinence de l’échelon communal.

Le PCO, quant à lui, est placé sous l’autorité du sous-préfet ; lui aussi se modernise. Comme le PCC, c’est un poste de commandement proche du lieu de la crise, ce qui ne va pas sans poser problème en cas d’incident nucléaire : si des rejets radioactifs sont constatés, il peut se révéler nécessaire de le transférer ailleurs. S’agissant du Nord, la doctrine nationale et le plan particulier d’intervention de la centrale de Gravelines prévoient des sites de repli dans le département, mais aussi dans le Pas-de-Calais. Je tiens à souligner que la sous-préfecture de Dunkerque est l’une des rares, sinon la seule à s’être dotée d’une salle opérationnelle dédiée à la gestion de crise. Le PCO a plusieurs fonctions : coordination de l’action des communes, coopération avec la CLI, qui y a accès, animation d’un centre de presse de proximité, conduite opérationnelle des mesures de protection de la population, et éventuellement mesure de radioactivité de proximité.

Le COD est la colonne vertébrale de l’action des services publics. Il est à la disposition du préfet, qui dirige les opérations de secours – qu’il soit ou non physiquement présent au COD, car il est souvent indispensable qu’il se rende sur le terrain. Le préfet a l’obligation de se doter d’une salle de gestion opérationnelle dédiée, où les moyens de communication sont redondants et l’approvisionnement électrique autonome. Nous refaisons le COD du Nord, qui doit être jumelé avec le centre opérationnel de zone, pour un investissement de 3 millions d’euros.

Colonel Philippe Bizet, chef de l’état-major de la zone Nord. — Dans la chaîne de décision, le centre opérationnel de zone (COZ) est situé entre les COD et le centre opérationnel de gestion interministérielle des crises (Cogic). Sa première fonction est de recueillir, de valider et de diffuser l’information vers le niveau national, vers les autres centres zonaux, la
préfecture maritime, Météo France, les centres experts, mais aussi vers les centres opérationnels de Belgique et d’Angleterre et ceux des autres zones et départements français. En deuxième lieu, le COZ doit mettre des renforts ou des ressources rares à la disposition du préfet de département, en les prélevant dans la zone ou au niveau national – le Cogic envoie alors des unités d’intervention de sécurité civile. Troisièmement, le COZ est chargé du partage d’expertise, notamment par visioconférence : un météorologue peut ainsi, depuis le COZ, s’adresser à tous les préfets de la zone.

J’ai été directeur du service départemental d’incendie et de secours de la Manche, et je constate qu’un incident nucléaire n’aurait pas les mêmes conséquences à Flamanville ou à Gravelines, compte tenu de la situation géographique de la zone Nord, au confluent des flux européens. Le rôle du COZ est donc de prendre en compte les problèmes spécifiques de chaque zone pour permettre au COD d’agir plus efficacement auprès des centrales. Ici, le COZ se préoccupe particulièrement des flux routiers et ferroviaires – le tunnel sous la Manche pourrait être bloqué – mais aussi maritimes, ainsi que de la gestion des forces de l’ordre et des transferts de population.

Une crise nucléaire est une crise polymorphe, où se posent les problèmes de l’assistance à la population, de l’approvisionnement électrique, etc. La résilience de la société est en jeu. Or les plans de sécurité nationale sont aussi un niveau de compétence zonal.

M. Marc Leurette, représentant de la mission d’appui à la gestion des risques nucléaires du ministère de l’intérieur. – Je vais vous présenter l’organisation de l’expertise technique. Commandement, expertise, décision, action, forment autant de cercles concentriques. Toutes les crises sont gérées par le tandem constitué par le directeur et le chef des opérations de secours, mais, en cas de crise technologique, l’exploitant entre dans la partie. En outre, lors des crises nucléaires, on ne peut se contenter de l’expertise locale, car il faut analyser et modéliser beaucoup de données : on se tourne nécessairement vers l’échelon national.

D’un côté, les exploitants – EDF, Areva, CEA, militaires – fournissent une expertise au niveau de l’installation comme au niveau central : des ingénieurs sont chargés de la modélisation, du diagnostic, du pronostic et même du « pronostic aggravé », qui suppose le pire scénario ; EDF emploie ainsi plus de 6 000 ingénieurs. D’un autre côté, les pouvoirs
publics sont dotés de leur propre expertise : au niveau national, les 1 600 ingénieurs et techniciens de l’IRSN disposent de toutes les données relatives à la construction et à l’exploitation des centrales, et d’informations en temps réel sur l’incident. Les experts de l’un et l’autre bord confrontent leurs résultats lors de conférences, et tous les éléments sont transmis à l’ASN, chargée de conseiller le préfet sur la protection de la population.

Parmi les autres experts, il faut mentionner ceux de la mission d’appui de sécurité civile du ministère de l’intérieur, spécialistes du nucléaire ou de tel autre risque, ou encore de la gestion de crise, et qui peuvent être déployés sur le terrain en cas de nécessité. Le COD est également doté d’une cellule technique, composée de représentants de l’ASN et de l’exploitant, et chargée de conseiller le préfet et d’entretenir le dialogue entre la préfecture, les exploitants et les autres experts.

Cette organisation de l’expertise est testée à chaque exercice – il y en a douze par an – et son efficacité n’est pas à mettre en doute.

Colonel Philippe Bizet. – Dans le domaine nucléaire, l’expertise est organisée aux niveaux départemental et national, et la zone intervient peu.

M. François Godin, chef de division de l’Autorité de sûreté nucléaire. – Sur la gestion post-accidentelle, la France se dote depuis 2005 d’une doctrine originale, que l’ASN est chargée de définir. Le comité directeur post-accident (Codirpa) réunit tous les acteurs (ministères, agences sanitaires, associations et CLI). Dans le Nord, des personnalités issues du monde associatif et de la CLI de la centrale de Gravelines se sont beaucoup impliquées, notamment à l’occasion d’un séminaire international qui s’est tenu les 5 et 6 mai à Paris. Au niveau local, une vingtaine de participants ont assisté à des réunions en préfecture, le 9 février et le 7 avril 2009, pour valider les premières orientations des groupes de travail du Codirpa sur la levée des actions d’urgence, le suivi sanitaire des populations, l’indemnisation ainsi que la gestion des déchets.

En outre, Mme Anita Villers, de l’association Environnement et développement alternatif, a organisé le 4 décembre 2009 à Lille un séminaire très instructif sur la gestion post-accident, avec la participation de citoyens et d’acteurs locaux.
Enfin, un exercice sur un établissement Seveso en 2008 a été suivi le lendemain en préfecture par une étude des conséquences post-accidentelles : accueil et soutien aux populations, impacts économiques, etc.

M. Jérôme Gutton. – En temps de crise doivent avoir lieu des conférences téléphoniques entre le préfet, les représentants d’EDF et ceux de l’ASN. A ce sujet, je ferai deux remarques : en premier lieu, l’intervention des ministères, voire de la présidence de la République pourrait bousculer les choses ; en second lieu, il serait peut-être tout aussi efficace de tenir des conférences vidéo.

Comme M. Perez l’a rappelé, plusieurs niveaux de commandement se superposent, et c’est sans doute nécessaire, mais il est indispensable que le partage des rôles soit respecté. Il ne faut pas se lasser de répéter notre doctrine de gestion du risque, qui est, disent les spécialistes de l’université de Grenoble, l’une des meilleures au monde.

Alors que la France est un État décentralisé, notre organisation reste marquée par une centralisation assez forte. Il me semble que, dans la gestion de crise, on n’a pas tiré toutes les conséquences de la décentralisation et de la complexité de notre organisation territoriale – qui contraste avec l’organisation assez simple de la Belgique ou des Pays-Bas. Les maires et les préfets ont un rôle très important à jouer, mais les moyens ne sont pas forcément à leur main. Comment tirer parti des ressources très importantes des intercommunalités, par exemple de celle de Dunkerque ou encore au Havre ? Il faut d’ailleurs s’assurer que l’organisation départementale fonctionne : je pense, par exemple, aux pompiers.

Lors de l’exercice du 18 janvier, la commune de Gravelines a reçu l’aide de la Croix-Rouge et de la protection civile pour évacuer la population. On a fait intervenir des personnes venues de Strasbourg ou de Clermont-Ferrand, ce qui serait impossible en cas de crise réelle. Il faut donc préciser comment l’évacuation s’organiserait concrètement.

M. Christian Choquet. – Pour poursuivre sur le terrain abordé par M. le sous-préfet, nous sommes désormais dotés, de Beauvau aux PCzonaux, de moyens de communication qui permettent de tenir des visioconférences jusqu’à deux fois par jour. Le COZ peut mettre en relation
les départements concernés – ce fut le cas lors des importantes chutes de neige en décembre –, et servir d’interface avec les autres zones comme avec le centre interministériel de crise à l’Intérieur : on peut faire remonter l’information en une heure. Ce n’est pas un outil de crise : les modalités d’intervention évoluent.

En conclusion, nous n’avons pas à rougir de notre organisation actuelle, même si des progrès restent à faire : il n’est pas question de nous assoupir sur nos lauriers. Dès cet automne, le nouveau centre opérationnel permettra de mieux coordonner l’action du COZ et du COD. Il faudra aussi approfondir notre collaboration avec les pays voisins, et poursuivre le travail quotidien du public d’information de sensibilisation et de transparence.

M. le président Claude Birraux. – Nous pourrions reprendre vos propos. Il faudra tirer les leçons du drame de Fukushima et des évaluations demandées par le gouvernement à l’Autorité de sûreté nucléaire, et qui doivent se dérouler dans un cadre européen.

Au nom de l’Office, je veux remercier, M. le préfet Bur de nous avoir accueillis dans cette belle salle. Les services se sont montrés pleinement mobilisés et opérationnels. Je remercie chacun de sa participation et de ses réponses. Nous tirerons le meilleur profit de vos observations pour notre diagnostic et notre rapport, qui sera remis fin juin.
LA GESTION POST-ACCIDENTELLE DES CRISES NUcléAIRES
JEUDI 19 MAI 2011

Audition, ouverte à la presse

Première session

Les installations nucléaires françaises face aux risques naturels

Présidence de M. Claude Birraux, Député, Président de l’OPECST

M. le Président Claude Birraux. Les problèmes de sûreté nucléaire ont pris une intensité nouvelle depuis les événements de Fukushima. Un représentant de l’Autorité de sûreté nucléaire (ASN) fera, comme lors de nos précédentes réunions, un point de la situation au Japon.

MM. les présidents des deux chambres du Parlement ont souhaité que l’Office parlementaire des choix scientifiques et technologiques (OPECST) pilote une mission spécifique. L’OPECST fonctionne ici en configuration élargie – à huit députés et huit sénateurs, qui ne sont pas membres de l’office – et selon un schéma de commission d’enquête. Habituellement, une mission de l’Office est assumée par le seul rapporteur.

Les auditions sont ouvertes à la presse. Nous publierons en juin un rapport d’étape sur la sécurité nucléaire, puis aborderons, en juillet, le second volet : la place du nucléaire dans le système énergétique français.

Un événement de l’ampleur de celui survenu à Fukushima peut-il se produire en France ? Nous souhaitons faire le point sur les risques naturels brusques et rappeler l’état de la connaissance sur leur évaluation scientifique.
— 322 —

– cette première table ronde sera animée par le rapporteur M. Christian Bataille. La seconde, portant sur les moyens de protection des installations nucléaires, sera animée par M. Bruno Sido, rapporteur et premier vice-président de l’office.

M. Thomas Houdré, directeur, direction des centrales nucléaires, Autorité de sûreté nucléaire (ASN). A la centrale de Fukushima le 11 mars, un violent séisme a provoqué l’arrêt automatique des réacteurs, mais aussi la perte des alimentations électriques. Les diesels de secours se sont mis en route pour refroidir les piscines et le cœur des réacteurs. Mais le tsunami a neutralisé les diesels, les combustibles ont chauffé, les gaines ont éclaté et partiellement fondu. L’exploitant a alors procédé à des décompressions volontaires et des rejets radioactifs ont eu lieu, par bouffées, entre le 11 et le 15 mars. L’interaction entre les gaines à très haute température et l’eau a provoqué des dégagements d’hydrogène et des explosions, hors et sans doute à l’intérieur des enceintes de confinement. Une partie du cœur des réacteurs a fondu faute de refroidissement.

Entre le 15 et le 30 mars, de l’eau de mer puis de l’eau douce ont été injectées en circuit ouvert dans le cœur des réacteurs ; l’alimentation électrique a ensuite été rétablie, sans que l’on parvienne cependant à arrêter les rejets. On est entré depuis lors dans la phase de gestion à long terme de l’accident. L’injection d’eau dans les réacteurs 1, 2 et 3 a entraîné une accumulation sur le site de quantités d’eau fortement radioactive, 200 000 tonnes, ce qui constitue un autre problème à gérer. Pour limiter sa dispersion et son déversement dans la mer, l’opérateur a eu recours à un épandage de résines et a disposé des sacs.

Sur la base des informations dont dispose l’ASN aujourd’hui, nous pouvons indiquer que les plus gravement accidentés sont les réacteurs n° 1, 2 et 3. De fortes incertitudes demeurent sur l’état précis de ces installations. Récemment, des membres du personnel sont entrés dans le site du réacteur n° 1 et ont confirmé qu’une partie du combustible a fondu, que la cuve n’est plus étanche, ni l’enceinte de confinement. L’état des réacteurs n° 2 et 3 reste à confirmer.

Quant aux conséquences sanitaires, les jours suivant l’accident, les rejets radioactifs ont représenté un dixième de ceux observés à Tchernobyl, et 21 travailleurs ont été soumis à des doses supérieures à 100 millisieverts.
(mSv), soit la valeur limite autorisée en situation d’urgence en France. Au Japon, la valeur limite est de 250 mSv. Un périmètre de 20 km autour de la centrale a été évacué ; entre 20 et 40 km, l’évacuation est en cours, dans le cadre de la gestion à long terme de l’exposition des populations. La restriction de la consommation des denrées alimentaires ne touche pas notre pays, la dilution étant importante entre le Japon et la France. L’accident a été classé au niveau 7 de l’échelle INES.

Les risques naturels majeurs et leur évaluation

Présidence de M. Christian Bataille, Député, membre de l’OPECST, rapporteur de la mission parlementaire

professeur Michel Béra, titulaire de la chaire modélisation statistique du
risque. Mon intervention de ce matin, enfin, puis à la présentation faite par
le professeur Armijo, à l’Académie des sciences, devant le sous-groupe
sismologie.

Pendant six ans, j’ai été directeur de l’Institut de physique du globe
de Paris, mais je ne vous parlerai pas de volcans, car le risque qui nous
intéresse aujourd’hui est plutôt le tsunami : un tel événement peut-il se
produire en France ?

Les cotes d’altitude révèlent que le site où a été construite la centrale
de Fukushima était une terrasse à 40 mètres au-dessus de la mer. Elle a été
surcreusée à 30 mètres, puis à 7 mètres au-dessus de la mer pour
l’installation des tranches centrales, 1, 2, 3 et 4 ; situées un peu plus en
hauteur, les 5 et 6 étaient inactives au moment du tsunami. Si l’on n’avait
pas rabaisssé artificiellement le relief (et diminué le coût de l’aspiration de
l’eau de mer utilisée dans le cycle de refroidissement), la zone n’aurait pas
été inondée, et aucun des dommages causés aux réacteurs ne se serait sans
doute produit sous l’effet du tremblement de terre. Car les bâtiments japonais
ont remarquablement résisté au séisme, mieux que prévu, ce qui peut
s’expliquer par une saturation des accélérations dans les hautes magnitudes.
Si la centrale avait été située dix mètres plus haut, elle n’aurait pas souffert,
c’est une certitude.

Pour construire la centrale, une falaise artificielle a donc été
découpée. Elle borde les installations nucléaires sur l’arrière. On voit
nettement sur les photographies aériennes la zone maximum de mouillage et
la marque de la vague venue battre la falaise pendant plusieurs heures, le
temps de l’inondation, à une hauteur de deux ou trois mètres. La vague était
de 10, 12 ou 14 mètres.

L’événement était-il prévisible ? Avant le tremblement de terre de
Sumatra en 2004, on n’imaginait guère un séisme de plus de 9 de magnitude,
et l’on en avait enregistré trois seulement au XXe siècle, en 1960 au Chili, en
1964 en Alaska, en 2004 en Indonésie. Sans doute supérieur à ce seuil, celui
survenu au Kamchatka en 1952 a été réévalué dernièrement. Précisons que
les séismes provoqués par des chevauchements géants et d’une magnitude
supérieure à 8 ne sont mesurables que depuis le début du XXe siècle. On en
a dénombré trois au siècle dernier, déjà deux dans les douze premières années de ce siècle.

Le récent tremblement de terre s’est produit par enfacement du fond de la plaque Pacifique sous les îles du Japon, et cet événement est en quelque sorte la répétition d’un autre, le séisme du Kamchatka en 1952, quand toute une zone a « claqué » ; le séisme a été, on le sait à présent, d’amplitude 9. Le nord de Hokkaido, le sud de Tokyo, pourraient dans l’avenir connaître de semblables phénomènes.

Pourquoi les Japonais, dans leurs prévisions, ont-ils méconnu la possibilité d’un tel événement ? Parce qu’ils se fondaient sur des méthodes qui faisaient consensus depuis la théorie de la dérive des continents et de la tectonique des plaques, illustrée dans les années soixante par des sismologues japonais éminents, notamment le professeur Hiroo Kanamori, une lumière de la discipline.

Le consensus scientifique retenait historiquement le scénario suivant : lorsqu’une plaque s’enfonce sous l’autre, les contraintes s’accumulent, une faille secondaire se forme, et seule peut ensuite casser une partie de cette faille – soit la partie supérieure, en provoquant un tsunami, soit la partie inférieure, sans provoquer de tsunami puisqu’il n’y a pas, dans ce cas, de « coup de pied au fond de la baignoire ».

Certains chercheurs minoritaires contestaient cependant cette thèse comme l’existence de cette faille. Un programme de recherche proposé à l’Agence nationale de la recherche (ANR) a été mis en échec par les rapporteurs en raison de ce consensus autour d’une thèse qui, on le sait à présent, est totalement fausse.
La totalité de la croûte continentale sur 40 km d’épaisseur a lâché sur 200 km en profondeur, sur 500 km de large : imaginez le cinquième de la surface de la France frottant sur le reste et se déplaçant de 20 mètres… Le déplacement semble même avoir atteint 50 mètres dans les fonds marins. C’est du jamais vu !

Il se trouve que des géologues avaient cherché à savoir si un tsunami de grande ampleur s’était produit dans l’histoire. Faisant des prélèvements autour de l’aéroport au sud de Sendai, ils ont découvert qu’un tsunami s’était produit en 869. On constate sur leurs relevés que la zone de montée des eaux est rigoureusement la même qu’en 2011. En 1611 aussi s’était produit un tremblement de terre dont nous n’avions pas compris qu’il était de même importance. Le consensus sur les modèles avait fait évaluer le séisme de 869 à une magnitude de 8,4, en fait sensiblement sous-estimée. Encore en 2009, on prévoyait un risque de séisme tsunamique de 8,2 au maximum. On n’imaginait pas que toute la zone claquerait.

Des mégachevauchements sont possibles dans toutes les zones de subduction majeure du monde. Il convient donc désormais de réviser les prévisions de risque dans ces environnements. On sait aujourd’hui que le consensus, les concepts faux et le jargon ont abouti à des erreurs d’analyse partagées par la majorité des géophysiciens, certains d’excellente réputation. Des modélisations numériques très élaborées ont suscité un excès de confiance.

La géologie ne se limite pas à l’échelle du siècle, elle remonte au plus loin. Il ne suffit pas de prendre en compte la crue millénaire, il faut connaître les crues survenues il y a 10 000 ans, 100 000 ans. C’est sur toutes ces échelles de temps emboîtées qu’il faut travailler, avec des moyens peu coûteux : la géologie consiste à analyser des tranchées, des coupes, des forages.

Sur le plan humain, au Japon, la catastrophe a été limitée, si j’ose dire, à 20 000 ou 30 000 morts, dans une zone qui compte 200 000 habitants – à comparer aux 250 000 morts à Sumatra. La prévention, l’éducation, le comportement des Japonais, leur réponse à l’alerte, les mécanismes d’arrêt automatique ont contribué à sauver de nombreuses vies.
Après Sumatra, le gouvernement français a nommé un délégué interministériel pour suivre les risques dans le bassin indien, le bassin méditerranéen, les Caraïbes ; un observatoire des tsunamis a été créé, des crédits de recherche annoncés. Un an et demi après, tout cela avait déjà disparu… Les organismes de recherche ont néanmoins continué à travailler. Ils ont mis en évidence qu’il y a une zone dans le monde où nous courons des risques comparables à celui du Japon, il s’agit des Caraïbes, où s’est produit un grand tremblement de terre en 1843, de magnitude 8 probablement. En 2004, celui des Saintes a fait des dégâts matériels, mais les répliques, dont on ne parle pas, durent encore. Surtout, en 2007, un séisme de 7 s’est produit en Martinique, peu destructeur en raison de la profondeur à laquelle il a eu lieu comme de l’heure à laquelle il est survenu. S’il s’était produit 20 kilomètres plus haut sur la zone de subduction, ses conséquences auraient été beaucoup plus graves.

Toute la zone de subduction peut-elle lâcher, comme au large du Japon ? Les Caraïbes pourraient connaître trois types de séismes : moyens crustaux, très importants profonds, mais peut-être aussi claquant de toute la zone de subduction. Toutes les îles subiraient alors un tsunami comme celui qui s’est produit à Tohoku. La différence tient dans la vitesse de rapprochement des plaques, quatre fois plus faible dans les Caraïbes, et le temps de récurrence du séisme, qui serait quatre fois supérieur.

Au Japon, tout ce qui était bloqué depuis 400 ou 500 ans a cassé d’un coup. On croyait que tout glissait sans bruit, on ne s’en inquiétait plus. Dans les Caraïbes, tout est bloqué sans doute depuis 1 500 ans. Mais l’histoire, pour nous, ne remonte qu’à Christophe Colomb. Il nous faut ici le secours de la géophysique. Une dernière précision : le risque sur la côte d’Azur et à Nice n’a rien à voir avec le cas japonais…

M. Christian Bataille. L’une des deux tempêtes de 1999 a causé un début d’inondation à la centrale du Blayais. Ces installations ont un besoin permanent de sources froides, et l’on peut se demander si le réchauffement climatique ne risque pas, à terme, de compromettre le refroidissement des centrales.

M. Hervé Le Treut, Académie des sciences. Je veux évoquer les problèmes de la prévision sous l’angle philosophique et pratique. La difficulté vient de ce qu’il y a d’une part l’échelle de temps à quelques
décennies, d’autre part des événements extrêmes à petite échelle d’espace. C’est la combinaison la plus difficile à traiter pour la prévision.

Le passage de ces grandes échelles aux petites échelles atmosphériques pose des problèmes physiques considérables. Il y a certes un pilotage des secondes par les premières, mais partiel, difficile à mettre en évidence. Et plus l’échelle est petite, plus les événements sont rares, plus le recul statistique est faible. Le problème est encore plus ardu pour les précipitations, par essence liées aux circulations dans l’atmosphère, phénomènes épisodiques. Plus les événements sont extrêmes, et plus grande est la difficulté statistique.

Comment estimer le risque encouru par l’Europe de l’ouest, qui est soumise à l’influence de l’Atlantique, mais moins que ne l’est le continent américain à l’influence du Pacifique ? Comment les changements climatiques affectent-ils notre région ? La première phase du changement climatique consiste en une variation de fréquence et d’intensité de certaines structures météorologiques. Il convient d’utiliser tous les documents, en remontant dans un passé même lointain, car tout ce qui est arrivé a vocation à revenir. Ce doit être le point central de toute politique de sécurité. Il faut
exploiter statistiquement l’historique des aléas. Mais l’observation du passé ne fournit pas une image de tous les risques possibles, en raison, précisément, des modifications climatiques. Si l’on ne sait pas préciser les risques, on en a du moins une idée générale.

Mon laboratoire, au sein de l’Institut Pierre Simon Laplace des sciences et de l’environnement (IPSL) a travaillé avec le Centre de recherche de Météo-France de Toulouse et nous avons publié une cartographie et un rapport. Plus le climat est chaud, plus l’atmosphère comprend d’eau, et plus sont favorisés les orages convectifs et les tornades. Les tempêtes hivernales n’entrent pas dans cette catégorie ; leur processus est peu lié à ces sources de chaleur et elles n’ont pas de lien clair avec le réchauffement climatique.

En Europe, on s’attend, par un grossissement de l’anticyclone des Açores, à ce que l’Europe du sud devienne plus sèche, l’Europe du nord plus humide, avec une modification de la route des tempêtes. Les études sur les échelles qui se développent visent à cerner les mécanismes liant les échelles globales, que l’on comprend mieux, et les échelles locales, que l’on comprend moins. La démarche est double, car on s’efforce aussi de comprendre en quoi les infrastructures climatiques sont vulnérables à des aléas, pour réinterroger ensuite les connaissances, incertaines, sur les évolutions climatiques. Cet aller-et-retour entre une modélisation incertaine et des infrastructures dont on tente de préciser la vulnérabilité à ces éléments de prévision est indispensable. Il doit, à mon sens, fonder toute notre approche de la sécurité.

M. Christian Bataille. M. Bernard Tardieu est spécialiste de la conception et la réalisation des barrages, stations de pompage, usines hydroélectriques. Il va évoquer les risques de glissements de terrain, de ruptures de barrage comme à Malpasset en 1959, qui a causé 400 morts. Les barrages menacent-ils nos centrales en aval ? De quelle hauteur pourrait être la vague ? Quels sont les risques liés aux glissements de terrain ?

M. Bernard Tardieu, Académie des technologies. Le produit de la menace et de la fréquence forme l’aléa ; la projection de cet aléa dans un espace socioéconomique constitue le risque. Dans le cas des barrages, le risque est avéré au niveau mondial : la commission internationale des grands barrages tient depuis 1930 le registre des accidents et incidents. La menace est avérée en France, puisque des accidents majeurs sont intervenus depuis
cent trente ans. Deux accidents sur le barrage de Bouzey, haut de 18 mètres, ont causé 100 morts en 1884 et 1895. Le barrage de Malpasset, 66 mètres, s’est rompu en décembre 1959, causant la mort de 421 personnes.

On compte aujourd’hui environ 45 000 barrages dans le monde, et 1 200 en construction. En juin 1976, aux États-Unis, le barrage de Teton (Idaho) s’est rompu au premier remplissage, causant la perte de 13 000 têtes de bétail, mais la mort de seulement onze personnes, car l’alerte a bien fonctionné et la population a pu être évacuée.

Dans certaines catastrophes, le barrage n’était pas en cause mais les conséquences furent néanmoins très graves, en domino. À Vajont (Italie du nord), en 1963, un glissement de terrain sur la rive gauche est constaté, et voici que le glissement s’accélère, jusqu’à 110 km par heure, le volume du glissement atteignant presque celui de la retenue ; une vague de 150 mètres passe par-dessus le barrage, qui résiste. Mais il y a tout de même un millier de morts.

Autre exemple d’un accident en domino, en août 2008, en Russie, à Saïano Chouchenskaïa. Sur l’une des turbines, les boulons du couvercle se rompent par vibrations ; l’ensemble de la turbine saute en l’air sous une charge de 245 mètres d’eau, l’eau retombe, le système électrique disjoncte, le départ de l’énergie est coupé, toutes les autres roues entrent en survitesse et explosent à leur tour, l’eau retombe partout, le système d’énergie supplémentaire disparaît, on ne peut plus commander la fermeture des vannes. Un homme gravit dans le noir les marches et remonte les 245 mètres du barrage : il parvient à fermer les vannes. L’eau passe par l’évacuation de crue, qui fonctionne habituellement en été. C’est l’hiver, les embruns gélent, retombent sur le toit de l’usine, qui s’effondre, faisant 70 morts.

Les accidents se produisent surtout sur les petits barrages, digues sèches de la Camargue, de la Vendée, de la Loire. Les petits barrages de 4 ou 5 mètres sont vulnérables à une vague de 2 mètres, qui peut être calamiteuse.

On a déploré aussi des ruptures de vannes, dans le Tarn, en Turquie, ou des accidents dus à des manœuvres d’exploitation, comme celui du Drac, en Isère. Ce sont les petits barrages en terre qui se rompent le plus facilement.
Pas de nuage chimique ou nucléaire, on est dans le domaine du risque naturel amplifié. L’eau est lâchée, elle descend et suit exactement la vallée. Les effets suivent la géographie. L’onde de submersion du barrage est parfaitement calculable par les modèles physiques et numériques. On connaît ses limites, sa vitesse et l’on peut prévoir son arrivée en tel point, dans tel délai. A Vaison-la-Romaine, il s’agissait d’un accident naturel, puis une vague s’est formée, qui a tout détruit. Dans le cas d’une inondation simple, lorsque les eaux montent doucement, le danger est moindre.

Parfois, comme à Bouzey ou Malpasset, les accidents étaient liés à des phénomènes mal maîtrisés à l’époque. Le progrès des sciences, mais aussi de l’auscultation et de la surveillance, permet aujourd’hui de les éviter. Les ruptures de barrage interviennent dans la moitié des cas lors de la première mise à l’eau. Parmi les sources essentielles d’accidents, on peut citer la pluie, les crues sous-estimées, la mauvaise manœuvre des vannes et l’abandon des petits ouvrages.

Les séismes n’ont jamais causé d’accident mortel. Et ce n’est pas faute que les barrages en aient subi ! Citons le séisme de Tokachi-Oki, au Japon, en mai 1968, d’une magnitude de 7,8, le séisme du 4 mars 1991 d’une magnitude de 7,3 à proximité du barrage de Sefid Rud dans le Nord de l’Iran, le séisme du 21 mai 2003 d’une magnitude de 6,8 à proximité de Boumerdès en Algérie et, enfin, le séisme de Wenchuan en Chine du 15 mai 2008. Dans tous les cas, on a constaté, tout au plus, quelques fissures. En revanche, le barrage de Zipingpu d’une hauteur de 156 m, achevé en 2008, pourrait être un élément déclencheur du séisme de Wenchuan. Enfin, rappelons que l’exigence de sécurité est que le réservoir se vide progressivement et lentement, non que la structure soit inaltérée.

Quel système de contrôle et de sécurité en France ? Il relève de circulaires ministérielles adressées aux préfets, soit des documents non opposables aux citoyens. Les responsables des ouvrages sont leurs propriétaires. Je ne conseille donc à personne d’en accepter un en héritage, même s’il est charmant… Après la catastrophe du barrage de Malpasset, on a constitué un comité technique permanent des barrages en 1963, devenu le comité technique permanent des barrages et des ouvrages hydrauliques (CTPBOH). Il regroupe huit à douze membres, essentiellement des hauts fonctionnaires et quelques personnalités qualifiées, dont je suis. Sa mission est de prévenir, de surveiller les ouvrages et d’informer. Les documents –
plans d’alerte, puis plans particuliers d’intervention – se sont améliorés ; ils se fondent sur l’analyse de l’onde de submersion ainsi que sur un dispositif d’alerte dans la zone des quinze minutes. Pour une rupture de barrage, le signal national d’alerte est un son de corne de brume composé d’une émission de 2 secondes entrecoupée d’un intervalle de silence de 3 secondes, puis deux minutes à la fin de l’alerte. Son déclenchement est humain – je ne suis jamais parvenu à savoir qui appuie sur le bouton, mais j’espère que cette personne est définie. Cette solution est de loin la meilleure pour éviter tout déclenchement intempestif. Le cas s’est produit au barrage de Vouglans dans l’Ain qu’on avait équipé d’un système automatique : la population s’est retrouvée en pyjama et en chemise de nuit dans la montagne par un froid glacial. Ce genre d’incidents tue l’alerte.

J’en viens aux glissements de terrain, avalanches et chute de glaciers, notamment de leurs moraines frontales. Ces phénomènes, nombreux dans les zones sismiques, sont essentiellement dus aux fortes pluies, surtout lorsqu’elles sont précédées de périodes de sécheresse, et aux variations des retenues de barrage. Pouvant créer des séismes, ils se soldent parfois par la formation de barrages naturels, extrêmement instables et dangereux pour les ouvrages. Si ces derniers se déversent, la rupture rapide est inéluctable. D’où les Chinois tirant dessus au canon lors du séisme de 2008, ou encore le tunnel creusé au lac Paron au Pérou pour vidanger. En Equateur, le glissement lié au séisme a provoqué des embâcles considérables, tous les arbres étant précipités au fond de la vallée, avec des effets dominos tout le long de la rivière… Enfin, tout changement de climat dans une région augmente le risque de glissements de terrain, le temps que la géographie s’adapte.

Pour conclure, quelques remarques. La menace d’une rupture de barrage a plané après la catastrophe de Fukushima. Un ouvrage fissuré, parce qu’il a subi un fort séisme, ou encore un ouvrage qui a déversé à cause d’une
crue énorme, reste-t-il sûr ? A ma connaissance, aucun scénario n’est prévu pour faire face à cette éventualité.

Les zones à risque entraînent un effet d’aubaine sur le foncier et, donc, des installations, qu’elles soient autorisées ou non. Résultat, le nombre de personnes exposées, et donc le risque, augmente. Impossible d’expliquer cette logique à un Chinois à propos du barrage des Trois Gorges !

Enfin, je crains que l’intéressante notion d’amélioration continue, mise en avant par le Gouvernement et EDF, ne se traduise par de simples améliorations sur le papier et une multiplication des intervenants. D’autant que la transmission du savoir-faire de la conception et de la construction se perd, que la rentabilité et le court-terme priment et que le travail en équipe est sous-estimé. Cette évolution empêche une vision globale de la menace pesant sur les ouvrages.

M. Michel Broniatowski, professeur au laboratoire de statistique théorique et appliquée de l’Université Paris VI Pierre et Marie Curie. Une variable de risque est une variable que l’on va probabiliser ; cependant, modéliser le risque extrême est un exercice complexe, car, comme nous nous disposons de peu d’observations, le modèle n’a plus grand rôle. Typiquement, celui-ci est plus difficile à obtenir, faute de données, de sorte que l’on doit l’informer avec des lois physiques. Or on maîtrise moins la physique des phénomènes extrêmes, par manque de retour d’expérience. En outre, les valeurs extrêmes, en raison de leur grande dispersion, ne peuvent pas être modélisées de manière globale ; elles doivent être étudiées en tant que telles. Contrairement à un assureur établissant une tarification, on ne doit pas raisonner à partir de la cloche d’une courbe de Gauss. Partir de l’ensemble des données est souvent une erreur profonde.
Prenons la modélisation de la magnitude d’un séisme dans une approche probabiliste. Des modèles standards existent depuis les années cinquante sous le nom de la loi de Gutenberg-Richter. Leur but est d’obtenir une représentation locale de la répartition de la magnitude pour, entre autres, dimensionner les ouvrages. Sont-ils plausibles ? Non, car les récents travaux montrent qu’il faut travailler sur la notion de séisme maximal annuel, fondés sur le relevé des séismes maximaux enregistrés année après année, pour établir une courbe de fréquence des maxima. L’intérêt de cette méthode est sa stabilité. Attention, cependant, à l’interprétation de la période de retour : une probabilité d’un millième ne signifie pas que le risque se reproduira dans mille ans. À titre d’exemple, il serait aussi dangereux d’affirmer, au jeu de pile ou face, qu’on aura pile dans deux coups parce que la probabilité est de un sur deux. Résultat, si l’on s’intéresse à un événement dont la récurrence est de l’ordre de 1 000 ans, il faut considérer 6 000 ans... D’où un problème majeur sur l’utilisation de ces calculs. Néanmoins, leurs résultats sont intéressants à condition d’avoir une bonne estimation de la valeur maximale du séisme potentiel théorique, ce qui est le cas des Alpes.

D’autres modèles, développés en finances, permettent de prendre en compte des données extrêmes à plusieurs variables – ce sont, par exemple, en hydrologie la pointe, le volume et la durée. Ils sont importants pour le dimensionnement des ouvrages.

Pour conclure, un peu de bon sens statistique. La notion de période de retour est dangereuse – j’y ai insisté, et nous laissons les décideurs arbitrer. En revanche, il faut s’intéresser au séisme record à venir, c’est-à-dire celui qui dépassera le maximum observé. Une telle approche, développée depuis les années 1980, est possible pour les événements marqués par une certaine stabilité, de la récurrence. En bref, on travaille, non sur la durée qui sépare deux records successifs, mais sur le niveau du record. Certes, cette méthode reste tributaire de grandeurs (typiquement, le séisme maximal théorique dans la zone), mais c’est une piste à explorer. En tout état de cause, la modélisation probabiliste est la seule qui permette d’aller au-delà des données observées.

Les effets chaotiques de libérations soudaines d’énergies accumulées sur des centaines d’années, voire un millier d’années, sont particulièrement difficiles à modéliser et à penser car ils provoquent la sidération. On utilise l’équation de base suivante : le risque est égal à l’aléa multiplié par l’exposition et par la vulnérabilité. Un message important à faire passer : lorsque les cibles sont proches ou que l’aléa dépasse un certain volume, il faut raisonner sur le système ; impossible de traiter isolément une centrale nucléaire, une raffinerie ou un barrage.

Pour évaluer les aléas naturels, on utilise essentiellement les lois physiques et la statistique, avec un mouvement de balancier d’un outil à l’autre. Seuls nous intéressent les aléas répartis sur les terrains ; on peut faire de la géostatistique, les cartographier et retrouver leurs traces dans le passé en utilisant la paléogéographie ou la paléogéologie. Du fait de phénomènes de saturation, l’intensité de l’aléa de terrain n’est pas fonction de l’aléa source. D’où la nécessité d’une identification fine, car leur répartition, fonction de la géologie, est en peau de zèbre. On l’a constaté récemment au Japon ou encore à Los Angeles : à quelques mètres de distances, le danger peut ne plus être mortel. Pour un séisme, l’intensité de terrain correspond donc aux accélérations locales, non à la magnitude.

Comment gérer ces aléas ? On utilise un aléa de référence, fondé sur une fréquence accessible à l’esprit – pour les inondations, cent ans ; pour les séismes, cinq cents ans. L’idéal est toutefois de connaître l’aléa extrême, ce dont l’intervenant précédent a souligné les difficultés. En pratique, on prend un aléa extrêmement rare – une approximation un peu dangereuse, mais un progrès indéniable par rapport à l’aléa de référence. La directive européenne sur les inondations en fait depuis quelques années une obligation. Les Hollandais travaillent sur un aléa de 1/10 000. En France, on utilisera
probablement celui de 1/2 000. Pour les séismes, il faudrait retenir un aléa de 1/10 000 ou 1/5 000. Toutes les observations, qu’elles soient géologiques ou historiques, sont à mettre en œuvre, pour mener à bien ce travail dont on n’est pas au bout.

Pour réduire la vulnérabilité, une notion complexe qui comporte plusieurs dimensions – physique, écologique, culturelle et économique –, il y a la boîte à outils de la mitigation. Cette dernière comporte des mesures sans seuil, telle la méthode parasismique qui permet une réduction continue de la vulnérabilité (la digue ne s’effondre pas en cas de dépassement), et des mesures à seuil (la vague de submersion emporte une digue). La distinction est essentielle, on l’a vu lors de l’accident de Fukushima.

La gestion des risques cumulés sur les territoires passe par des actions intégrées sur les aléas, les expositions et les vulnérabilités à l’échelle de l’installation proprement dite, du site et, enfin, de la région. Emboîtement et intégration, voilà la façon dont on peut composer avec les risques, les réduire à une probabilité extrêmement faible. La probabilité nulle n’existe pas !

L’essentiel est peut-être de combattre le déni, point sur lequel insiste le philosophe Jean-Pierre Dupuy. Cette tendance naturelle de l’esprit devant l’inconnu – nos collègues sismologues japonais ont récemment donné la preuve de cette dimension comportementale – empêche la prise en compte globale et collective des risques.

Le Président Claude Birraux. Monsieur Courtillot, quelles seraient les conséquences d’un tremblement de terre survenant près des frontières de la France ? Ainsi le séisme de Bâle sur la vallée de Rhin…

M. Vincent Courtillot. L’échelle de Richter, qui indique la magnitude d’un séisme, est souvent qualifiée d’ouverte. Il serait plus juste de dire qu’elle est logarithmique : un écart de 1 correspond à une multiplication par 30 de l’énergie dégagée par le tremblement de terre. Le séisme du Japon était neuf cents fois plus fort que celui d’Haïti, qui a pourtant causé 200 000 morts. La différence entre magnitude et intensité explique les effets de site soulignés par M. Bourrelier.
Ensuite, on a longtemps cru que la magnitude ne pouvait pas dépasser 8,5. C’était, en réalité, un problème de méthode. Nous avons désormais trois ou quatre magnitudes, beaucoup plus physiques. Le moment physique, c’est-à-dire le produit d’une force par une surface. Un séisme qui casserait toute la plaque lithosphérique serait d’une magnitude de 10 ; avec 9,5, le séisme du Chili, le plus grand des 110 dernières années, se rapprochait de ce maximum. Enfin, les frontières des plaques où se reproduisent souvent les séismes. Rappelons les ordres de grandeur : un centimètre par an correspond à un mètre par siècle.

En France, il n’y a pas de grandes frontières entre les plaques ; la plus sérieuse est l’arc alpin, né de l’affrontement entre la plaque africaine et la plaque européenne. Les régions de Nice et de Grenoble sont donc les plus proches, quoique les mouvements se chiffrent en millimètres par an, soit des dizaines de centimètres par siècle. Le temps de retour des grands séismes en France est donc probablement de l’ordre de mille ans. Nous en avons connu deux grands dans les deux mille dernières années : Bâle et un en Catalogne qui a fait des dégâts en France dans les années 1600. Il est absurde de comparer Nice au Japon ! Le dernier tsunami a été provoqué par un glissement de terrain lié à des travaux de terrassement de l’aéroport. Le risque est très faible : il suppose un tremblement de terre, la frontière entre les plaques la plus proche se trouvant le long du Maghreb. En revanche, il existe un risque de tsunami mineur à La Réunion, en raison de Sumatra, et un risque majeur aux Antilles. Après, la limagne de Bresse et d’Allier, la zone sud-armoricaine et Pyrénées, sont sujettes à des mouvements qui se mesurent en millimètres par an. D’une magnitude inférieure à 8, ces séismes ont un temps de retour de moins d’un par mille ans.

Pour mener un travail statistique sur un éventuel tremblement de terre se reproduisant à Bâle à proximité de la centrale nucléaire de Fessenheim, il faudrait considérer les événements extrêmes survenus durant une centaine de périodes de mille ans dans la région. Bref, mieux vaut donner de l’argent aux géologues !

M. Christian Bataille. L’augmentation du niveau des mers due à la dilatation thermique de l’eau et à la fonte des banquises doit-elle conduire à réévaluer le risque d’inondation ? Et avec quelle ampleur ?
M. Vincent Courtillot. La question fait débat : Annie Cazenave ne partage pas mon point de vue. Extraire le vrai signal climatique de la variabilité à plus haute fréquence n’est jamais chose simple. Selon moi, on observe une tendance plate jusqu’en 1910, puis parfaitement linéaire de 1910 à 2000. Au cours du XXe siècle, le niveau moyen des mers a augmenté d’environ 20 cm. Il n’y a aucune raison de penser qu’il en sera autrement au XXIe siècle ; nous sortons du petit âge glaciaire pour entrer dans une période chaude, analogue à celle de l’an mille. Le Groupe d'experts intergouvernemental sur l'évolution du climat (GIEC) avance plutôt le chiffre de 45 cm. Dans les deux cas, nous devrions faire face à ce problème, sans déni ni affolement, puisque nous l’avons fait au XXe siècle. Quant au Vanuatu, l’enfoncement thermique des atolls est une règle connue depuis Darwin ! Un jour, dans un million d’années, la Réunion aura son atoll...

M. Bernard Tardieu. La fonte des banquises ne change pas plus le niveau des mers que les glaçons ne font déborder un verre.

Mme Marie-Christine Blandin, sénatrice. Monsieur Courtillot, vous n’avez pas évoqué les effondrements sédimentaires. Certes, ils n’ont rien à voir avec l’ampleur d’un séisme de subduction, mais Gravelines a les pieds dans l’eau...

M. Vincent Courtillot. Un sujet essentiel qu’a traité M. Tardieu ! Les séismes peuvent provoquer des glissements de terrain catastrophiques. On l’a vu lors du tremblement de terre de Wenchuan de 2008 que, par parenthèse, mes collègues avaient parfaitement anticipé depuis des années...

Mme Ann MacLachlan (Platts Nuclear Publications). Les sismologues japonais ont fait preuve d’optimisme. Peut-il en être autrement dans un pays exposé en permanence au risque sismique ?

M. Vincent Courtillot. A dire vrai, les sismologues du monde entier s’étaient ralliés, depuis les années 1970, à une théorie probablement fausse, combattue par une minorité. Moi-même, professeur de géophysique, j’ai enseigné les théories du professeur Hiroo Kanamori. La science avance par le débat, mais nous avons besoin du consensus. En moyenne, il faut entre 10 et 80 ans pour que soit acceptée une révolution scientifique majeure.
L’article princeps sur la dérive des continents, date de 1913 ; la théorie a été acceptée par 90% des géographes dans les années 1970…

Mme Marie-Christine Blandin. M. Tardieu a évoqué les risques associés aux barrages en cas de séisme. Y a-t-il en France des barrages en amont de vallées où il y aurait des centrales nucléaires ?

M. Bernard Tardieu. C’est aux propriétaires de traiter le sujet, car le plan particulier d’intervention (PPI) doit annoncer l’onde de crue et les installations susceptibles d’être touchées. Je ne saurais vous donner des éléments sur la vallée du Rhône, par exemple, mais ils figurent forcément dans les papiers de l’administration.

Mme Marie-Christine Blandin. La parlementaire que je suis est ravie de votre réponse !

Le Président Claude Birraux. Comme disait Niels Bohr, les prédictions sont difficiles, surtout lorsqu’elles concernent l’avenir !

M. Vincent Courtillot. On dit aussi : « on ne convainc pas les anciens d’une nouvelle théorie, on attend qu’ils meurent ».

M. Jacques Treiner, Université Paris VI. Je suis physicien à Paris VI. N’en déplaise à M. Courtillot, l’augmentation du niveau de la mer n’est pas linéaire. Le dernier rapport du GIEC – qui n’est pas un organisme de recherche – était conservatoire, car il ne faisait allusion qu’aux phénomènes
compris. On est en réalité plus près d’un mètre. Il n’y pas lieu de s’affoler, mais il y a des choses à faire. Les Hollandais sont très préoccupés.

Le Président Claude Birraux. Vous justifiez la théorie selon laquelle la rupture prend plusieurs dizaines d’années avant de faire consensus !

Deuxième session

La prise en compte des risques naturels dans la protection des installations nucléaires

Présidence de M. Bruno Sido, Sénateur, Premier vice-président de l’OPECST, rapporteur de la mission parlementaire

M. Bruno Sido, sénateur, premier vice-président de l’OPESCT, rapporteur. Comment les risques naturels menaçant nos centrales sont-ils évalués par les organismes chargés de la sûreté nucléaire ? La possibilité de risques combinés est-elle intégrée ? Les contraintes imposées aux exploitants sont-elles suffisantes ? Les événements de Fukushima ou du Blayais conduisent-ils à réévaluer ces contraintes ? Le vieillissement des installations les fragilise-t-elles face à ces risques ? Comment se compare la démarche française à celle des autres pays, notamment européens ?

concernent l’intégrité et le vieillissement des équipements, l’évaluation des risques et la sûreté des installations du cycle du combustible.

Les priorités de travail sont définies par les pays-membres, essentiellement en fonction du retour d’expérience ; une nouvelle activité peut être mise en place rapidement. L’AEN coordonne les travaux des experts à travers des groupes de travail présidés par un expert d’un pays-membre, et des ateliers internationaux auxquels participent de nombreux experts ; l’Agence assure parfois le secrétariat d’un groupe restreint de pays, par exemple sur les conceptions des nouveaux réacteurs. Elle produit des comparaisons de pratiques et de réglementations, des analyses d’incidents, des rapports sur l’état de l’art en termes d’évaluation et de prévention, des recueils des meilleures pratiques. Mais le plus important, le plus impalpable aussi, c’est l’expérience acquise par les experts qui ont confronté leurs pratiques, expérience qui se traduit dans les documents propres des pays.

L’Agence produit des rapports de synthèse : bilan des travaux, leçons tirées, etc. Avec le Commissariat à l’énergie atomique (CEA), la France possède le plus grand laboratoire d’études sismiques, à Saclay-Tamaris.

L’examen des approches réglementaires relève de l’atelier du groupe de travail sur les pratiques d’inspection des risques externes, qui a comparé les réglementations et passé en revue les risques.

M. le Président Claude Birraux. Ces documents sont-ils disponibles ?

M. Jean Gauvain. Ils sont publiés sur Internet.

Après l’accident de Fukushima, les présidents des deux comités ont décidé d’une action rapide. Un groupe de travail a été mis en place en trois semaines pour conduire une première analyse des mesures prises et à prendre. Son rapport est en cours de préparation. Le groupe de travail sur l’intégrité des équipements propose ainsi de se pencher sur : la sous-estimation du mouvement sismique ; le comportement des enceintes de confinement et des structures en béton en cas de phénomène extrême ; la réévaluation de sûreté vis-à-vis des phénomènes externes, notamment cumulés ; les conditions de prolongation de la durée d’exploitation. La centrale de Fukushima avait reçu en janvier 2011 une autorisation de prolongation au-delà de 40 ans, mais en renforçant la protection contre les inondations...

L’apport de l’AEN est donc son rôle de coordination de l’expertise internationale, sa capacité de mobilisation rapide, la production de synthèses des meilleures connaissances du moment. Leur utilisation est de la responsabilité des pays membres et de l’AIEA.

M. Thomas Houdré. Les responsabilités entre acteurs de la sûreté nucléaire en France sont réparties entre l’ASN, organisme de contrôle, les exploitants et l’Institut de radioprotection et de sûreté nucléaire (IRSN). L’ASN définit les grands objectifs, les exploitants proposent les modalités de leur mise en œuvre, que l’ASN analyse avant d’instruire l’autorisation. Aux exploitants de mettre ensuite en œuvre ces modalités, sous le contrôle de l’ASN.

S’agissant des agressions d’origine naturelle, l’approche est déterministe : il s’agit de déterminer l’aléa auquel l’installation doit faire face sans subir de dommage. Dès la conception de l’installation, la liste des
agressions prises en compte dans la démonstration de sûreté est présentée par l’exploitant dans le dossier de demande d’autorisation.

Pour les risques sismiques et d’inondations, les règles fondamentales de sûreté (RFS) de l’ASN définissent la pratique jugée acceptable. Elles énoncent l’aléa à prendre en compte, en déterminant par exemple le mouvement sismique, et les moyens de protection des installations, construction parasismique ou instrumentation sismique. Les RFS sont réévaluées périodiquement pour intégrer l’évolution des connaissances des failles et les effets de site. La réévaluation de la RFS en 2001 a ainsi entraîné des modifications, comme le renforcement par pose de tissu de fibres de carbone ou de poutres métalliques.

S’agissant des inondations externes, l’incident du Blayais en 1999 a conduit à réviser le guide pour intégrer davantage d’événements et étendre le champ d’application. Parmi les modifications issues de ce retour d’expérience, citons la surélévation de la digue du Blayais, la construction d’un muret de protection de la prise d’eau à Fessenheim, ou encore le renforcement de l’étanchéité des parois.

M. Jean-Christophe Gariel, adjoint du directeur de l’environnement et de l’intervention de l’IRSN. Dans l’évaluation des risques associés aux agressions externes, l’IRSN fournit un appui technique à l’ASN pour l’élaboration des textes réglementaires, aux Autorités de sûreté
pour l’évaluation des dossiers soumis par les exploitants, et conduit des programmes de recherche afin d’améliorer les méthodes d’évaluation des risques et les connaissances nécessaires à leur mise en œuvre. Il est important que l’expertise se nourrisse des recherches les plus récentes.

Les méthodes définies dans les RFS sont basées sur des observations, visant à définir soit un événement maximum, selon l’approche déterministe, soit une probabilité d’occurrence, selon l’approche probabiliste. La définition de l’aléa dépend largement de la qualité des données utilisées.

Il ne faut pas se focaliser uniquement sur l’aléa. La résistance de l’installation dépend aussi du dimensionnement des dispositions constructives, ainsi que de la qualité de la réalisation. À chacune de ces étapes, l’IRSN évalue les marges prises.

Nos programmes de recherche portent notamment sur les caractéristiques des séismes historiques (c’est la clef de l’évaluation), l’identification et la caractérisation des failles actives, la propagation des ondes sismiques dans un environnement complexe, les lois d’atténuation du mouvement sismique avec la distance et la saturation du mouvement, le développement de méthodes d’évaluation probabilistes de l’aléa. Ils sont conduits dans le cadre de collaborations nationales ou internationales, avec le monde académique.
Des pistes d’amélioration se dessinent à la lumière des événements récents. En matière d’aléa sismique, il faut élaborer un catalogue homogène de la sismicité instrumentale, explorer la méthode probabiliste, mieux associer, enfin, le monde académique à nos travaux.

Je conclurai sur l’importance du couple recherche-expertise, qui permet de prendre en compte les connaissances les plus récentes. L’aléa ne doit pas faire oublier l’importance du dimensionnement et de la défense en profondeur.

M. Jean-Marc Miraucourt, directeur de l’ingénierie nucléaire à EDF. Les risques naturels sont pris en compte dès la conception des centrales selon une démarche systématique, indépendante de l’aléa. Trois fonctions de sûreté sont à assurer : la maîtrise de la réaction nucléaire, l’évacuation de la puissance et le confinement de la radioactivité. La défense en profondeur consiste en trois lignes successives. La première est la prévention contre les effets des événements naturels, par exemple à travers des digues ou des dispositifs de résistance des bâtiments et matériels. La deuxième consiste en des parades matérielles à la défaillance des systèmes. Enfin, la troisième ligne de défense consiste en des parades pour faire face aux conséquences d’un éventuel accident.

Les risques sont pris en compte dès le choix initial du site, à toutes les phases de la conception initiale, et lors des réexaminens de sûreté périodiques. Les installations sont modifiées si nécessaire suite à l’analyse de retours d’expérience, à l’amélioration des connaissances scientifiques ou au changement du contexte naturel, par exemple climatique.

La protection des installations contre les événements naturels repose sur une détermination prudente de l’aléa retenu, par une étude des caractéristiques de chaque site. L’aléa historique est aggravé et majoré pour tenir compte du risque nucléaire en lui-même. Des marges supplémentaires sont ajoutées dans la conception des installations. On définit un séisme maximum vraisemblable, en fonction des caractéristiques géologiques de la région et de la sismicité historique, en ramenant l’épicentre au plus près du site. Ainsi, alors que le séisme de Bâle, en 1356, s’est produit à 40 km de Fessenheim et était d’une magnitude de 6,2, nous le ramenons à 30 km du site (à Penly, on a été jusque sous la centrale). Pour définir un séisme majoré de sécurité, l’on augmente sa magnitude de 0,5, ce qui revient à multiplier
l’énergie par cinq. Les bâtiments qui enferment du combustible sont dimensionnés en fonction d’un aléa encore majoré. A Fessenheim, on atteint une accélération de 0,2 G au lieu de 0,13 G calculé.

Les méthodes de conception et de construction procurent une robustesse supplémentaire. Au Japon, il n’y a pas eu de dégâts majeurs dus au séisme lui-même. Les normes de construction visent le non-endommagement de l’installation, contrairement au bâti courant, qui se borne à la résistance. Des maquettes à l’échelle d’un quart sont soumises à des tests sur des tables vibrantes.

Les visites décennales prennent en compte l’amélioration des connaissances scientifiques sur l’aléa ou sur le comportement des bâtiments, et donnent lieu à la révision de la réglementation en vigueur. EDF a ainsi investi 500 millions d’euros dans des travaux de renforcement de tenue au séisme, 25 millions par réacteur à Fessenheim et Bugey. EDF finance également un programme de recherche international visant à améliorer la connaissance de l’aléa sismique en France.

Face à l’inondation, la première ligne de défense comprend les digues, les travaux d’étanchéité des bâtiments. Il faut envisager la conjonction possible d’aléas, par exemple une rupture de barrage cumulée à une crue centennale, des pluies brèves et intenses, ou régulières et continues. Nous ajoutons des marges par cumul d’événements supplémentaires. Le risque de tsunami est considéré comme couvert par ensemble des marges prises en compte contre le risque inondation. La tempête de Blayais en 1999 a été riche d’enseignements : il n’y a pas eu d’accident, mais une défaillance de la première ligne de défense, qui a conduit à réexaminer la règle de cumul et à apporter des modifications sur l’ensemble des sites.

Deuxième ligne de défense, les parades à la défaillance des systèmes d’alimentation électrique. Les centrales disposent en permanence de cinq sources d’alimentation différentes. Parmi ces systèmes redondants, l’un, au diesel, est résistant aux séismes et aux inondations. En cas de perte de refroidissement, un réservoir d’eau fournit le système d’alimentation de secours, qui fonctionne grâce à la vapeur produite par la centrale.
Troisième ligne de défense, les parades pour limiter les conséquences de la dégradation du combustible, qui découlent notamment du retour d’expérience de Tchernobyl. En cas d’accident dans le cœur du réacteur, le confinement est assuré par les trois barrières de l’enceinte, les rejets radioactifs issus du bâtiment sont filtrés, et un recombineur d’hydrogène permet d’éviter l’explosion. Contrairement au cas japonais, notre système de filtrage permet de retenir 99,9% du césium émis.

À la suite de l’accident de Fukushima, EDF va réexaminer les trois lignes de défense pour déterminer les marges, identifier d’éventuels points faibles et mettre en place si nécessaire de nouvelles parades. Ces travaux sont menés sous le contrôle de l’ASN, selon le cahier des charges des audits de sûreté demandés par le Premier ministre.

M. Jean-Luc Andrieux, directeur Sûreté, Sécurité, Santé et Environnement (Areva). Les installations d’Areva sont diverses, chacune est unique, et elles concernent le cycle du combustible, en amont et en aval des centrales. La gamme de risques est donc étendue, notamment dans l’amont du cycle où, c’est important pour la cinétique, s’allient la partie nucléaire et la partie chimique. L’analyse de sûreté d’une installation intervient dès la phase de construction, puis lors des réexamen de sûreté. Cette analyse commence avec la caractérisation des phénomènes naturels locaux pour lesquels on s’appuie sur un historique des événements et, à ce stade, on prend déjà des marges. Pour cela, Areva s’appuie beaucoup sur des experts externes et internationaux. Nos installations ayant subi des modifications, ce système a été revu régulièrement ces quarante dernières années.

Le deuxième stade de l’analyse de sûreté, c’est l’identification des fonctions importantes pour la sûreté de l’installation. Les risques de dégagements thermiques et de radiolyse concernent surtout l’aval du cycle. La dispersion de matières dangereuses est un risque spécifique à nos installations. Il ne peut y avoir chez nous de criticité, le propre d’une centrale étant d’éviter le déclenchement d’une réaction nucléaire. La radioprotection est également prise sérieusement en compte. Nous analysons systématiquement les agressions dans le cadre d’une méthode déterministe.

Une fois identifiées les fonctions importantes pour la sûreté, il nous faut rechercher un ou plusieurs états de repli sûr, les plus passifs possibles,
ce qui est le cas pour la majorité de nos installations, notamment en amont du cycle. Par exemple à Eurodif, l’état de repli, c’est l’arrêt de l’usine : dès lors il n’y a plus d’énergie à évacuer, l’installation s’autoprotège. De même, le risque de criticité est pris en compte dans la construction, le dimensionnement des pièces, comme dans le traitement de l’eau de nos installations. Mais certaines fonctions de sûreté nécessitent des systèmes actifs : refroidissement, ventilation, piscines, par exemple à La Hague ou à Melox.

Après avoir déterminé ces états sûrs de repli, nous définissons, dès la conception, les dispositions nécessaires pour les atteindre : arrêt de l’installation, mise en dépression. Quand Eurodif est arrêté, on a atteint l’état sûr, d’autant plus que, alors, la pression intérieure est inférieure à la pression atmosphérique. Cette étape de l’analyse conduit à l’identification des requis de sûreté pour chaque atelier de l’installation, lesquels seront repris dans la phase ultérieure.

Ces analyses sont prises en compte dans la conception, le dimensionnement, la construction et l’exploitation de l’usine par la mise en place de la défense en profondeur : barrières de prévention, moyens de détection et de surveillance, et par la gestion des écarts ou des situations accidentelles – je vous renvoie à mon audition précédente et à ce que j’ai dit du PUI et des forces d’intervention prévues.

Vous constaterez sur les images de nos installations de Melox que les bâtiments nucléaires sont très peu élancés, fondés sur un radier général – à La Hague ils sont même partiellement enterrés. Les matières radioactives sont confinées à l’abri de trois barrières successives : la « boîte à gants », l’atelier, le bâtiment lui-même. Au-delà de ces barrières statiques, on établit un confinement dynamique par une cascade de dépressions afin de limiter encore les risques. La boîte à gants apparaît relativement légère par rapport aux structures qui la supportent et qui, elles, tiennent compte des éventuels séismes. S’il y a disproportion entre les supports des réseaux fluides et ventilation, et ces réseaux eux-mêmes, c’est qu’ils sont dimensionnés au séisme majoré de sécurité (SMS). Quant aux pupitres de sauvegarde qui permettent de poursuivre la conduite des systèmes de sûreté en cas de séisme majeur, ils ont été testés sur table vibrante pour tenir compte de leur comportement dans une telle hypothèse. Nous avons accompli un gros travail de génie civil dans notre usine d’enrichissement Georges Besse II, avec la
mise en place de plots intermédiaires entre les bases de la structure et l’atelier : on y a testé les appuis en vraie grandeur dans des laboratoires spécialisés, notamment en Allemagne.

Le retour d’expérience (Rex) est fondamental. Nous avons déjà intégré celui de phénomènes naturels importants – tempête de 1999, crues du Rhône, grands froids, canicules, qui ont permis de conforter notre expérience et de procéder aux modifications nécessaires. Le Rex sur les événements sismiques nous vient de l’étranger ; nos experts se sont aussi adaptés à l’évolution des règles de calcul. L’expérience d’Areva dans la construction d’usines – Sud-Est, Melox, La Hague – a d’ailleurs été confortée par la succession ininterrompue de grands chantiers sur une période de quarante ans.

M. Bruno Cahen, directeur industriel de l’Agence nationale pour la gestion des déchets radioactifs (Andra). L’Andra a trois sites de stockage – le centre historique de la Manche, à côté d’Areva à La Hague ; deux sites dans l’Aube – ainsi qu’un laboratoire souterrain de recherche en Meuse/ Haute-Marne.

Je me concentrerai sur le stockage, parce que les principes de sûreté et de dimensionnement des autres activités de l’Andra ont déjà été décrits par les précédents intervenants. Pour tous nos centres, existants ou à l’étude (Cigeo), les risques, naturels ou non, sont pris en compte dans la conception des installations, notamment pour ce qui est de leur localisation : du fait de l’échelle de temps pendant lesquels le stockage doit durer, les centres sont situés dans des zones dont le sous-sol ne présente pas de ressources exploitables (minerais, pétrole), et qui présentent de faibles risques naturels – notamment inondations et séismes. Ces risques sont donc pris en compte dès la phase de choix du site d’implantation.

Lors de la conception, des dispositions sont prises pour prévenir ces risques, réduire la probabilité des risques d’origine humaine et limiter leurs effets. Ces mesures sont actives ou passives. Ces dernières sont impératives pour les sites de stockage qui doivent demeurer sûrs, sans intervention humaine, après leur fermeture. Tous les dix ans ou en cas de modification, l’Andra réévalue la sûreté des installations sous le contrôle de l’ASN. Les risques externes pris en compte ont déjà été cités. Je mentionnerai donc particulièrement les risques dus à l’environnement industriel, aux routes,
Les centres de stockage de l’Andra sont conçus pour résister à des séismes cinq fois plus puissants, soit 0,5 de plus sur l’échelle de Richter, que tous les séismes observés et envisageables dans les régions où ils sont implantés. Le Centre industriel de stockage géologique (Cigeo) sera implanté dans le bassin parisien, dans une couche située à 600 mètres de profondeur et datant de 60 millions d’années. On a trouvé, dans cette région très peu sismique, des traces d’anciens séismes, et nous y enregistrons environ 1 000 micro-secousses dont 1% sont naturelles et de magnitude inférieure ou égale à 4. Le laboratoire est déjà construit et les installations, fond et surface, seront conçues pour résister en exploitation à un séisme de magnitude 6, en référence à celui de Bâle, et, après fermeture, à plusieurs séismes successifs de magnitude 6,1 car, après fermeture, la sûreté doit être garantie pour des périodes supérieures au millénaire. Les centres de l’Aube, en exploitation, sont conçus pour résister à un séisme de 3,8 qui se produirait sous ces centres, en référence aux séismes passés de la région, et à un séisme de 6,5 (par référence à ceux des Vosges) distant de plus de 100 kms. Au centre de la Manche, on applique la même règle d’un possible séisme cinq fois plus puissant que les séismes locaux de référence.

Les centres de stockage sont implantés hors des zones inondables. Celui de la Manche est implanté sur une colline de 190 mètres, à l’abri d’une éventuelle montée de la mer ou de vagues de forte amplitude. Les conditions climatiques sont traitées selon la réglementation en vigueur. Contre les chutes d’avion, on élimine les localisations proches d’aérodromes et la conception des sites est faite pour diminuer l’impact de pénétration d’un avion. Contre les pannes électriques, on multiplie les sources d’alimentation et les équipements de secours, y compris mobiles. Contre les incendies et explosions, dus par exemple à la foudre, on minimise autant que possible les charges caloriques et on interdit dans le stockage les déchets inflammables ou explosifs. Dans le cas particulier du stockage géologique profond, certains déchets pouvant produire de l’hydrogène, on en limite dès la conception le dégagement potentiel d’hydrogène et on ventile. Ce risque disparaît à la fermeture du site.

M. le Président Claude Birraux. En vous écoutant, je pensais que l’ASN a eu raison, même si cela a fait beaucoup de peine au constructeur et à
l’exploitant, de refuser les bétons et les méthodes initiales de construction envisagées pour le chantier de l’EPR... EDF pourrait-elle nous en dire davantage sur la centrale du Blayais, sur la hauteur de la digue et sur les dispositions prises après la tempête de 1999 ?

M. Jean-Marc Miraucourt. D’une part, on a élevé une digue à 8,5 mètres, c’est-à-dire qu’on a pris une marge de 3,5 mètres. D’autre part, on a rendu étanches tous les bâtiments situés au-dessous du sol.

M. Bruno Sido. Lorsque nous avons visité Gravelines, on nous a dit que cette centrale était à 8 mètres de hauteur. J’ai demandé à l’ASN si cela signifiait 8 mètres au-dessus du zéro des cartes marines françaises. Je n’ai toujours pas reçu de réponse. Je rappelle que les rapporteurs ont besoin de réponses !

M. Thomas Houdré. Je note cette question et j’y répondrai à notre prochaine audition.

M. Vincent Courtillot. Est-il exact que les modifications demandées par les agences internationales après l’accident de Three Mile Island ont été prises en compte dans les centrales françaises mais non dans celles du Japon ?

Mme Anne-Laure Barral (France-info). Monsieur Miraucourt, comment avez-vous pris en compte les risques naturels de sécheresse et de canicule, et quel a été le retour d’expérience de l’été 2003 ?

La première, la plus simple, consiste à climatiser certains locaux. Ensuite, nous changeons tout le système de réfrigération qui produis de l’eau froide dans nos systèmes. Enfin, nous revoyons les procédures d’exploitation. Ce programme, en cours de redéploiement, coûtera 400 millions d’euros pour l’ensemble de nos sites.

Mme Anne-Laure Barral. Mais pour tout cela, il faut de l’énergie. Que ferez-vous en cas de panne d’alimentation électrique ?

M. Jean-Marc Miraucourt. Il y a des diesels de secours sur site.

Mme Ann MacLachlan. On nous a dit que les Japonais étaient sur le point de procéder aux modifications qui auraient évité le désastre. Ne peut-on pas diminuer le délai de 10 à 15 ans nécessaire au retour d’expérience ?

M. Jean-Marc Miraucourt Un réexamen perpétuel serait déstabilisant. Pour les risques qui ont un temps de retour long, les risques sismiques par exemple, le principe de base est de procéder à un réexamen décennal de sûreté. C’est un bon compromis, et ce rythme décennal est d’ailleurs inscrit dans la loi. Cependant, en cas d’événement exceptionnel, comme après la tempête du Blayais, et si le risque a un temps de retour rapide, on n’attend pas dix ans pour prendre des mesures temporaires, avant les mesures définitives qui supposent des moyens industriels lourds. Pour les grandes chaleurs, nous mettons donc en place, dans l’attente des modifications définitives, des climatiseurs temporaires mobiles.

M. le Président Claude Birraux. Vous n’êtes pas tentés par des climatiseurs solaires ?

M. Michel Le Quentrec (AFPCN). Depuis la tempête de 1999, il y en a eu deux autres, Klaus et Xynthia. A-t-on pris des mesures particulières dans les heures qui ont précédé ces deux tempêtes ?

M. Jean-Marc Miraucourt. Nous mettons aussi en place des parades physiques et des mesures de prévention d’exploitation, qui peuvent
aller jusqu’à l’arrêt de la centrale. Lors des deux tempêtes en question, des mesures de préalerte et d’alerte ont été prises.

M. Bernard Tardieu. On n’a pas évoqué aujourd’hui l’aspect didactique vis-à-vis des populations locales. On a également peu parlé de l’enchaînement possible des risques naturels. Le système peut-il se défendre face à un enchaînement de stress ?

M. Jean-Marc Miraucourt. Le principe de base de la réglementation nucléaire, c’est de toujours prendre des marges supplémentaires par rapport aux réglementations normales. C’est le cas pour les niveaux d’inondation. Ainsi, lorsque la plaine de Loire est inondée, la centrale de Belleville ne l’est pas, et continue à fonctionner normalement. Cette sur-règlementation vise à ne pas ajouter une catastrophe nucléaire à la catastrophe naturelle qu’est l’inondation.

M. Thomas Houdré. Un exercice d’alerte est prévu à Cadarache pour tester la réponse des pouvoirs publics et des exploitants en cas de séisme.

M. Jean-Christophe Gariel. Nous réalisons ainsi 10 à 12 exercices nationaux par an.

M. Jean-Christophe Gariel. Je n’ai pas la réponse. L’exercice que je mentionnais se situe dans le cadre des exercices nationaux qu’organisent chaque année l’ASN et l’IRSN avec les exploitants. Nous observerons la réponse de secours aux populations et les conséquences sur le centre de Cadarache.

M. Thibault Madelin (Les Échos). Monsieur Gariel, vous avez parlé de « sismicité historique » et l’avez étendue à la paléosismologie. Est-
ce cohérent avec la méthode d’EDF qui retient un millier d’années plus une marge ?

M. Jean-Christophe Gariel. Je me suis mal fait comprendre. En fait, il y a une seule méthode : la règle fondamentale de sûreté qui considère d’une part la sismicité historique et, d’autre part, les études de paléosismologie pour les séismes antérieurs à 1000 ans. EDF met évidemment en œuvre cette RFS.

M. Vincent Courtillot. Il y a, parmi les sismologues, un débat entre les partisans de la méthode déterministe et ceux de la méthode probabiliste. Elles convergeraient sur la très longue durée.

M. Patrice Laya (Sécurité commune Info). Où en est le système d’alerte au tsunami en Méditerranée ou dans le Pacifique ? Et qu’apporte l’observation satellitaire de la terre pour la connaissance de ces aléas ?

M. Vincent Courtillot. Ce dossier est désormais entre les mains de la Commission océanographique internationale (COI) qui dépend de l’Unesco. Elle a organisé selon les bassins des processus différents, distinguant le bassin de l’Océan indien, celui des Caraïbes, et ceux de la Méditerranée Ouest ou Est. A l’Institut de physique du globe de Paris, on s’est attaché, à cause des Antilles, à la phase Caraïbes. C’est un exercice international où les États-Unis, le Venezuela, Trinidad-et-Tobago et la France sont les plus engagés dans la constitution d’un réseau de prévention des tsunami. Sa dernière conférence annuelle s’est tenue en Guadeloupe. Je pourrai transmettre les coordonnées des gens qui suivent ce dossier au COI. Mais je regrette que l’initiative nationale française, au départ énergique, ait manqué de suivi, le financement du fonctionnement n’ayant pas suivi celui de l’équipement.

M. le Président Claude Birraux. La procédure de révision décennale avec réévaluation des marges est-elle courante dans les autres pays utilisant l’énergie nucléaire ?

M. Thomas Houdré. M. Lacoste a regretté que ce ne soit pas le cas, y compris dans certains grands pays nucléarisés.
M. Jean-Marc Miraucourt. Notre première action après Fukushima a consisté à introduire dans les règles de la WANO (World Association of Nuclear Operators) l’obligation de procéder à un réexamen périodique de sûreté. C’est aussi un débat qui oppose les pays membres de l’AIEA.

M. le Président Claude Birraux. Les États-Unis, qui ne font pas de révision décennale, ont autorisé l’augmentation de puissance ainsi que l’exploitation de leurs centrales jusqu’à 60 ans après la coulée du premier béton. Cela pose-t-il des questions en termes de sûreté ?

M. Thomas Houdré. Oui. Si EDF voulait augmenter la puissance de ses centrales, il lui faudrait l’autorisation de l’ASN. C’est encore autre chose que l’augmentation de leur durée de vie. D’un côté, on fait face à des problèmes immédiats, de l’autre on peut, en prenant en compte les retours d’expérience, améliorer dans le temps la sûreté de l’exploitation, ce que les Américains ne font pas de la même façon.

M. Jean-Marc Miraucourt. Ce réexamen de sûreté périodique est une spécificité française, inscrite dans la loi TSN de juin 2006. Aux États-Unis, ce principe de réexamen ne figure pas dans la loi, mais il est imposé par l’autorité de sûreté, la NRC (Nuclear Regulatory Commission). L’accident de Three Mile Island a conduit à imposer une réglementation ; les leviers réglementaires ne sont pas les mêmes qu’en France. Les interrogations sur les bases de conception de la centrale sont moins fortes aux États-Unis ou au Japon qu’en France où l’exploitant est en même temps le concepteur de la centrale, alors qu’il s’agit aux États-Unis de petits exploitants qui achètent l’installation clé en main et ont donc davantage de mal à en réexaminer les caractéristiques. Même chose à Fukushima : Tepco était absolument seul…

M. le Président Claude Birraux. L’apport des experts français à Tepco a-t-il été utile ?

M. Javier Reig. Nous discuterons, lors de notre séminaire de juin, de l’aide des autres pays. La France et les États-Unis ont été très impliqués et ont effectivement aidé le Japon, mais tardivement. Dorénavant, on discute des possibilités d’aide régionale et internationale en situation d’urgence.

M. le Président Claude Birraux. Lors de l’audition du 16 mars, votre présidente nous a rappelé qu’un avion prêt à décoller attendait la demande des Japonais.

M. Jean-Luc Andrieux. Il y a eu plusieurs envois et un gros porteur Antonov a été affrété pour regrouper les moyens des exploitants ou ceux collectés au niveau national par les Affaires étrangères et le SGDSN.

M. Thibaud Madelin. D’après la dernière réévaluation opérée par Tepco, il semblerait que la cuve soit percée sur un ou plusieurs réacteurs, ce qui n’était pas le cas à Three Mile Island. Si cela est vrai, aurez-vous des exigences plus fortes pour le récupérateur du corium dans les centrales françaises ?

M. Michel Broniatowski. Il est fréquent qu’on ignore la magnitude du séisme record s’il est ancien. Sur celui de Bâle, par exemple, l’incertitude est si importante que les marges de sécurité ne couvrent pas les divergences entre experts. Comment caler le modèle ? Il serait intéressant de lancer une étude, dans le cadre des études probabilistes, sur les valeurs extrêmes des très grands séismes pour obtenir une estimation des records à venir. On pourrait rapprocher ces records des marges des modèles déterministes. Somme toute, on définirait ainsi une marge de sécurité.

M. le Président Claude Birraux. Je suis partagé, car je repense à Niels Böhr, et les études probabilistes sont souvent mises en cause. Et vous voudriez y revenir ?

Mme Ann MacLachlan. M. Miraucourt nous a expliqué comment sont calculés le séisme maximal historiquement vraisemblable et le séisme majoré de sécurité, mais je ne me souviens pas qu’on ait expliqué comment cela avait été fait au Japon. Est-il exact qu’ils ne prennent pas cette marge supplémentaire ? Est-ce le résultat d’un mauvais calcul ou est-ce délibéré ?

M. Jean-Marc Miraucourt. Ils avaient des marges, car, comme il y a deux ans, il y a eu des accélérations importantes sur des bâtiments sans qu’il y ait d’impact.

M. Vincent Courtillot. Après Kobé, les Japonais ont révisé leur politique de prévention sismique avec des milliers de capteurs, comme il n’y en a dans aucun autre pays. Mais c’est sur le tsunami qu’ils se sont trompés. Sans lui, on ne parlerait plus de ce séisme.

M. Bernard Tardieu. Pour les grands barrages, on associe toujours l’approche historique avec, pour les crues, le concept de pluie ou de crue maximum probable et, pour les séismes, le concept de maximum crédible. Dans ces cas extrêmes, on ne demande pas de dimensionner les ouvrages mais de raconter ce qui se passerait s’ils se produisaient. Si cela ne conduit à rien, ce n’est pas grave ; si cela conduit à quelque chose, on modifie.
M. le Président Claude Birraux. Monsieur Cahen, compte tenu de la durée de vie des installations de stockage, ne faudrait-il pas prendre des marges supplémentaires au moment de la construction ?

M. le président Claude Birraux. Cinq jours après l’audition publique du 19 mai dernier sur la protection des installations nucléaires contre les risques majeurs, nous voici à nouveau réunis pour examiner un nouvel aspect de la sûreté nucléaire. Cette fois, il s’agit de faire le point sur les protections des systèmes névralgiques des réacteurs.

La succession rapide des auditions publiques, une autre devant avoir lieu dès le mardi 31 mai, illustre le degré de mobilisation de l’Office parlementaire dans le cadre de l’étude sur la sécurité nucléaire et l’avenir de cette filière, diligentée conjointement par les présidents de nos deux assemblées, MM. Bernard Accoyer et Gérard Larcher, à la suite des événements intervenus au Japon, dans la centrale nucléaire de Fukushima.

Je rappelle que l'OPECST fonctionne pour cette mission en configuration élargie, puisque huit députés et huit sénateurs ont été désignés par les commissions permanentes de l'Assemblée nationale et du Sénat, compétentes dans le domaine de l’énergie, pour être associés à nos travaux. Cette mission élargie mène l'étude selon un schéma similaire à celui d'une commission d'enquête, par dérogation aux pratiques de l’Office qui confie d'habitude l’investigation aux seuls rapporteurs.

Nos travaux se concentreront jusqu’à la fin juin sur la sûreté et la sécurité nucléaires, et seront conclus par la publication d'un rapport d'étape ; le second volet concernera, à partir de juillet, la place de la filière nucléaire dans le système énergétique français.

Après nous être interrogés, lors de la précédente réunion, sur la possibilité qu'un événement de l'ampleur de celui qui a frappé la centrale japonaise de Fukushima se produise dans notre pays, nous nous efforcerons
aujourd'hui de faire le point le plus complet possible sur les dispositifs constitutifs de ce qu'on appelle la « défense en profondeur » des réacteurs nucléaires, c'est-à-dire, notamment, sur l'ensemble des mécanismes, fondés sur la redondance ou sur la diversification, qui permettent le maintien du réacteur en fonctionnement malgré la défaillance de l’un de ses composants.

De là, le titre assez large de l'audition, « les protections des réacteurs nucléaires », le pluriel soulignant la multiplicité des fonctions concernées et des techniques mobilisées.

Les dispositifs concernant spécifiquement la protection contre les risques majeurs ayant déjà été évoqués, il s'agit de mettre aujourd'hui l'accent sur la protection des circuits névralgiques en tant que tels, celle-ci pouvant concerner plusieurs types d'atteintes, dont celles dues aux risques majeurs. Par exemple, il est évident qu'une barrière d'étanchéité protège aussi bien contre une inondation provoquée par un accident climatique externe que contre les écoulements résultant de la fuite d'une conduite d'eau interne.

Nous n’aborderons cependant pas la question perverse du terrorisme. Comme nous avons déjà eu l'occasion de le préciser lors de la présentation du programme de la mission, le 14 avril dernier, il n'est pas question de dire en audition publique quelles atteintes terroristes sont, ou peuvent être, envisagées et qu’elles parades sont prévues. Il faut être totalement naïf, ou totalement de mauvaise foi, pour penser que cette question puisse être traitée publiquement. Il est, en tout cas, hors de question que le prochain rapport de l'Office comporte un manuel du terrorisme nucléaire « pour les nuls ».

Nous allons examiner les efforts de recherche destinés à améliorer la protection des circuits névralgiques : c'est un aspect essentiel de la sûreté nucléaire telle que nous la concevons en France, c'est-à-dire dans une perspective dynamique, avec un effort permanent pour l'améliorer. J’ai souvent l’occasion d’évoquer ce sujet avec des interlocuteurs étrangers, qui me demandent si la sûreté nucléaire est optimale en France. Je leur réponds toujours qu’il s’agit d’une matière vivante, qui se nourrit de la recherche ainsi que de la confrontation des idées entre l’Autorité de sûreté nucléaire (ASN), les appuis techniques et scientifiques et l’opérateur. C’est de cette discussion que viennent les progrès. La sûreté nucléaire se conquiert par un travail de tous les jours et l’on ne peut espérer atteindre un sommet d’où l’on
pourrait enfin contempler nos centrales avec une entière confiance. En la matière, les améliorations doivent être permanentes.

Les interventions ont été regroupées en deux sessions, présidées chacune par un des deux rapporteurs de la mission parlementaire : la première, consistant en l’analyse des mécanismes de défense en profondeur, par notre collègue sénateur Bruno Sido, premier vice-président de l’OPECST ; la seconde, une présentation des efforts de recherche en vue d’améliorer la protection des circuits névralgiques, par notre collègue député Christian Bataille.

Je propose à M. Thomas Houdré, directeur des centrales nucléaires à l’Autorité de sûreté nucléaire (ASN), qui a présenté jeudi dernier un panorama de la situation à Fukushima, de s’attacher spécifiquement aujourd’hui au problème de la nature et de la portée des rejets radioactifs, ainsi qu’à la question de l’évacuation des populations habitant les zones à risque.

M. Thomas Houdré, directeur des centrales nucléaires à l’Autorité de sûreté nucléaire (ASN). La situation à Fukushima n’a pas beaucoup évolué depuis mon exposé de la semaine dernière. Cependant, au fil des jours, l’évaluation des rejets radioactifs et de leurs conséquences sur les populations s’affine. C’est ainsi que l’Institut de radioprotection et de sûreté nucléaire (IRSN) vient de publier sur son site un bilan complet sur ces deux points. Sous forme de tableaux et de cartes, ce rapport reprend notamment les différentes évaluations de doses radioactives réalisées par des organismes japonais ou étrangers au cours des jours qui ont suivi l’accident. Les résultats, assez largement concordants, confirment le caractère adéquat des mesures d’évacuation et de protection des populations prises par les autorités japonaises.

Le rapport comporte aussi des projections sur l’exposition de longue durée des populations, du fait notamment du dépôt de particules radioactives de césium, en quantités parfois importantes, dans la zone entourant la centrale – y compris au-delà de la zone d’exclusion de 20 km. Il est ainsi estimé que 2 000 personnes environ, si elles étaient maintenues dans les régions contaminées situées en dehors de cette zone d’exclusion, pourraient recevoir en un an une dose dépassant 100 millisieverts (mSv), alors que la dose d’exposition autorisée pour le public sur une année est en France de l
mSv. À échéance de 70 ans, c’est-à-dire sur la durée d’une vie, les niveaux seraient également significatifs pour une population assez nombreuse. Mais tout dépend, bien sûr, des mesures que prendront les autorités japonaises en matière d’évacuation et de relocalisation des populations.
Première session

Les mécanismes de défense en profondeur

Présidence de M. Bruno Sido, sénateur, premier vice-président de l’OPECST,

rapporteur de la mission parlementaire

M. le premier vice-président Bruno Sido, sénateur, rapporteur.

Notre première session est donc consacrée aux mécanismes de défense en profondeur, c’est-à-dire aux niveaux successifs de protection permettant d’assurer l’intégrité du réacteur, même en cas de défaillance d’un circuit névralgique – le but ultime étant alors moins de préserver le réacteur lui-même que d’empêcher les produits radioactifs d’entrer en contact avec l’environnement.

Nos visites des installations nucléaires de Nogent-sur-Seine, de Gravelines et de Flamanville nous ont déjà permis de découvrir certains de ces dispositifs, notamment ceux qui assurent le maintien de l’alimentation électrique, par des voies à la fois différentes et redondantes, et par là même le maintien d’une capacité de pilotage en dépit de pannes dont les origines peuvent être très diverses.

Nos intervenants décriront les principaux dispositifs constitutifs du mécanisme de défense en profondeur en montrant comment celui-ci se renforce avec la prise en compte des retours d’expérience.

M. Martial Jorel, directeur de la sûreté des réacteurs à l’IRSN, va nous expliquer comment cette défense s’organise dans le cadre de la technologie des réacteurs à eau pressurisée, qui équipe l’ensemble du parc nucléaire français.

Ensuite, M. Jean-Marc Miraucourt, directeur de l’ingénierie à EDF, passera de la description des principes de la défense en profondeur à la présentation des dispositifs pratiques de protection des 58 réacteurs de notre parc.
Le réacteur EPR a été spécifiquement conçu pour faire progresser d’un cran la sécurité des centrales, afin notamment de répondre au danger de fusion du cœur, qu’illustrent les accidents survenus à Three Mile Island et à Tchernobyl. M. Bertrand Barré, conseiller scientifique d’Areva, nous indiquera quel est l’apport complémentaire des réacteurs nucléaires de troisième génération à la défense en profondeur.

Enfin, MM. Thomas Houdré et Sébastien Crombez, de l’ASN, nous exposeront comment le contrôle exercé par l’agence pousse au renforcement constant des mécanismes de protection des réacteurs, notamment à l’occasion des visites décennales.

M. Martial Jorel, directeur de la sûreté des réacteurs à l’IRSN. Après avoir exposé les principes de la défense en profondeur dans les réacteurs à eau pressurisée, je passerai en revue chaque ligne de défense, puis je présenterai les avancées réalisées et les points sur lesquels notre attention doit se porter au vu du retour d’expérience de l’accident de Fukushima.

Pour analyser les risques réels présentés par une installation, il faut d’abord en connaître tous les risques potentiels, ce qui exige de mener des études de sûreté sur des sujets difficiles, tels que les chutes d’avion ou les accidents thermo-hydrauliques, et de faire des recherches en vue de maîtriser les phénomènes physiques en jeu dans chaque cas.

La deuxième étape consiste à étudier l’état des installations, la conception des systèmes et leur exploitation, l’entretien des matériels et le mode de traitement des anomalies. La force de l’IRSN résulte de sa place au cœur de tous les métiers et de ce qu’il considère les deux plateaux de la balance pour porter un jugement. Il intègre dans ses hypothèses à la fois l’évolution du contexte et celle des objectifs de sûreté.

La première ligne de défense consiste en l’obtention d’une installation fiable et robuste, à l’issue des travaux de conception, d’étude et de réalisation. L’action à mener pour contrôler cette efficacité réside dans la vérification de conformité.
La deuxième ligne, c’est la résistance de l’installation à des incidents tels que des pertes de source électrique ou des défaillances de matériels. Le réacteur doit alors rester dans son domaine de fonctionnement autorisé. L’analyse de cette ligne de défense implique de tirer les enseignements des incidents – c’est le retour d’expérience.

La ligne suivante a trait à la maîtrise des accidents susceptibles d’intervenir dans le domaine de conception des installations. En vertu du principe de la défense en profondeur, on prend toutes les précautions possibles dès la conception mais on imagine aussi que celle-ci puisse être défectueuse et on examine un certain nombre d’hypothèses d’accidents, qui vont d’une grosse brèche dans le circuit primaire jusqu’à la rupture d’une tuyauterie de vapeur. On équipe alors l’installation de systèmes supplémentaires : de pompes qui alimentent en eau le circuit primaire afin de refroidir le cœur et de contribuer à la dépressurisation de l’enceinte de confinement ; de lignes d’arrivée d’eau, à la fois d’appoint et de secours, destinées à refroidir le générateur de vapeur. Tous ces systèmes sont redondants et résistent aux séismes dans les hypothèses de charges prévues. Leur fonction est de garantir un circuit d’injection de sécurité, en puisant de l’eau dans des réservoirs ou des bâches qui sont généralement uniques.

La tâche, à ce stade, consiste en des études probabilistes du risque de fusion du cœur.

La dernière ligne consiste à limiter les conséquences des accidents graves. Elle a été mise en place à la suite de l’accident de Three Mile Island car on n’en imaginait pas de tel auparavant. Ce domaine est celui de la recherche & développement, des études de sûreté et de la mise en place de dispositifs ou de compléments de justification sur les installations. Le point essentiel demeurant l’état de celles-ci.

Je reviens maintenant sur chaque ligne.

L’exigence d’une installation fiable et robuste implique, selon l’IRSN, des vérifications de conformité, notamment sur les systèmes passifs : il y a une dizaine d’années, nous avions mis en évidence une insuffisante résistance aux séismes des bâches des dispositifs de sauvegarde.
Ce défaut a été corrigé. En plus des séismes, il faut aussi penser aux inondations et à tout ce qui relève de la protection contre les agressions.

Deuxième exigence posée par l’IRSN pour cette ligne de défense : la disponibilité des systèmes de sûreté. Cela peut sembler aller de soi mais il faut savoir qu’EDF engage un vaste programme d’essais périodiques sur les installations, de requalification des matériels, de traitement des écarts. Il faut en effet éviter de régresser sur ces trois points. L’année dernière, un incident aux États-Unis a révélé l’existence, dans une centrale, de trois défauts latents depuis deux ans, qui ont dégénéré en accident relativement grave sur la chaudière, avec deux incendies et le déclenchement du plan d’urgence.

S’agissant de la deuxième ligne de défense, le meilleur moyen d’analyse des incidents est le retour d’expérience. Nous craignons ce que nous appelons les « incidents précurseurs », qui dégénèrent et peuvent se transformer en accidents graves alors qu’aucune ligne de défense effective n’a été mise en place. Se sont ainsi produits, en 2001 et 2006, des incidents à la centrale de Ma’anshan, à Taiwan – la perte totale des sources électriques pendant deux heures – ainsi qu’à celle de Forsmark, en Suède. Ces incidents ont en commun de démontrer qu’un réacteur peut être agressé par son réseau électrique, en raison de parasites ou de surtensions. Ils ont été analysés en tant qu’accidents précurseurs par l’IRSN et par EDF.

Les voies de progrès pour cette ligne de défense résident bien sûr dans la poursuite des analyses de ce type d’incidents, mais aussi dans l’attention qu’il faut porter plus que par le passé aux agressions externes. Il y a ainsi eu suffisamment de tornades et d’ouragans dans une période récente pour que nous nous préoccupions de savoir s’ils peuvent dégénérer. C’est pourquoi l’IRSN a demandé à EDF d’étudier ce point dans le cadre du troisième examen décennal des réacteurs de 1300 mégawatts.

Troisième ligne : les études d’accidents. Au cours de la décennie 1970, l’IRSN et EDF avaient effectué des études de fiabilité montrant que la principale faiblesse des systèmes redondants résidait dans les modes communs. Nous avions alors découvert que la probabilité de perdre ces systèmes était de l’ordre de 10^{-5} par réacteur et par an, ce qui fut jugé important au vu des risques encourus, car la perte des systèmes redondants conduit à la fusion du cœur. Au cours de la décennie suivante, ont donc été étudiées des situations telles que la perte totale de la source froide, des flux
électriques, de l’alimentation en eau... Des procédures ont été mises en place pour trouver des palliatifs. En 2009, nous avons subi une perte totale de source froide à la centrale de Cruas, après 1 500 années/réacteur de service, soit un peu plus tôt que prévu. La capacité de réaction à l’incident a fortement valorisé les dispositifs que nous avions installés. Ce sont des lignes de défense effectives que nous devons maintenant réexaminer à la lumière de l’accident de Fukushima.

Les études probabilistes, dans le cadre des troisièmes réexamens décennaux des réacteurs de 900 mégawatts, ont abouti également à trois modifications importantes : le renforcement de la boulonnerie du tampon d’accès matériel afin d’obtenir une meilleure tenue de l’enceinte de confinement, l’implantation de mesures d’hydrogène et la détection de percée de la cuve, laquelle a suscité bien des questions à Fukushima. Ces modifications sont actuellement réalisées à Fessenheim et à Tricastin.

Des réflexions restent cependant à mener sur les cas de charge en situation d’accident grave. Ainsi le filtre U5 ne résiste pas aux séismes. Nous ne disposons pas aujourd’hui de connexion entre les accidents graves et les
agressions. Nos exigences sont donc à revoir en termes de durée de mission et de tenue aux agressions.

Les conditions d’intervention en situation ultime sur une centrale nucléaire sont également à réexaminer : comment apporter des moyens mobiles et, surtout, comment les connecter aux systèmes « défiabilisés » ? La question s’est posée à Fukushima.

Lors de l’incident survenu à la centrale du Blayais, l’inondation a bien été traitée en termes de cas de charge. Mais il y eut aussi une approche événementielle, discutée entre l’IRSN et EDF, consistant à étudier ce qui peut se produire sur un site subissant une inondation et soumis à une perte de source externe. Cette approche a conduit à renforcer l’autonomie des systèmes par l’ajout de réserves d’eau et de fioul ainsi que par la fiabilisation des groupes électrogènes. À la suite de Fukushima, il y a probablement lieu de revoir aussi ces lignes de défense.

Le séisme n’est pas seulement considéré comme un cas de charge mais aussi sous d’autres aspects : quel est son impact sur des matériels qui ne lui résistent pas et chutent sur des matériels qui, eux, lui résistent ? On pourrait en donner pour exemples la chute d’un portique sur un groupe électrogène ou l’écroulement d’une salle des machines sur le bâtiment électrique voisin.

Des efforts ont également été faits afin de mieux évaluer les risques sismiques par des cotes de calcul, ce qui a conduit à des renforcements de planschers, comme à Fessenheim, ou à des requalifications de matériels.

Des études probabilistes de sûreté, sismiques et de marge sismique, ont été réalisées à Tricastin. Une autre est en cours à Saint-Alban.

M. Jean-Marc Miraucourt, directeur de l’ingénierie nucléaire d’EDF. Mon exposé portera sur trois sujets : les principes de conception des systèmes de protection, la façon dont ils sont dimensionnés et l’évaluation de leur robustesse.

Nos installations bénéficient de trois fonctions de sûreté principales : la maîtrise de la réaction nucléaire, l’évacuation de la puissance et le confinement de la radioactivité.

Pour dimensionner les systèmes de protection, on définit la stratégie de défense en profondeur de ces trois fonctions et on cumule les lignes de défense, qui peuvent être multiples, successives et diversifiées.

La conception de ces systèmes est contemporaine de celle des centrales, et se concrétise par les autorisations de création et de mise en service. Mais il est tout aussi important de les soumettre à révision lors de chaque examen de sûreté, notamment lors des réexaminons décennaux, conformément au principe d’amélioration continue de la sûreté. La vérification de la robustesse des systèmes peut alors déboucher sur des modifications d’installations, qui peuvent être décidées sur trois fondements : le retour d’expérience, national et international ; l’amélioration des connaissances scientifiques avec, en particulier, le perfectionnement des moyens de calcul et des modélisations numériques ; enfin, l’augmentation générale des exigences de sûreté.

Il existe trois lignes de défense en profondeur : celle des dispositifs de protection passifs, celle de la protection active automatique, et celle de la protection active mis en œuvre par les opérateurs.

Les dispositifs passifs consistent d’abord à dresser trois barrières entre le combustible du cœur du réacteur et l’extérieur de la centrale. La première est composée des gaines qui entourent le combustible dans la cuve, la deuxième est le circuit primaire dans lequel circule l’eau de refroidissement, la troisième est l’enceinte de confinement.

Le parc français est constitué de réacteurs standardisés de la filière à eau pressurisée – en anglais PWR. La vapeur sortant de l’enceinte de confinement et actionnant la turbine n’est pas radioactive car l’eau n’a pas
circulé dans le cœur, contrairement à ce qui se passe dans les réacteurs à eau bouillante – la technologie BWR de Fukushima. On peut donc dire que la technologie PWR offre une ligne de défense supplémentaire.

La conception même du cœur du réacteur le rend « auto-stable » : une excursion de puissance, pour quelque raison que ce soit, provoque une élévation de la température qui, elle-même, étouffe la puissance nucléaire. À Tchernobyl, au contraire, le cœur s’« auto-emballait » en cas d’augmentation de la puissance.

Autres dispositifs passifs : la réaction nucléaire s’arrête en cas de perte d’alimentation électrique – les barres chutent alors dans le cœur sous l’effet de leur propre poids – et, en cas de chute de pression, des réservoirs sous pression déclenchent d’eux-mêmes une injection d’eau de sécurité dans le cœur.

Les dispositifs de protection actifs qui sont mis en œuvre par les opérateurs interviennent plusieurs heures ou plusieurs jours après un accident.

La première tâche des opérateurs consiste à vérifier que tous les systèmes automatiques sont bien entrés en service. Il s’agit ensuite pour eux d’engager les actions à long terme permettant de regagner un état sûr par refroidissement et par dépressurisation du réacteur, par contrôle de la concentration en bore de l’eau, etc. L’ensemble de ces actions fait l’objet de procédures de conduite accidentelles auxquelles les opérateurs sont formés et rompus, grâce notamment à la présence d’un simulateur pleine échelle sur chaque site.
La robustesse des systèmes de protection repose sur trois types de mesures : de redondance – on multiplie les systèmes identiques –, de diversification – des systèmes différents assurent une même fonction de sûreté – et de vérification périodique et fréquente du bon fonctionnement de l’ensemble.

Redondance : les actions automatiques de protection du cœur à court terme sont quadruplées dans le contrôle-commande ; les systèmes de sauvegarde – injections de sécurité, diesels de secours, circuits d’aspersion auxiliaires, circuits de refroidissement des piscines de stockage de combustible – sont doublés, chacun d’eux pouvant assurer à lui seul la fonction requise. L’EPR partant d’une nouvelle conception, la redondance de ses systèmes de protection a été encore accrue.

Diversification : il existe, par exemple, cinq moyens de secours électrique différents, dont les diesels de secours, protégés contre les séismes et les inondations. Une seule de ces cinq alimentations est suffisante pour garantir le fonctionnement des matériels de sûreté. D’autre part, pour refroidir le cœur par le générateur de vapeur, nous avons à la fois des pompes électriques et des turbopompes fonctionnant grâce à la vapeur produite par le générateur lui-même, ce qui permet de se dispenser d’alimentation électrique extérieure.

Vérification en permanence du bon fonctionnement des systèmes de protection : les opérateurs procèdent à plus de 2 000 essais périodiques par réacteur et par an – ils se succèdent à intervalles de quelques jours seulement pour les fonctions les plus importantes. La révélation de l’indisponibilité d’un système de protection peut entraîner l’arrêt du réacteur, sous une heure, par les systèmes assurant la protection du cœur à court terme.

Le dimensionnement des systèmes de protection obéit à une démarche déterministe, postulant les défaillances les plus graves. On la complète par une vérification probabiliste exhaustive afin de ne pas passer à côté de certaines situations critiques. Enfin, on suppose la défaillance des deux lignes de défense précédentes et on met en place une ligne de défense ultime.
Démarche déterministe : pour chaque fonction de sûreté – ainsi la maîtrise de la réaction nucléaire –, on suppose la défaillance des systèmes assurant la première ligne de défense et on se dote de dispositifs supplémentaires. Par exemple, pour la fonction d’évacuation de puissance, on suppose la rupture totale et instantanée du circuit primaire, qui entraîne la vidange du cœur du réacteur et l’entrée en service des dispositifs de secours destinés à renoyer le cœur avant atteinte des critères de sûreté.

Démarche probabiliste : on recense tous les systèmes jouant un rôle de sûreté et on quantifie leur fiabilité, ce qui permet d’évaluer la probabilité du risque résiduel de fusion du cœur, ainsi que de réorienter les examens de sûreté vers des sujets qui auraient pu échapper à la démarche déterministe.

Les valeurs du risque de fusion du cœur retenues en France sont inférieures aux objectifs fixés par l’Agence internationale de l’énergie atomique (AIEA) : moins d’un risque tous les 100 000 ans suite à des défaillances internes à la centrale, et moins d’un risque tous les 10 000 ans du fait d’une agression externe.

En ligne de défense ultime, nous mettons en place des moyens de maîtriser les conséquences des accidents graves, l’objectif étant d’éviter des rejets radioactifs sur les populations. Nous en avons déjà fourni des exemples lors de précédentes auditions, tels que l’installation de recombineurs d’hydrogène passifs et de filtres à sable qui retiennent le césium en cas de décompression de l’enceinte de confinement.

À la suite de l’accident de Fukushima, qui a provoqué une contamination par le césium, nous allons réexaminer l’ensemble de ces lignes de défense, conformément au cahier des charges arrêté par l’ASN le 5 mai dernier. Nous pousserons aussi les investigations au-delà des lignes actuelles.

Les atouts du système français de protection résident donc dans la conception initiale du réacteur à eau pressurisée, dans une amélioration continue de la sûreté au fil des réexamin de celle-ci, dans la standardisation d’un parc permettant une mise à niveau régulière des 58 réacteurs, dans une formation des opérateurs de haut niveau, dans une organisation industrielle qui intègre une R & D forte effectuée par l’IRSN, par le CEA ainsi qu’au
niveau international, enfin dans l’intégration, au sein d’EDF, d’une ingénierie et de moyens d’exploitation assurant une maîtrise continue de la conception des centrales tout au long de leur cycle de vie.

M. Bertrand Barré, conseiller scientifique d’Areva et professeur émérite à l’Institut national des sciences et techniques nucléaires. La troisième génération de réacteurs nucléaires français a été conçue après l’accident de Tchernobyl. Elle a donc intégré des exigences de sûreté supérieures avec la prise en compte des risques d’accident les plus graves.

Trois objectifs ont été poursuivis : réduire la probabilité d’un accident grave, par la prévention et en prenant en compte des hypothèses d’agression externes comme internes ; en réduire également l’impact sur les populations en cas de fusion du cœur ; renforcer la capacité de résistance aux agressions externes, y compris la chute d’un avion commercial.

Les moyens de réduire la probabilité d’un accident grave sont les mêmes que pour les générations précédentes : redondance fonctionnelle et diversité des systèmes comme des équipements. Cependant, on a ajouté un élément supplémentaire : une séparation géographique, pour parer un risque de modes communs d’agression.

La protection contre les accidents graves bénéficie d’une innovation caractéristique de cette troisième génération : le récupérateur de corium. Mais il faut aussi mentionner au même titre la coque « anti-chute d’avion » qui, dans l’EPR, défend une partie des systèmes de sauvegarde et le bâtiment renfermant le combustible nucléaire.

Les événements pris en compte sont la perte de réfrigération primaire, la perte des alimentations électriques externes – ce qui s’est produit à Fukushima –, la défaillance des injections de sécurité et celle des diesels principaux, l’incendie, l’inondation, les séismes, les chutes d’avion, ainsi que l’accident grave qu’est la fusion totale du cœur du réacteur.

Les circuits de sauvegarde principaux sont maintenant d’une redondance 4 : chacun des quatre trains de sûreté a la capacité, à lui seul, d’assurer une protection intégrale du réacteur ; chacun est en outre installé
dans un bâtiment séparé. La redondance devient ainsi organique et non plus seulement fonctionnelle.

Chaque division est alimentée par la source normale mais, en plus, par un diesel principal de secours. Deux des trains de sauvegarde peuvent en outre être alimentés par un diesel supplémentaire et de technologie différente, dite SBO (pour *station black out*).

En cas de défaillance du réseau électrique principal, toute une série de mesures sont possibles. La plus simple est l’îlotage, c’est-à-dire l’auto-alimentation de la tranche par son propre turboalternateur. En cas d’échec, on peut recourir au démarrage automatique des quatre diesels de secours. Si l’on a perdu le réseau principal proche de la centrale, on peut basculer sur un réseau auxiliaire, non plus à 400 kilovolts mais à 110 kilovolts, branché plus loin et garantissant un repli sûr. Enfin, même si les diesels de secours refusent de démarrer, on garde toujours la possibilité de faire appel aux deux diesels SBO, un seul pouvant d’ailleurs suffire.

Les quatre trains de sauvegarde sont donc séparés, deux d’entre eux, contigus, faisant l’objet d’une protection supplémentaire par coque anti-avion cependant que les deux autres sont disposés de part et d’autre du bâtiment contenant le réacteur, de sorte qu’aucune agression ne saurait les mettre tous deux hors service en même temps. La coque protège aussi le bâtiment qui renferme le combustible. Il en résulte une protection générale très supérieure à celle des réacteurs des générations précédentes.

Cette coque protège bien sûr contre les agressions externes, mais aussi internes – incendies, inondations, ruptures de tuyauterie. C’est un élément que l’on doit aux Allemands, l’EPR étant à l’origine un projet conjoint.

Pour ce qui est des six diesels aussi, nous avons joué sur la diversification géographique : ils sont logés dans deux bâtiments différents, situés de part et d’autre de celui qui abrite le réacteur, afin de parer au risque d’une agression qui les mettrait hors service en même temps. Recevant donc chacun deux diesels de secours et un diesel SBO à même d’alimenter un des trains de sauvegarde, ces bâtiments sont résistants aux séismes et leurs portes
résistent, en outre, aux surpressions. Un réexamen est en cours dans le cadre des stress tests, mais les diesels sont déjà bien protégés.

Pour la protection contre les chutes d’avion, nous avons pris en compte non seulement les avions légers et les avions militaires, mais aussi les avions commerciaux. D’où l’ajout de la « coque avion » qui équivaut à une deuxième enceinte du bâtiment réacteur. Outre donc qu’elle résisterait à l’impact d’un avion commercial gros porteur, le choc ne se répercuterait quasiment pas sur l’enceinte interne – les deux sont, en effet, séparées par un espace important, et ne sont en contact que par l’intermédiaire du radier.

Le bâtiment combustible et les bâtiments de sauvegarde 2 et 3 sont dotés de la même paroi externe, résistant aux mêmes types de chocs, et il y a également un espace entre les parois externe et interne de ces bâtiments.

Les bâtiments non protégés par la coque sont physiquement séparés, de sorte que leur mise hors service simultanée est très peu probable. La perte d’un de ces bâtiments ne remettrait pas en cause la protection de l’ensemble.

J’en viens à la protection du public contre les accidents graves. Dans l’hypothèse où une fusion du cœur surviendrait, un système de récupération du corium est prévu : si le cœur fondu sortait de la cuve, il viendrait s’étaler de lui-même dans une zone réfractaire et il serait passivement refroidi grâce à l’eau du grand réservoir compris dans l’enceinte de confinement. Je dis « passivement » car le réservoir est situé à une altitude plus élevée que le récupérateur du corium. L’eau circulerait d’abord entre les dalles réfractaires du récupérateur et le radier pour protéger le béton de ce dernier ; elle viendrait ensuite, par déversement, renoyer le cœur fondu étalé et le solidifier. À plus long terme, il faudrait mettre en service un système actif pour évacuer la chaleur – c’est le rôle du système d’aspersion –, mais j’insiste sur le fait que les premières actions sont de nature passive.

La double enceinte limiterait les rejets dans l’environnement. L’enceinte interne est dotée d’une peau d’étanchéité métallique et les fuites éventuelles entre les deux enceintes, qui pourraient notamment résulter de faiblesses des traversées, seraient reprises et passeraient par un filtre à sable – c’est le cas depuis la construction des réacteurs de 1 300 MW. Ce dispositif empêcherait, en particulier, le rejet massif de particules de césium.
J’ajoute qu’une cinquantaine de recombineurs passifs sont répartis dans le bâtiment réacteur pour garantir que l’hydrogène brûlera dans chacun des sous-compartiments avant d’atteindre une concentration conduisant à une déflagration. En outre, la zone destinée à accueillir le corium est sèche, ce qui évite les risques d’explosion de vapeur – ils existent seulement lorsque le corium coule dans de l’eau, et non dans le cas contraire.

Dans ces conditions, il ne serait pas nécessaire d’évacuer les populations se trouvant à proximité du site en cas de fusion du cœur, et l’on ne condamnerait pas plus d’une récolte dans l’hypothèse de cet accident maximal. Il y a là une différence considérable avec les événements qu’a connus le Japon.

L’accident de Fukushima appelle toutefois notre attention sur un phénomène que nous n’avons peut-être pas suffisamment pris en compte : la conjonction d’événements exceptionnels. C’est pourquoi Areva s’est lancée, en coopération très étroite avec EDF, dans un processus de réexamen des installations dans le cadre des stress tests proposés par la WENRA (Western European Nuclear Regulators Association) et dans la lettre de l’ASN en date du 5 mai dernier. Nous allons étudier, en particulier, les questions de la survie des diesels en cas d’inondation jusqu’à une certaine hauteur, de l’étanchéité des portes et de l’accès à la source froide en cas d’obstruction par des débris. Cette évaluation étant en cours, il serait prématuré d’annoncer des résultats tant que nous n’avons pas pu en discuter avec les autorités de sûreté.

M. Thomas Houdré. Les missions de l’ASN consistent à pousser les opérateurs à améliorer sans cesse le niveau de sûreté de leurs installations. Nos contrôles reposent sur l’instruction des dossiers déposés par l’exploitant, sur les inspections que nous réalisons, sur l’analyse des événements ou des incidents significatifs, sur le contrôle des opérations effectuées pendant les arrêts des réacteurs et sur le réexamen de sûreté associé aux visites décennales.

Tout d’abord, toute modification apportée à une centrale susceptible d’affecter la sûreté des réacteurs doit faire l’objet d’une déclaration à l’ASN par EDF, qui doit fournir un ensemble de documents justificatifs. Cette déclaration est analysée avec le concours de l’IRSN, puis l’ASN prend position : elle peut formuler un avis positif, éventuellement assorti de
réserves, ou rejeter les modifications envisagées si elles posent un problème de sûreté ou constituent une régression à cet égard. Tous les dispositifs de protection étant concernés, nous examinons un nombre considérable de modifications chaque année.

Afin de vérifier le maintien de la conformité des installations au fil du temps, nous réalisons, par ailleurs, des inspections, au nombre d’un millier par an. Couvrant l’ensemble de la vie d’une installation nucléaire jusqu’à son démantèlement, elles concernent notamment les opérations de fabrication du matériel et de construction. Étant particulièrement sensibles, les équipements sous pression nucléaires, tels que les cuves, les tuyauteries et les générateurs de vapeur, font l’objet d’un programme d’inspection spécifique sur lequel nous reviendrons.

Les inspections donnent lieu à une lettre de suite, qui est publiée sur le site internet de l’ASN et à laquelle tout un chacun peut avoir accès. Des mesures coercitives peuvent être imposées en cas de besoin, lorsque l’exploitant ne se plie pas aux demandes de l’ASN, ou en cas d’enjeu de sûreté extrêmement important.

Le contrôle porte d’abord sur la conception, qui est un des piliers de la défense en profondeur. Elle doit prendre en considération les chargements dus aux agressions, ainsi que le retour d’expérience. On s’est aperçu, en effet, que certains chargements n’étaient pas correctement pris en compte – dans la centrale de Civaux, par exemple, des zones de mélange non identifiées lors de la conception ont assez rapidement conduit à des
phénomènes de fissuration par fatigue thermique. Le retour d’expérience permet en outre de prendre en compte l’évolution des matériaux pour réduire la fragilisation de la cuve. J’ajoute qu’on peut compter sur les avancées réalisées par les forgerons : les techniques d’affinage permettent en particulier de réduire le degré d’impureté de l’acier utilisé.

Le contrôle porte, ensuite, sur les opérations de fabrication : il existe encore un certain nombre de défauts au niveau du soudage. Il faut donc s’assurer, en réalisant des contrôles réguliers, que ces opérations sont réalisées sans dérive.

Cette vérification approfondie des équipements apporte le haut niveau de garantie nécessaire à leur usage nucléaire.

Le retour d’expérience concerne les événements survenus non seulement en France, mais aussi dans le monde entier. Sur la base d’un retour d’expérience provenant de Suède, on s’est ainsi aperçu qu’il existait un risque de colmatage des puisards par les débris résultant d’un accident – ces puisards sont utilisés, en cas de rupture d’une partie du circuit primaire, pour collecter l’eau qui se serait échappée dans l’enceinte de confinement et pour la réinjecter dans le cœur afin de maintenir le refroidissement du combustible nucléaire. L’ASN a demandé à EDF d’étudier le phénomène dans l’ensemble de ses installations. L’exploitant ayant déclaré qu’il n’était pas en mesure d’exclure un tel risque dans ses centrales, une revue complète de la fonction de recirculation est en cours.

M. Sébastien Combrez. Les visites décennales, qui sont un aspect essentiel des contrôles exercés par l’ASN, permettent une requalification complète du circuit primaire principal, à l’issue de quoi nous délivrons un procès-verbal. Un test de résistance de ce circuit primaire est réalisé, ainsi que des contrôles approfondis, en amont, de l’état de la chaudière.

Ces contrôles sont exercés, sous sa responsabilité, par l’exploitant lui-même, mais aussi à la demande de l’ASN. Il importe, en effet, de ne pas contrôler seulement les zones où l’on suspecte des défauts, mais aussi celles où des risques ne sont pas identifiés a priori, car on n’est jamais à l’abri d’une mauvaise surprise. Un colmatage des générateurs de vapeur a ainsi été décelé en 2006, dans la centrale de Cruas : alors que les plaques entretoises ne faisaient pas l’objet d’un contrôle approfondi, on a observé une fissure circonférentielle conduisant à une fuite très importante du circuit primaire au circuit secondaire. Ces contrôles approfondis permettent d’avoir une vision aussi complète que possible de l’état de la chaudière.

Les visites décennales permettent, en outre, de s’assurer que le vieillissement des installations est maîtrisé. L’ensemble des viroles des cuves et des défauts de fabrication potentiels sont examinés, et un examen complet de la justification de la tenue des cuves pour les dix années suivantes est effectué. La visite décennale permet à l’ASN de donner sa « signature » pour la remise en service de la chaudière et de prendre position sur la poursuite de l’exploitation pendant dix années supplémentaires.

M. Thomas Houdré. Les visites décennales s’inscrivent dans le cadre plus large du réexamen de sûreté, dont l’objectif est double : d’une part, vérifier la conformité des installations ; d’autre part, réévaluer les
risques au regard des connaissances disponibles. C’est sur ce fondement que l’ASN se prononce sur la poursuite de l’exploitation du réacteur, éventuellement sous réserve de la prise en compte de prescriptions techniques renforçant les exigences applicables.

M. le président Claude Birraux. Nous en venons maintenant aux questions.

M. Miraucourt a évoqué l’augmentation de la concentration en bore. Pourriez-vous préciser le rôle de celui-ci ?

Ma deuxième question s’adresse à l’ASN : la confrontation des idées lors des réunions des groupes permanents, auxquels participent des experts étrangers, est-elle une spécificité française ?

Pour avoir assisté, en témoin muet, à des réunions de groupes permanents dans les années 1990, j’ai observé que l’instance alors appelée département d’évaluation de sûreté (DES) de l’IRSN jouait le rôle du procureur, EDF celui de la défense, et l’ASN celui du juge. Lors des réunions suivantes, EDF devait répondre aux questions de sûreté qui étaient restées pendantes.

M. le premier vice-président Bruno Sido, sénateur, rapporteur. Le chantier de Flamanville 3, qui avance bien, même si l’on va moins vite qu’en Chine, fait l’objet de nombreux contrôles. J’aimerais savoir si l’ASN et l’IRSN disposent de compétences spécifiques en matière d’architecture.

M. le président Claude Birraux. Votre question risque de faire de la peine à certains ! Je rappelle qu’il a fallu détruire des structures en béton qui présentaient des défauts.

M. Jean-Marc Miraucourt. Le principe de diversification des protections impose d’avoir plusieurs moyens pour contrôler la puissance nucléaire. Aux barres de contrôle qui s’abaissent automatiquement dans le cœur s’ajoute ainsi l’injection de bore dans le circuit primaire. Ce produit chimique ayant pour propriété d’absorber les neutrons, il offre un moyen supplémentaire de contrôler la réaction nucléaire, en particulier lors des
phases de maintien à l’arrêt des réacteurs : l’injection de bore permet de garantir que la réaction nucléaire ne redémarre pas – c’est qu’on appelle « la non-atteinte de la criticité ».

M. Thomas Houdré. L’existence de groupes permanents d’experts n’est pas une spécificité française : des structures similaires existent dans d’autres pays, tels que les États-Unis et l’Allemagne. L’ASN accorde une grande importance à ces instances de discussion et de débat qui permettent de faire entendre des points de vue différents et d’aller au-delà d’un simple dialogue entre l’ASN, l’IRSN et l’exploitant.

La construction de Flamanville 3 constitue un défi pour EDF, quinze ans après la fin du dernier chantier de construction d’un réacteur en France, mais aussi pour l’ASN : il a fallu retrouver les compétences nécessaires pour le contrôle de ce type de construction, qui présente des spécificités, notamment en matière de génie civil, de montage mécanique et de montage électrique. Les inspecteurs de l’ASN ont donc bénéficié de formations spécifiques.

M. Sébastien Combrez. Avant même la phase de fabrication et de montage, l’ASN s’est prononcée sur les choix de conception de l’EPR, notamment sur les éléments qui en font un réacteur « évolutionnaire » – je pense, en particulier, à la virole porte-tubulure qui constituait alors une avancée technologique.

M. Martial Jorel. L’IRSN aide l’ASN à préparer l’inspection des opérations de génie civil. Nos équipes comprennent, en effet, des spécialistes qui ont déjà participé à la construction de réacteurs, et qui sont donc parfaitement au fait de ces questions. Nous avons apporté une attention particulière à la qualité de construction de l’EPR, ce qui a pu conduire, en effet, à la découverte de certaines anomalies. Nous avons beaucoup progressé sur ces questions : il existe désormais des guides d’inspection précisant quels sont les points clés à examiner, et à quel moment le faire.

M. Yves Cochet, député. L’ASN a fait une brève allusion à l’examen des cuves. Avez-vous d’autres moyens que ceux de l’exploitant pour examiner les défaillances éventuelles ? En quoi votre examen est-il plus approfondi ? Plus largement, que vérifiez-vous et comment ?
Vous devez avoir accès à tout, car tout peut conduire à un incident ou à un accident grave, mais le fait que vous publiez vos rapports d’inspection ne se heurte-t-il pas au secret industriel ? Ne vous objecte-t-on pas, dans certains cas, qu’on ne pourra pas rendre publiquement à vos questions ? En bref, n’y a-t-il pas une limite, non à l’examen que vous pouvez réaliser, mais à la publicité des réponses d’Areva et d’EDF ?

J’en viens à l’audit qui va avoir lieu au niveau européen. Les États membres ont rappelé qu’ils avaient leurs propres méthodes de contrôle et leurs propres autorités de sûreté. Même si les réacteurs ne sont pas tout à fait identiques, ne pourrait-on pas envisager une normalisation, les autorités de sûreté s’entendant pour que l’on procède aux mêmes stress tests sur tous les réacteurs européens ? Je serais, en effet, ennuyé que chacun fasse ce qu’il veut. Nos voisins allemands, par exemple, semblent être plus sourcilleux que nous : ils vont fermer de vieilles centrales et se préoccupent en général plus que nous du vieillissement. Cela relève-t-il, selon vous, de divergences techniques entre les ingénieurs sur les tests de sûreté, ou bien de différences d’appréciation politique ?

La lettre du Premier ministre ne prévoyait pas d’allier au-delà des aléas naturels, mais force est de constater qu’il existe des aléas humains, tels que les chutes d’avions, y compris de gros porteurs. Nous venons d’entendre dire que la génération 3 était beaucoup plus sûre à cet égard, mais ne faut-il pas aller plus loin ? Je pense, en particulier, au risque d’actes terroristes contre les installations nucléaires. J’aimerais savoir si l’ASN a reçu des garanties de la part des constructeurs et des opérateurs sur ce point. Même si vous ne pouvez pas entrer dans le détail, car le Gouvernement demande de ne pas faire état publiquement de ces données, je serais rassuré si vous pouviez au moins confirmer l’existence de telles garanties.

Une autre question qui n’a pas été évoquée jusqu’à présent est la défection du personnel. On a vu, en particulier dans le cas du cyclone Katrina aux États-Unis, qu’il existait un risque réel dans ce domaine. Que se passera-t-il si le personnel d’une centrale se met en grève ou est touché par une épidémie, par exemple ? La centrale s’arrêtera-t-elle toute seule, ou bien doit-on redouter un problème de sûreté parce que les installations ne seraient plus surveillées ? Ce risque est-il pris en compte dans les études de sûreté ?
M. le président Claude Birraux. On pourrait élargir la question portant sur l’intégrité des cuves à celle de l’intégrité de leur couvercle, en cause dans l’incident de Davis Besse.

S’agissant des décisions prises de l’autre côté du Rhin, où je me suis rendu avec Christian Bataille dans le cadre d’un travail sur le vieillissement des centrales nucléaires, les responsables allemands de la sûreté nous ont dit qu’elles résultaient d’un accord programmatique conclu entre le chancelier Schröder et sa majorité, sans qu’il existe d’étude dans ce domaine. Ils ont précisé que, pour apprécier le vieillissement des centrales, on prenait seulement en compte les incidents survenus au cours des vingt premières années de leur fonctionnement. Or, les problèmes d’arthrose ne se manifestent pas pendant les vingt premières années de la vie, mais beaucoup plus tard…

M. Yves Cochet, député. C’est une analogie pertinente !

M. Sébastien Combrez. L’exploitant est le premier responsable du contrôle des cuves, mais la réglementation en vigueur impose des exigences précises : il doit démontrer l’exhaustivité des situations prises en compte ; les procédés de contrôle sont soumis à une commission de qualification chargée de se prononcer sur leur efficacité ; l’exploitant doit mettre en œuvre un programme de suivi de l’irradiation ; il est tenu d’intégrer des coefficients de sécurité réglementaires dans ses démonstrations mécaniques.

L’ASN examine ces démonstrations, avec l’appui technique de l’IRSN, en prenant un certain recul. Nous utilisons notamment des moyens de calcul qui permettent d’identifier les transitoires les plus nocifs en matière de surpression à froid, risque auquel la cuve est exposée. Ces éléments, qui sont établis indépendamment et qui peuvent conduire à infirmer la position de l’exploitant, font l’objet d’un débat dans le cadre du groupe permanent d’experts.

M. Yves Cochet, député. Vous ne disposez donc pas de moyens de contrôle supplémentaires : vous examinez les rapports détaillés fournis par l’exploitant.
M. le président Claude Birraux. La loi dispense que l’exploitant est responsable de la sûreté de ses installations.

M. Sébastien Combrez. Comme nous l’avons déjà indiqué, la visite décennale permet de réaliser une épreuve hydraulique du circuit primaire principal, à l’issue de laquelle un procès-verbal est établi. La responsabilité de l’ASN est ainsi engagée.

C’est à l’occasion de ce type d’épreuve qu’ont été détectées à Bugey, en 1991, des dégradations des traversées des couvercles de cuve.

M. Yves Cochet, député. Pouvez-vous nous dire plus précisément en quoi consiste cette « épreuve hydraulique » ?

M. Sébastien Combrez. Elle consiste à dépasser d’un facteur de 1,2 la pression pour laquelle la cuve a été conçue, et de maintenir ce palier afin de détecter toute anomalie. C’est un examen physique réalisé par l’ASN.

M. Jean-Marc Miraucourt. J’ajoute que les enregistrements des contrôles de la cuve – radiographies ou contrôles par ultra-sons, par exemple – sont conservés pendant toute la durée de vie de la centrale. Ils peuvent donc être consultés à tout moment par l’ASN.

M. le président Claude Birraux. Pour l’anecdote, c’est feu notre collègue Michel Pelchat qui est à l’origine des méthodes d’analyse qui ont permis la découverte de microfissures sur les couvercles de cuve.

M. Thomas Houdré. Conformément à l’objectif de transparence posé par la loi de juin 2006, les actes rédigés par l’ASN à la suite du contrôle des exploitants sont rendus publics sur notre site. Certaines réponses à nos questions peuvent certes mettre en jeu le secret industriel ou commercial, car nous attendons un degré de détail qui peut être extrêmement élevé tandis que les exploitants sont tenus par la loi de répondre, mais nos inspecteurs ont l’interdiction de divulguer les informations couvertes par ce secret.

L’harmonisation des contrôles au niveau européen est un objectif défendu par l’ASN déjà bien avant les événements de Fukushima. Nous
sommes à l’origine de la création de la WENRA, qui regroupe les responsables des autorités de sûreté nucléaire en Europe et qui travaille depuis de longues années à une certaine harmonisation des exigences de sûreté au niveau européen, dans la perspective de leur élévation générale. À la suite de l’accident de Fukushima, cette structure a élaboré un projet de cahier des charges encadrant les stress tests à destination de la Commission européenne, mais la décision est effectivement de nature politique.

En ce qui concerne la sécurité des installations nucléaires, les responsabilités sont partagées : l’ASN est en charge du contrôle de la sûreté des installations, ce qui inclut les conséquences éventuelles d’actes de malveillance ; en revanche, elle n’est pas en charge du contrôle de la protection des installations contre ces mêmes actes. Cette mission relève du Haut fonctionnaire de défense et de sécurité du ministère de l’environnement.

M. Yves Cochet, député. Je ne suis pas rassuré de savoir qu’une seule personne s’occupe de cette question…

M. Thomas Houdré. Le terme de « Haut fonctionnaire de défense et de sécurité » désigne une entité administrative.

M. le président Claude Birraux. Pour avoir été ministre de l’environnement, vous savez qu’il s’agit d’un service, monsieur Cochet !

M. Thomas Houdré. J’en viens à la question de la défection éventuelle des personnels. Les hommes et les organisations jouent, en effet, un rôle central en matière de sûreté, de radioprotection et de protection de l’environnement. L’ASN s’intéresse à ces sujets depuis de nombreuses années et elle a demandé aux exploitants, dans le cadre des évaluations complémentaires de sûreté engagées à la suite de l’accident de Fukushima, de ré-analyser les capacités d’intervention des personnels en situation d’accident, ainsi que les effets que d’éventuelles limitations de ces capacités pourraient avoir pour la gestion d’un accident, et de réfléchir plus généralement sur la répartition entre les tâches sous-traitées et celles qui ne le sont pas. Il est légitime de se demander si l’on ne peut pas encore progresser dans ces différents domaines.
M. Christian Bataille, député, rapporteur. À l’occasion de notre visite à Gravelines, la semaine dernière, nous avons appris que des personnes avaient été découvertes dans un camion à l’entrée de la centrale. Quelles sont les mesures adoptées pour empêcher les intrusions dans les centrales françaises ?

La visite d’un poste de simulation nous a permis de constater que le pilotage était très centralisé : il est effectué par quatre personnes. Que se passerait-il si l’une d’entre elles, dans un accès de démence ou dans d’autres circonstances, voulait prendre le contrôle de la centrale ? Celle-ci n’est-elle pilotable que depuis ce poste de commande, ou bien peut-on reprendre le contrôle des réacteurs depuis un autre endroit ?

M. Bruno Sido, sénateur, rapporteur. EDF a présenté, avec beaucoup de talent, les systèmes de secours et d’urgence prévus en cas d’accident, mais nous avons constaté à Fukushima que des causes communes pouvaient affecter simultanément plusieurs réacteurs appartenant à un même site. Or il y a six réacteurs à Gravelines – autant qu’à Fukushima Daiichi. Est-on sûr que les moyens matériels et humains disponibles permettraient de faire face simultanément à des situations accidentelles multiples affectant plusieurs réacteurs ?

L’accent a porté, à juste titre, sur le cœur du réacteur, où sont réunies les conditions les plus dangereuses en matière de température, de pression et de dégagement d’énergie, mais le point faible des centrales s’est peut-être déplacé, compte tenu des progrès réalisés en matière de protection du cœur, vers les piscines de refroidissement du combustible – on l’a bien vu à Fukushima. Ces piscines sont beaucoup moins bien protégées contre les agressions externes : même si elles ne se trouvent pas au-dessus du réacteur, comme au Japon, elles ne sont pas à l’intérieur de l’enceinte de confinement, et elles bénéficient, me semble-t-il, de moins de systèmes de protection. Que pouvez-vous nous dire du risque qu’elles présentent ?

M. Jean-Marc Miraucourt. À la suite de l’incident que vous évoquez – des clandestins ont été découverts à l’intérieur d’un camion –, des mesures supplémentaires de contrôle ont été mises en place : des portiques ont été installés et les forces de gendarmerie affectées à la protection des sites ont été renforcées. J’ajoute que les camions font l’objet d’inspections et que nous pratiquons des ruptures de charge : les camions sont déchargés à
l'entrée des centrales, le matériel étant acheminé à l’intérieur des installations nucléaires par d’autres véhicules, en particulier lors des opérations d’arrêt de tranche pour maintenance.

S’agissant des salles de commande, dont vous avez visité une réplique exacte, il faut garder à l’esprit que la centrale est automatiquement mise à l’arrêt en cas de déviation de n’importe quel paramètre affectant la sûreté, ce qui vaut aussi bien pour des défaillances matérielles que pour des causes humaines. Un arrêt d’urgence du réacteur se produit ainsi en cas d’action inappropriée : une cinquantaine de cas sont enregistrés chaque année.

Dans l’hypothèse où la salle de commande ne serait plus habitable, un autre poste de pilotage, plus réduit mais permettant de contrôler la centrale, est installé ailleurs, en général à un autre étage du bâtiment électrique.

Il existe, en outre, une organisation nationale de crise qui est activée afin d’apporter des éléments d’analyse, de diagnostic et de pronostic supplémentaires en cas d’accident. De nombreux exercices sont réalisés chaque année dans ce cadre. Il s’agit de conseiller les opérateurs, voire de leur demander de réaliser telle ou telle action pour reprendre en mains la centrale. Il y a donc une redondance au plan humain.

Certaines causes communes de défaillance pouvant affecter plusieurs réacteurs d’un même site sont déjà prises en considération, mais nous avons tout de suite indiqué qu’il faudrait tirer des enseignements de Fukushima à cet égard. Ces situations seront traitées dans le cadre des stress tests et des réexaminens auxquels nous allons procéder. Deux volets complémentaires sont prévus : d’une part, la mise en place de moyens matériels et humains supplémentaires sur les sites pour faire face à des accidents sur plusieurs réacteurs ; d’autre part, la mise à disposition de moyens nationaux, eux aussi matériels et humains, pour prendre le relais ou secourir un site, en particulier dans l’hypothèse où plusieurs réacteurs, voire tous les réacteurs, subiraient un accident.

La conception des piscines de stockage des combustibles usés prend en compte le même niveau d’aléas en matière de séismes et d’inondations que la conception des réacteurs. Ce qu’on appelle l’îlot nucléaire comprend
non seulement le réacteur et son enceinte de confinement, mais aussi la piscine de stockage. L’ensemble doit satisfaire aux mêmes exigences de sûreté.

S’agissant des circuits de refroidissement des piscines, il existe là aussi une redondance : nous disposons de deux trains de refroidissement alors qu’un seul suffirait. Cela étant, la robustesse du système fait également l’objet d’un réexamen.

M. Philippe Tourtelier, député. L’un des avantages de l’EPR, nous a-t-on expliqué, résiderait en ce qu’en cas de fusion, le cœur est récupéré : de l’eau stockée se déverse automatiquement pour le refroidir. Mais que devient la vapeur ainsi dégagée ?

M. Bertrand Barré. Dans un premier temps, le système est passif ; ensuite se produit effectivement un dégagement de vapeur : il est alors nécessaire de déclencher l’aspersion pour faire baisser la pression et la température à l’intérieur du bâtiment. C’est la seconde phase, active.

M. Philippe Tourtelier, député. Sous quel délai cette dernière doit-elle intervenir ?

M. Bertrand Barré. Au bout d’une douzaine d’heures environ, ce qui n’est pas négligeable.

M. Sylvain David, physicien au CNRS et membre du comité d’experts. Les turbopompes, qui assurent la poursuite du refroidissement du cœur en cas de perte totale d’alimentation électrique, ne semblent pas avoir fonctionné à Fukushima car les vannes qui dévient la vapeur vers elles fonctionnent à l’électricité. Qu’en est-il pour les réacteurs français ?

Les filtres permettant de capturer la majeure partie du césium et une partie de l’iode existaient aussi à Fukushima, mais il n’a pas été possible de les utiliser pour le dégazage. Les circuits accueillant le gaz radioactif sont-ils redondants dans les centrales françaises ?
Enfin, je m’étonne que l’on n’ait guère évoqué les batteries de secours ultime. Où sont-elles placées ? Sont-elles redondantes ? Y en a-t-il dans chacun des quatre bâtiments réacteurs de l’EPR ? Quelle est leur autonomie ?

M. Georges Servière, conseiller nucléaire du président d’EDF. À Fukushima, les tranches 2 et 3 comprennent en effet des turbopompes, qui se sont arrêtées lorsque les réserves des batteries ont été épuisées. Les turbopompes qui existent dans nos installations n’ont pas exactement le même rôle, même si le fonctionnement est similaire, notamment en ce qui concerne l’alimentation de secours par les générateurs de vapeur. Suite à des retours d’expérience relatifs à des incidents antérieurs, un petit turbogénérateur supplémentaire a été mis en place ; il fonctionne à la vapeur mais fabrique de l’électricité pour alimenter le contrôle commande en secours.

Les filtres d’éventage de la centrale de Fukushima ne sont pas, à ma connaissance, de même type que ceux qui sont utilisés dans les centrales françaises ; surtout, les éventages n’y ont pas été réalisés avec les vannes prévues à cet effet, car il n’a pas été possible d’actionner leurs systèmes de commande en temps voulu. Il est donc essentiel de s’assurer que ces dispositifs peuvent fonctionner avec le contrôle commande – air comprimé ou électricité – qui convient ; d’où l’utilité des petits générateurs supplémentaires, à vapeur, que j’évoquais.

L’implantation des batteries obéit à la même loi de redondance que les autres systèmes de protection : il y en a deux trains dans les systèmes d’ordre 2 et quatre pour l’EPR. Elles sont en général installées dans des étages élevés pour ne pas être exposées à une inondation, que celle-ci soit d’origine interne ou externe.

M. Jean-Luc Caron. L’EPR contient un jeu indépendant de batteries supplémentaires, dites « batteries accident grave ». Dotées d’une autonomie d’une douzaine d’heures, elles permettraient, pendant cette durée, d’alimenter le contrôle commande en électricité et d’assurer un éclairage ainsi qu’un peu de ventilation, donnant ainsi le temps de ramener des moyens mobiles.
M. Yves Cochet, député. Certains hackers ont réussi à pénétrer des systèmes informatiques sensibles, comme ceux de ministères de la défense. Est-il déjà arrivé que des virus ou des chevaux de Troie s’infiltrent dans des systèmes de contrôle commande de réacteurs ? Développez-vous vos propres systèmes de sécurité informatique, ou utilisez-vous ceux que l’on trouve sur le marché ?

Un capteur défaillant peut envoyer un signal d’anomalie. Est-ce suffisant pour déclencher les mesures de sécurité, ou bien faut-il qu’une majorité de capteurs détectent l’anomalie ?

M. Jean-Marc Miraucourt. S’agissant des virus informatiques, l’architecture est conçue selon un système de défense en profondeur. Le noyau dur des systèmes de contrôle commande industriels est totalement isolé, il est donc physiquement impossible qu’un virus y pénètre venant de l’extérieur de la centrale. Les virus auxquels nous avons dû faire face n’ont, pour cette raison, affecté que les systèmes tertiaires – de gestion.

Les systèmes de protection font l’objet d’une redondance d’ordre 4. Ainsi quatre capteurs mesurent en permanence la pression dans le circuit primaire. Ces mesures sont comparées ; on considère que la valeur donnée signale un défaut si la moitié des capteurs, voire davantage, donnent simultanément une information anormale. La fiabilité de l’architecture est calculée, dans le cadre d’études probabilistes de sûreté, à partir des mesures de fiabilité des capteurs, compte tenu de la redondance.

M. le président Claude Birraux. Messieurs, je vous remercie.
Deuxième session

Avancées et recherches en matière de protection des réacteurs

Présidence de M. Christian Bataille, député, rapporteur de la mission parlementaire

M. Christian Bataille, rapporteur. Cette seconde session a pour objet de mettre en valeur les efforts de recherche qui sous-tendent les progrès permanents de la sûreté des dispositifs de défense en profondeur : nos visites à Nogent-sur-Seine, Gravelines ou Flamanville ont permis de le constater.

Ces efforts de recherche concernent les matériaux des équipements sous pression, les logiciels de commande, les bétons, mais aussi les moyens de surveillance et de mesure, l’opérateur japonais Tepco s’étant trouvé, après le séisme et le tsunami, presque aussi aveugle sur la situation à l’intérieur de ses installations que l’exploitant américain de la centrale de Three Mile Island en 1979.

Nos intervenants vont nous apporter différents éclairages sur ces recherches, soit pour en présenter les différents axes, soit, plus ponctuellement, pour évoquer en détail l’intérêt de certaines innovations.

M. Christophe Béhar, directeur de l’énergie nucléaire du Commissariat à l’énergie atomique et aux énergies alternatives (CEA). Les études du CEA en recherche et développement sont, dans une assez large mesure, menées soit en collaboration avec EDF, Areva ou l’IRSN, soit via des partenariats internationaux, comme le projet SERENA de l’OCDE.

J’évoquerai la nature de chacun des problèmes soulevés, les acquis dont nous disposons pour les résoudre et ce qui reste à faire. Le CEA consacre environ 24 millions d’euros par an à ces études.

On distingue les accidents de dimensionnement – accidents de perte de réfrigérant primaire, dont Fukushima offre un exemple, et accidents de réactivité – et les accidents hors dimensionnement : problèmes liés à la
création et au comportement de l’hydrogène dans les enceintes de grande taille ; rupture des gaines de combustible – relâchement et transport des produits de fission – ; enfin, création et comportement du corium, combustible fondu qui interagit avec la cuve du réacteur, l’eau et le béton.

S’agissant des pertes de réfrigérant primaire, la température de la gaine augmente en même temps que diminue la pression à l’intérieur de la cuve du réacteur. La pression interne à la gaine varie, selon le temps que celle-ci a passé dans le cœur du réacteur, de 95 à 140 bars. Lorsque la gaine éclate, la température diminue, ce qui provoque une décharge des accumulateurs, d’où une lente remontée de la pression jusqu’à une injection de sécurité de moyenne pression, aux alentours de 40 bars. Le problème posé est celui de la capacité à refroidir le cœur après une rupture complète de la tuyauterie principale de la boucle primaire et la tenue mécanique des gaines des crayons de combustible. Nous savons modéliser le ballonnement et la rupture de gaine du combustible, et son comportement après renouagement du cœur, dans la mesure où les gaines de combustible subissent aussi des changements métallurgiques. Il nous reste à opérer une modélisation en trois dimensions de la gaine de combustible – chaque partie de celle-ci n’étant pas symétrique aux autres – qui prenne en compte les interactions mécaniques éventuelles entre les crayons de combustible.

Les accidents de réactivité peuvent se produire lors de l’éjection d’une barre de contrôle, éjection qui démultiplie, en quelques dizaines de millisecondes, le nombre de neutrons. La température du combustible augmente alors très fortement, et des produits de fission sont produits en grande quantité à l’intérieur de la gaine. Ces produits auront tendance à pousser les pastilles de combustible vers la gaine, produisant une interaction mécanique très forte. Nous travaillons à ce problème au sein de l’installation CABRI en cours de construction à Cadarache, afin de définir les critères de tenue du combustible lors d’un tel événement. Lorsque le programme international CABRI sera opérationnel, il nous faudra étudier le comportement du combustible après ballonnement et rupture, et pourquoi pas envisager de nouveaux matériaux pour les gaines et les combustibles.

J’évoquerai le comportement de l’hydrogène dans un grand volume. Dans le cadre des analyses que nous avons menées sur l’accident de Fukushima, nous nous sommes rendu compte qu’il était nécessaire d’améliorer les outils permettant de mesurer la quantité d’hydrogène créée,
soit par oxydation des gaines de combustible, soit, sur le plus long terme, par interaction des rayonnements avec l’eau, autrement dit la radiolyse. Le problème est l’inflammabilité et le risque d’explosion. Selon le diagramme de Shapiro, lorsque la concentration d’hydrogène est comprise entre 4 et 75 % en volume dans l’air, il y a un risque d’explosion. Il s’agit dès lors de savoir comment l’hydrogène se détend dans l’enceinte, et comment il se mêle avec l’oxygène. Il convient donc de modéliser les processus de développement de l’explosion, de travailler à la gestion de l’atmosphère gazeuse de l’enceinte par la mesure et la modélisation – c’est toute la question des recombineurs d’hydrogène –, ainsi qu’à l’impact mécanique des explosions sur les structures. Ces points sont étudiés dans le cadre du projet international OCDE et du projet européen ERCOSAM, qui doit s’achever fin 2013 : il s’agit d’un bidon d’une centaine de mètres cube, installé à Saclay, dans lequel sont effectuées des mesures de distribution d’hydrogène.

S’agissant de la rupture des gaines de combustible, le problème posé, on l’a souvent évoqué lors de l’accident de Fukushima, est le relâchement et le transport des produits de fission en cas de rupture ou de fusion partielle ou totale des gaines combustibles du réacteur. Nous avons de bonnes connaissances pour le combustible UO₂ actuel ; il nous semble en revanche nécessaire de compléter les études sur d’autres types de combustible, comme le MOX, et d’étudier les phénomènes de dépôt et de revolatilisation : c’est le cas, par exemple, lorsqu’un produit de fission se dépose dans un endroit froid à l’origine, mais qui chauffe pendant l’accident, ou lors des entrées d’air dans les circuits. Il faut aussi améliorer la simulation du transport des produits de fission et étudier l’impact des conditions de renoyer du cœur. Dans cette optique, le programme international VERDON – qui regroupe EDF, GDF-Suez, la Nuclear regulatory commission (NRC) et l’IRSN – est destiné à simuler le comportement d’une gaine de combustible.

Mon dernier point concerne le corium créé en cuve consécutivement à la fusion des crayons de combustible. La première question concerne le comportement du corium et les flux de chaleur qu’il peut transmettre à la cuve du réacteur. Par ailleurs, si le corium interagit avec de l’eau, des matelas de vapeur se forment, ce qui, pour des raisons encore mal définies, peut entraîner une explosion très forte. Concernant, enfin, l’interaction du corium avec le béton, elle varie très sensiblement selon les types de béton.

M. Jean-Claude Micaelli, directeur de la prévention des accidents majeurs de l’Institut de radioprotection et de sûreté nucléaire (IRSN). La recherche fait partie des missions de l’IRSN ; elle contribue à ses activités d’expertise, ainsi qu’au développement des outils – notamment de simulation numérique – et des compétences. La R&D mobilise, à l’Institut, l’équivalent de 280 personnes à plein-temps, pour un budget annuel de l’ordre de 90 millions d’euros. Mon exposé se limitera aux réacteurs sous pression, secteur auquel nous consacrons l’essentiel de ce budget.

La recherche en matière de sûreté se décline en projets et actions, et s’inscrit dans un plan à moyen et long terme qui intègre l’ensemble des activités de l’Institut. Elle fait l’objet d’évaluations internes et externes, via le Comité de l’orientation de la recherche et le conseil scientifique de l’IRSN ou l’Agence d’évaluation de la recherche et de l’enseignement supérieur (AERES). Les recherches nécessaires à nos travaux d’expertise couvrant un spectre relativement large, on conçoit que l’Institut ne puisse les assurer seul : elles s’inscrivent dans une logique de concertation et de complémentarité au niveau international. Reste que l’IRSN effectue lui-même une grande partie de ces travaux, notamment dans le domaine des accidents graves.

Second enjeu : vérifier l’aptitude des systèmes de sécurité à maîtriser les conséquences d’un accident et, dans une logique de défense en profondeur, définir les mesures à mettre en œuvre pour en limiter les conséquences, voire protéger les populations. Nos principaux programmes ont trait aux agressions industrielles et naturelles, au comportement du combustible en situation accidentelle et aux accidents de fusion du cœur.

Ces programmes visent la tenue des équipements importants pour la sûreté et le confinement des radionucléides ; les principales recherches portent sur la caractérisation des agressions. Les résultats expérimentaux permettent de valider deux outils de simulation numérique développés en interne et utilisés par l’expertise. Les principaux programmes font l’objet de larges collaborations internationales, à l’instar des programmes « Prisme » qui, menés sous l’égide de l’OCDE, associent une douzaine de pays.

Les recherches sur le combustible en situation accidentelle se justifient à double titre : en premier lieu, les accidents peuvent entraîner une fuite de produits radioactifs dans l’environnement ; par ailleurs, le combustible étant en perpétuelle évolution – qu’il s’agisse des pastilles, des gainages ou des conditions d’exploitation –, il est nécessaire d’étudier l’impact potentiel sur la sûreté. Les enjeux sont, d’une part, le confinement des radionucléides dans la matrice combustible et son gainage, et, de l’autre, la maîtrise du refroidissement du combustible. Quant aux principaux thèmes de recherche associés, ils concernent les accidents de perte de réfrigérant et les accidents d’excursion de puissance ; en d’autres termes, des accidents à l’origine de conséquences plus graves, comme celles observées à Three Mile Island, Fukushima et Tchernobyl. L’IRSN développe deux grands programmes : le programme Cabri-CIP, sous l’égide de l’OCDE, est consacré aux accidents de réactivité, et le programme Cyclades, aux accidents de perte de réfrigérant.
Le principal outil expérimental de l’Institut est le réacteur CABRI, exploité par le CEA. Les expérimentations réalisées avec des matériaux réels sont complétées par d’autres, plus analytiques, menées, soit au sein de nos laboratoires de thermomécanique et d’analyse métallurgique, soit, pour les examens en laboratoire chaud, au CEA.

La simulation numérique est un volet important de nos recherches. Le logiciel SCANAIR réalise des simulations d’accidents de réactivité et le logiciel DRACCAR, des simulations d’accidents de perte de réfrigérant.

Quant à la problématique des accidents de fusion de cœur, elle fait l’objet de recherches depuis plus de vingt-cinq ans. Ses enjeux concernent la limitation de la progression de l’accident, le confinement des radionucléïdes dans l’enceinte et la définition des mesures de protection des populations. Les principaux thèmes de recherche sont le refroidissement d’un cœur dégradé, l’attaque du radier par le cœur fondu et son refroidissement, les sollicitations dynamiques résultant par exemple d’une explosion d’hydrogène et le transfert des radionucléïdes du combustible à l’environnement.

L’IRSN développe plusieurs grands programmes : le programme PHÉBUS-FP, unique au monde, a commencé en 1993, et les résultats du cinquième et dernier essai ont été publiés fin 2010 ; le programme International source term, dit ISTP, vise à résoudre les problèmes soulevés par les cinq essais du programme PHÉBUS-FP, notamment le comportement de l’iode radioactif dans les circuits et dans l’enceinte de confinement ; le programme Source term and mitigation (STEM), lancé sous l’égide de l’OCDE, a trait à la limitation des rejets lors d’un accident de fusion de cœur – notamment pour les réacteurs de deuxième génération – ; le programme SARNET, enfin, consiste dans la coordination, par l’IRSN, d’un réseau d’excellence rassemblant quarante-deux organismes et plus de deux cents chercheurs.

Les outils expérimentaux sont, d’une part, le réacteur PHÉBUS – ou du moins sa base de données puisque, depuis 2007, il est progressivement démantelé – et, de l’autre, les outils de calcul, tel le logiciel Astec, qui fait l’objet d’une collaboration avec notre homologue allemand Gesellschaft für anlagen und reaktorsicherheit (GRS). Ce logiciel, pour lequel d’importants investissements ont été réalisés, est capable de simuler l’intégralité d’un
accident – à l’exception de l’interaction explosive entre le corium et l’eau, qui fait l’objet d’autres études. Plus d’une vingtaine d’organismes étrangers utilisent aujourd’hui ce logiciel, qui est devenu la référence européenne au sein du réseau SARNET.

Les points forts de ces différents programmes ont été relevés par l’AERES lors de l’évaluation de la recherche en sûreté des réacteurs effectuée il y a moins d’un an : une recherche finalisée, renforcée par des travaux en amont avec des laboratoires universitaires – une demi-douzaine ont ainsi été créés, récemment, en partenariat avec le CNRS – et permettant des expertises scientifiquement étayées ; des partenariats internationaux forts et un leadership mondial sur certaines thématiques ; des outils expérimentaux et logiciels pour la plupart uniques et fédérateurs ; enfin, une recherche pluridisciplinaire, attractive, mobilisant des équipes de chercheurs réactives.

La fragilité de cette recherche est son coût, notamment lorsque les expérimentations nécessitent l’utilisation de combustibles irradiés. Le risque est donc l’abandon prématuré de certains sujets de recherche.

Bien que toutes les leçons de l’accident de Fukushima ne soient pas encore tirées, elles confirment le bien-fondé de certaines pistes auxquelles l’IRSN travaillait déjà : consolider les connaissances sur le déroulement des accidents de fusion de cœur et de dénoyage de piscines ; acquérir des connaissances sur les mécanismes et dispositions qui permettraient d’arrêter la progression de l’accident et de limiter les rejets dans l’environnement ; enfin, compléter, dans une logique de défense en profondeur, nos connaissances du comportement du combustible en situation accidentelle. Ce dernier point est d’importance puisqu’il concerne le refroidissement et la maîtrise de la réaction de fission, actions indispensables pour éviter la fusion du cœur.

M. Frédéric Pouille, président-directeur général, LMP Ingénierie conseil. Je vous remercie de nous donner cette occasion de présenter nos techniques de surveillance par fibre optique.

LMP est une société d’ingénierie spécialisée dans la recherche, la fabrication et l’installation d’instruments de mesure et de contrôle en
différents domaines : stabilité de structures en génie civil, contraintes auxquelles sont soumis certains édifices, constructions industrielles et systèmes mécaniques. Mes collègues Pierre Ferdinand, directeur de recherche au CEA, et Jean-Claude Da Rocha, responsable de la recherche et développement chez ACOME, travaillent à nos côtés.

M. Jean-Claude Da Rocha, ingénieur responsable R&D innovation chez ACOME. ACOME est une société coopérative, participative et industrielle de 1 200 employés, située dans la Manche, à quelques kilomètres de Flamanville. Créée en 1932, elle s’est imposée en Europe dans quatre secteurs : l’automobile, le bâtiment, l’énergie dans l’industrie et les transports, et les télécommunications. Elle conçoit et commercialise des tubes en matériaux de synthèse et des câbles à base de cuivre et de fibre optique – elle est, pour cette gamme de produits, le premier fournisseur de France Télécom.

Afin de rester un leader innovant et à l’écoute de ses clients, ACOME mobilise 10 % de ses effectifs et consacre environ 5 % de son chiffre d’affaires annuel en recherche et développement ; l’entreprise est ainsi mobilisée depuis cinq ans aux côtés de la société LMP et du CEA dans la conception de capteurs à fibre optique. Nous sommes entrés dans la phase industrielle puisque, depuis le début de l’année, nous développons une nouvelle génération de capteurs qui, ayant une portée de plusieurs kilomètres, sont adaptés à la protection des bâtiments réacteurs. M. Pierre Ferdinand est à l’origine de notre partenariat technologique.

M. Pierre Ferdinand, directeur de recherche au CEA, Laboratoire d’intégration des systèmes et des technologies. Mon exposé portera sur l’apport des capteurs à fibre optique dans l’amélioration de la sûreté des installations nucléaires.

Le point commun entre l’éruption du Vésuve en 79 après Jésus-Christ et la catastrophe de Fukushima est le manque d’informations : les habitants de Pompéi ne savaient que faire et, dix-huit jours après le tsunami, l’opérateur Tepco ignorait toujours ce qui se passait dans ses réacteurs. – ce qui avait conduit l’Autorité de sûreté nucléaire française (ASN), à déclarer que ses informations étaient « partielles et incomplètes ». Sans préjuger l’avenir, il est probable que l’ASN accroîtra ses exigences en matière de
sûreté, au moins pour les réacteurs du futur, qu’il s’agisse de la fiabilité et de la redondance des moyens de mesure ou des instrumentations.

Les apports des mesures par fibre optique pour la sûreté nucléaire sont divers : en situation normale, ces capteurs assurent la surveillance thermomécanique de l’enceinte de confinement, la surveillance thermique des piscines ou des conduites de vapeur ; en situation accidentelle ou post-accidentelle, ils permettent la détection du percement de la cuve du réacteur, le suivi de l’avancée du corium, la surveillance thermomécanique de l’enceinte de confinement, la surveillance thermique des piscines, des conduites de vapeur et autres circuits primaires, la détection d’incendie dans le bâtiment ou la surveillance radiologique de l’enceinte par dosimétrie.

La fibre optique présente, pour les capteurs, de multiples avantages : de petit diamètre, son intrusivité est faible ; elle est également dotée d’une immunité électromagnétique ; elle autorise un dépôt de plusieurs kilomètres du système de mesure ; elle offre une bonne tenue en milieu hostile ; enfin, compte tenu du volume de production pour le marché des télécommunications, son coût est faible.

Par ailleurs, elle améliore les performances de l’instrument de mesure, lui permet d’adresser plusieurs paramètres de mesure simultanément et autorise le multiplexage d’un grand nombre de capteurs. Elle intéresse donc tout particulièrement la surveillance, la sécurité et la sûreté des matériaux et des structures.

La méthode classique de mesure distribuée consiste à relier de multiples capteurs par des fils dont le déploiement rend plus complexe la gestion des données. Or, une seule fibre optique permet de remplacer un très grand nombre de capteurs : on peut donc relier quelques fibres à un instrument de mesure lui-même contrôlé à distance et situé hors de toute zone de danger.

Un réseau de capteurs à fibre optique utilise la technique de la « réflectométrie », équivalent du radar optique inventé par les Anglais au cours de la Seconde Guerre mondiale : le temps mis par un signal pour effectuer l’aller-retour vers une cible permet de calculer la distance entre celle-ci et le radar. Dans le cas présent, l’impulsion se propage dans la fibre
optique et, en rencontrant des molécules de silice, génère une réflexion. On analyse alors les échos. On pourrait ainsi, par exemple, mesurer la température, mètre par mètre, d’une fibre déployée sur un circuit de trente kilomètres.

Les performances métrologiques sont élevées – 1°C ; 1 mètre en localisation – ; de surcroît, les fibres optiques peuvent endurer des doses de rayonnement importantes, et permettent d’assurer les mesures même en cas de panne d’électricité, puisque le système de mesure est déporté.

S’agissant du percement de la cuve et du suivi du corium, la problématique post-accidentelle est la surveillance à distance du radier, afin de déterminer une stratégie visant à assurer un fonctionnement même dégradé en cas de perte d’énergie électrique. Les nécessités sont donc de déporter l’instrument de mesure, et d’assurer un fonctionnement sans alimentation ainsi que la redondance, aussi bien des points de mesure que des câbles, en prévision d’une éventuelle destruction de l’installation.

Nous proposons, pour ce faire, une interrogation déportée par réflectométrie, ainsi qu’un maillage sous le réacteur, au niveau du radier, de câbles optiques sensibles à la température ou aux déformations. La redondance, quant à elle, est assurée par plusieurs fibres, et éventuellement par plusieurs sorties hors du bâtiment réacteur afin d’interroger les fibres par un chemin ou un autre en cas de destruction partielle. Ce dispositif permettrait une information en temps réel sur l’avancée du corium, l’état du radier et sa température, soit l’intégrité de la sous-couche réfractaire de zircone et la cinétique de refroidissement du corium. Il peut être installé, bien entendu, dans les bâtiments actuels aussi bien que dans l’EPR.

Ces technologies peuvent avoir d’autres applications, telles que la surveillance des conduites de vapeur, de la piscine du combustible usagé ou la détection d’incendie dans le bâtiment réacteur.

J’en viens à la surveillance de l’étanchéité de l’enceinte de confinement. Le Groupe permanent chargé des réacteurs nucléaires (GPR) avait proposé, il y a une dizaine d’années, que la paroi interne du bâtiment réacteur soit équipée d’une instrumentation adéquate afin de suivre avec précision la perte de précontrainte au cours du temps. En 2007, EDF avait
rédigé un cahier des charges pour équiper Flamanville en ce sens, mais j’ignore où en est le projet : de fait, à l’époque, les câbles optiques sensibles nécessaires à sa réalisation n’étaient pas disponibles. En tout état de cause, nous proposons un câble utilisant trois fibres optiques, qui permettrait une mesure simultanée des tractions, des compressions, des températures, des courbures et des plans de courbure ; une fois relié à un bâtiment, il permet de mesurer son comportement à une grande distance. Le système d’interrogation s’appelle le réflectomètre Brillouin.

La dosimétrie à fibres optiques par technique dite OSL – *Optically stimulated luminescence* – consiste à placer un cristal en bout de fibre, lequel a la propriété, lorsqu’il est traversé par un rayonnement gamma, de piéger des électrons de manière définitive. Lorsque l’on éclaire le cristal avec la fibre optique, on « dépiège » l’électron, ce qui crée une luminescence que l’on peut alors capturer. L’intensité de la luminescence est proportionnelle au nombre d’électrons créés, ce nombre étant lui-même proportionnel aux photons gammas, de sorte que la mesure de la luminescence donne la mesure de la dose. On remet le niveau à zéro en vidant les pièges.

Cette technique permet donc de réaliser des mesures déportées de doses ou de débit de doses, avec une interrogation séquentielle, et ce sans alimentation. Elle présente également une bonne tenue aux radiations, sa cadence de mesure est ajustable, et les gammes de doses sont comprises entre 1 milligray et 10 grays. La remise à zéro séquentielle permet de mesurer des doses cumulées très importantes. Nous avons développé deux générations d’appareils : des systèmes à courte et à longue portée.

Les applications peuvent être le suivi multipoint dans le bâtiment réacteur et la surveillance des filtres de relâchement.

L’expertise du CEA en ce domaine concerne les transferts au profit du CEA-DEN et d’Areva NC – *Nuclear cycle* – à Marcoule, les applications diverses dans le démantèlement et la radioprotection, en particulier pour la surveillance de patients atteints du cancer.

En vingt-cinq ans, une sélection darwinienne s’est opérée dans le domaine de la fibre optique : les techniques les plus efficaces perdurent – réflectométrie, DTS Raman, système Brillouin ou techniques OSL – et sont
déjà utilisées par l’industrie du pétrole et du gaz, pour la surveillance des tunnels ou encore par le génie civil.

Du point de vue de la demande, nous pensons que les applications pour la sûreté du nucléaire civil sont réelles. Installer ces technologies dans les bâtiments réacteurs nous semble donc souhaitable, d’autant que le surcoût est négligeable en comparaison du coût d’un accident majeur.

Grâce à ses spécificités, la métrologie peut améliorer la sûreté des tranches nucléaires : en fonctionnement opérationnel normal, la résilience des fibres peut être mise à profit ; en conditions post-accidentelles, le dépôt permet une transmission à distance, alors qu’aucune instrumentation traditionnelle ne peut fonctionner sans alimentation électrique.

LMP Ingénierie, qui est le chef de file de notre partenariat, assure le déploiement industriel ; ACOME fabrique et fournit les câbles sensibles ; quant au CEA LIST – Laboratoire d’intégration des systèmes et des technologies –, il est chargé de la recherche et développement.

M. Paul Acker. Le matériau béton a enregistré une véritable révolution ces deux dernières décennies, les sauts technologiques ayant porté à la fois sur les propriétés mécaniques – celles qui interviennent dans la résistance au séisme, au feu, aux chocs – et sur les propriétés physiques, essentiellement la durabilité. Dans ce contexte, Lafarge est le leader mondial des matériaux de construction : elle est numéro 1 du ciment et des granulats et numéro 3 du béton et du plâtre. Peut-être convient-il d’ailleurs de rappeler que le ciment n’est pas un matériau, mais une poudre avec laquelle on fabrique du béton, celui-ci étant composé d’eau, de sable, de cailloux et de ciment, ce dernier réagissant chimiquement avec l’eau pour former une sorte de colle. Aujourd’hui, les bétons sont beaucoup plus high tech, avec parfois douze voire dix-huit constituants. Lafarge est également un centre de R&D
car le Groupe fonde sa stratégie sur l’innovation. C’est là un outil unique au monde dans le domaine des matériaux de construction puisque c’est le seul qui réunisse toutes les disciplines de la science des matériaux. Notre présence, enfin, est répartie sur tous les continents, particulièrement en Inde, mais aussi en Chine où se situe la première business unit du Groupe.

Le béton représente aujourd'hui 30 milliards de tonnes par an. Non seulement c’est de très loin le matériau le plus utilisé sur la planète – après l’eau, bien sûr –, mais il est en pleine croissance et l’on peut tabler, avec l’accroissement de la population, sur une augmentation d’encore 50 % dans les deux décennies qui viennent. Aucun autre matériau n’est capable de fournir à la construction ne serait-ce que 0,5 milliard de tonne : il n’existe donc pas de matériau alternatif pour répondre aux besoins de la population mondiale en logements décents. Il ne pose en outre aucun problème de disponibilité : pour faire du ciment, il suffit d’avoir du calcaire et de l’argile, deux matières premières que l’on trouve partout en quantité quasiment illimitée, de même que le sable, les cailloux et l’eau, à la différence de tous les autres matériaux – bois, acier, etc. Il présente également un excellent bilan environnemental en termes de mètre carré de plancher, par exemple – il est même très souvent le meilleur sur le plan de l’unité fonctionnelle.

Après une évolution très lente au cours du XXᵉ siècle de la performance mécanique jusque dans les années 1980, liée notamment au simple déploiement des bonnes pratiques et à la normalisation, l’approche scientifique de la formulation des bétons s’est ensuite accélérée. C’est ainsi que, depuis la construction du pont de l’île de Ré par Bouygues en 1987-1988 – premier ouvrage au monde utilisant des bétons de haute performance, en l’occurrence 80 mégapascals, soit une résistance deux à trois supérieure à celle d’un béton ordinaire –, toutes les grandes entreprises ont suivi. C’est ainsi qu’aujourd'hui, avec une résistance de 200 mégapascals accessible industriellement, ce matériau a été utilisé pour les structures internes des aéroréfrigérants de la centrale nucléaire de Cattenom : alors qu’il y connaît les pires conditions que l’on puisse imaginer en termes de fluctuation de température et d’humidité, il ne montre absolument aucun vieillissement visible.

En même temps que l’on construisait le pont de l’île de Ré, ce matériau était, pour la première fois concernant un grand ouvrage de génie civil, dimensionné en termes de durée de vie. Je veux parler du tunnel sous la
Manche qui, commandité par un groupement de banques sur la base d’un montage financier de 120 ans, nécessitait d’ajouter au cahier des charges du matériau une durée de vie équivalente. Pour autant, bien que les normes en la matière soient aujourd'hui bien établies, ce matériau ne concerne que les grands ouvrages et non le simple bâtiment alors que sa prise en compte entraînerait une amélioration significative, rapide, efficace et non coûteuse de l’ensemble du patrimoine bâti.

Le béton Ductal est le résultat d’une combinaison de performances physiques et mécaniques. Sa résistance en compression est 8 à 10 fois supérieure à celle d’un béton ordinaire, grâce simplement à l’utilisation de concepts scientifiques, la science ayant permis de multiplier par 5 ou même par 10 certaines propriétés physiques avec les mêmes constituants. Si, dans les années cinquante, les 200 mégapascals avaient pu être obtenus en laboratoire mais pas à l’échelle industrielle, cela tenait à ce que l’on appelle la robustesse en milieu industriel : c’est parce que vous disposez des lois scientifiques que vous pouvez régler la fluctuation des matières premières et donc la régularité des propriétés de votre produit à l’échelle industrielle.

Aujourd'hui, le matériau béton est celui qui est le plus utilisé. Tous les mécanismes de dégradation – 17 – sont répertoriés. Ils sont traités par des normes qui font l’objet de travaux avec des scientifiques et sont discutés chaque année lors de congrès scientifiques. Les trois derniers grands séismes au Japon ont montré l’efficacité d’un tel système de normes : tout ce qui a été construit après 1987, année de mise en application de leurs normes parasismiques, est debout à pratiquement 99 %, alors que tout ce qui a été construit avant est détruit. En outre, le béton présente l’énorme avantage d’avoir une très grande universalité, ce qui permet de constituer un référentiel technique et d’élargir la puissance d’analyse en croisant les référentiels entre les différents pays. Bien sûr, le contrat intègre les valeurs clés des calculs – sans oublier l’importance du contrôle.

Lorsque l’on fait l’analyse des grands accidents, la faute ne peut jamais être attribuée à la partie technique. Pour que le système fonctionne, il faut d’abord une gouvernance, notamment une indépendance entre maîtrise d’œuvre et maîtrise d’ouvrage, ainsi que nous l’ont fait remarquer des collègues anglo-saxons à la suite de l’effondrement du terminal 2E à Roissy.
Il faut ensuite une analyse des risques. Dans l’incendie du TransManche, l’erreur a été de ne pas voir que deux risques pouvaient être couplés : à un incendie de wagon, situation dans laquelle la consigne est de sortir du tunnel, s’est ajouté un problème de vérin où il est alors conseillé de s’arrêter pour détacher ce dernier.

Il faut par ailleurs une définition du cahier des charges : si les Twin Towers avaient été dimensionnées pour une résistance au feu d’une heure – l’une s’est d’ailleurs effondrée après 58 minutes, l’autre après 1 heure 10 –, on sait aujourd’hui qu’une heure est un délai beaucoup trop court pour évacuer de tels bâtiments.

Il faut aussi un contrôle rigoureux. Pour prendre l’exemple de la Turquie, ce pays pourtant évolué avec des universitaires et des ingénieurs de très haut niveau n’arrive pas à résoudre ses problèmes de séisme faute de parvenir à créer un corps de contrôleurs de chantier, maillon pourtant essentiel dans le dispositif, à côté des normes, des mesures, des calculs, de l’ingénierie et du cahier des charges.

Enfin, il faut la transparence et la traçabilité de l’ensemble. Le génie civil est un domaine dans lequel on travaille au minimum à 6 ou 8 partenaires, chacun apportant sa compétence, ce qui pose pour les très grands ouvrages un problème de travail en équipe.

M. Christian Bataille. En conclusion, M. Javier Reig et M. Jean Gauvain vont nous apporter le point de vue de l’Agence de l’OCDE pour l’énergie nucléaire concernant l’apport de la coopération internationale en matière de R&D dans le domaine de la sûreté nucléaire, notamment celui de l’analyse, de la prévention et de la gestion des accidents.

S’agissant du premier volet, les domaines étudiés portent sur l’évaluation du risque et la sûreté du combustible ainsi que sur la
thermohydraulique, sur les accidents graves et sur le confinement, enfin sur la tenue des équipements et des structures. L’analyse repose à cet égard d’abord sur les rapports sur l’état de l’art (SOAR) – impliquant jusqu’à des dizaines d’experts pendant plusieurs années afin de mettre en commun l’expertise internationale dans un domaine spécifique pour en déduire les meilleures pratiques –, ensuite sur les exercices de comparaison internationaux (ISP) – réunissant également des experts pendant quelques années pour comparer les méthodes de calcul sur un problème donné afin de définir le meilleur modèle, libre à chaque pays d’utiliser celui-ci pour ses analyses de sûreté.

S’agissant des rapports sur l’état de l’art, des recommandations ont été faites pour améliorer l’analyse de sûreté concernant à la fois le combustible nucléaire, la thermohydraulique, les accidents graves et la tenue de l’enceinte de confinement. Il en va de même pour les exercices de comparaison qui ont conduit là encore à des recommandations pour améliorer l’analyse de sûreté, en particulier la meilleure manière de calculer un problème donné – fuite dans un circuit primaire, renoyage d’un assemblage après dénoyage, etc.

J’en viens au second volet, les projets de recherche en sûreté. D’une façon générale, il s’agit de la mise en commun de l’expertise internationale sur un sujet particulier, avec l’utilisation d’une installation expérimentale unique au monde aux fins d’obtenir entre experts un consensus sur le problème étudié – modélisation, application des résultats,... Sur le plan pratique, un pays hôte finance la moitié du projet aux côtés de 8 à 15 pays partenaires, cela pendant une durée fixe et avec un budget spécifique, les experts se réunissant régulièrement pour discuter des programmes et des objectifs des essais. Là encore, on retrouve les mêmes domaines étudiés : thermohydraulique accidentelle, comportement du combustible, accidents graves et intégrité des composants et des structures.

lequel a estimé que les risques et les conséquences sont maîtrisés par les dispositions en vigueur.

Concernant les projets de recherche en sûreté relatifs à la thermohydraulique du cœur, le premier remonte à plus de trente ans aux États-Unis. Le dernier est ROSA, pour lequel l’avant dernier essai a eu lieu comme prévu le 19 mai dernier en dépit d’un tremblement de terre et d’un tsunami, nos collègues japonais ayant été capables de maintenir leur recherche en l’état malgré l’adversité. Les principaux phénomènes étudiés dans les circuits ont trait à la dilution de bore ou encore au refroidissement de secours. Ces projets servent souvent de support à des programmes de comparaison de modélisation.

S’agissant des projets relatifs à la physique des accidents graves, je citerai à nouveau le programme CABRI, mais également celui sur les piscines de combustibles : lancé voilà deux ans aux États-Unis, il tend, à partir d’un réservoir dénoyé et d’assemblages chauffés, à étudier comment se comporte un incendie du combustible – simulé afin d’éviter de relâcher de la radioactivité –, à l’image de celui que l’on vient d’observer à Fukushima. D’autres projets concernent le problème du cœur fondu à l’intérieur du réacteur ou encore l’intégrité de la cuve. C’est ainsi qu’a eu lieu l’inspection de la cuve de Three Mile Island – je rappelle, pour ceux qui attendraient des résultats instantanés de Fukushima, qu’il a fallu sept ans entre le jour de l’accident et celui où l’on a pu retirer le combustible de la cuve...

Pour ce qui est, enfin, de la recherche sur le confinement des réacteurs, celle-ci porte à la fois sur la chimie – le comportement des produits de fission radioactifs, notamment l’iode qui est un produit très volatil – et sur la tenue du confinement.

En résumé, les projets OCDE sont une référence internationale qu’il s’agisse du développement et de la validation des modèles pour les accidents, de la comparaison des codes de calculs des pays ou de l’amélioration de la gestion de l’accident. Outre les projets OCDE, certains pays confient à cette dernière leurs archives, ce qui nous permet de disposer d’une grande bibliothèque de données à la disposition des pays membres.
En conclusion, les projets fédérés par l’AEN permettent une amélioration de la compréhension des situations accidentelles complexes en coordonnant l’expertise et la recherche internationale, une promotion des meilleurs outils et pratiques afin d’obtenir des approches comparables entre les pays – chacun étant libre de choisir son approche – et une mise en œuvre des leçons apprises facilitée par les synthèses de l’AEN.

M. le président Claude Birraux. Avant d’ouvrir la phase des questions, qu’il me soit permis de m’interroger sur la remarque de M. Micaelli, qui soulignait que la faiblesse de la R&D était son coût : l’excursion de puissance du projet CABRI dont il a fait état n’était-elle pas plutôt financière ?...

M. Yves Cochet. Le problème avec la recherche en matière nucléaire tient au mélange entre le réel et le simulé. J’avais pourtant appris jadis qu’était scientifique une expérience reproductible en réel. Or, s’agissant par exemple de fusion de cœur, on ne procède qu’à une comparaison entre les méthodes de simulation. Certes, M. Gauvain a parlé d’une “installation expérimentale unique au monde”, mais s’il ne s’agit que de comparer des programmes informatiques, permettez-moi d’être inquiet. La différence, d’une certaine manière, est la même qu’entre un jeu vidéo et la guerre réelle.

M. Christophe Béhar. Les approches peuvent être soit réelles – et nous procédons à des expérimentations réelles –, soit fondées sur des codes. Ces derniers, pour ce qui nous concerne, décrivent chacun un phénomène physique donné que nous validons de manière unitaire par l’expérimentation. Tous ces codes sont ensuite rassemblés pour élaborer un outil de calcul permettant de prédire ce qui se passera dans tel ou tel cas de figure. Le seul problème est donc de bien intégrer à la base l’ensemble des phénomènes physiques – ce qui est généralement le cas. Mais il est vrai que pour le corium, par exemple, les expérimentations sont simulées – on ne fait pas fondre un cœur, mais de l’uranium métal.

M. Yves Cochet. Lorsque de l’hydrogène se forme, est-ce dû à la température élevée qui entraîne une brisure de la molécule d’eau ou à l’oxydation des gaines de combustible ? Dans ce dernier cas, existe-t-il d’autres types de gaines qui générereraient moins d’hydrogène par oxydation ?
Hormis l’iode et le césium, a-t-on retrouvé du plutonium dans l’air ou dans l’eau à Fukushima du fait de la présence de combustible MOX dans le réacteur n° 4 – des scientifiques japonais ont déclaré à ce sujet que Tepco et le gouvernement de leur pays avaient menti ? L’« excursion de puissance » n’est-elle pas plus rapide avec le MOX qu’avec un combustible classique ?

S’agissant du laboratoire de Saclay – ce baril géant, en quelque sorte – est-ce là aussi du simulé ou du réel ? Quant à « l’installation expérimentale unique au monde » dont a parlé M. Gauvain, est-ce également du réel ou du simulé ?

Pour ce qui est de la fibre optique, un seul câble ne brise-t-il pas la redondance ? Disposer de plusieurs câbles n’est-il pas plus sûr ?

M. Christophe Béhar. L’hydrogène peut être créé de deux façons : par l’oxydation de la gaine en zirconium du fait de la température, et par la radiolyse – la molécule d’eau est cassée du fait d’un rayonnement ionisant venant interagir avec l’eau. S’agissant de savoir si un autre matériau que le zirconium pourrait régler ce problème de création d’hydrogène, la question mérite d’être posée. Pour autant, développer un nouveau matériau pour une gaine de combustible ne pourrait prendre qu’enormément de temps. Même si on lance cette activité de R&D maintenant, le retour ne sera pas immédiat.

Pour ce qui est de la problématique du MOX, les produits de fission gazeux produits ne s’éloignent pas trop de ceux issus de l’UOX. En revanche, les relâchements peuvent être un peu différents car la topologie des pastilles de MOX est parfois assez différente en termes de fracturation.

S’agissant de savoir si l’on a retrouvé du plutonium aux alentours de Fukushima, les ratios isotopiques de Pu sont restés à un niveau relativement bas. Selon les éléments parus à l’époque dans la presse, les rapports étaient un peu identiques à ceux que l’on pouvait trouver à un certain moment dans le cadre des expérimentations AEN.

M. Thomas Houdré. La famille des transuraniens est constituée d’éléments métalliques et lourds très peu dispersables – de type de l’iode
radioactif, du césium, des tellures. Ils ne contribuent donc pas de manière majoritaire à l’impact en cas d’accident grave.

M. Christophe Béhar. Concernant l’installation MISTRA à Saclay – qui peut être en effet qualifiée de grand bidon –, elle nous sert à étudier le comportement des gaz lorsqu’ils sont relâchés dans une installation. Nous utilisons à cet effet un gaz de simulation, l’hélium, qui est très proche de l’hydrogène. Ainsi, à partir du comportement de cet élément, il est possible de connaître celui de l’hydrogène.

Pour ce qui est de la simulation des codes, je citerai le cas de l’installation VERDON à Cadarache où le comportement des produits de fission sera étudié afin de savoir notamment où ils se déposent et comment ils se comportent si de l’air est réintroduit dans le circuit primaire : dans cet exemple, nous allons utiliser des pastilles irradiées réelles. C’est une illustration du fait que nous procédons soit à de l’expérimentation réelle, lorsque nous pouvons le faire raisonnablement, soit à des calculs intensifs et à de la simulation.

M. Michel Schwartz, membre du comité d’experts, directeur scientifique de l’IRSN. L’IRSN a la même approche que celle décrite par M. Béhar concernant le développement de logiciels validés à partir d’expériences analytiques. Pour autant, il est selon nous important de procéder, lorsque cela est possible, à des essais dits intégraux où l’ensemble des phénomènes est analysé. Il en va ainsi du programme PHÉBUS-FP où nous avons, au cours de cinq expériences, fondu à peu près 10 kilos de combustible réellement irradié issu d’un réacteur. De telles expériences, extrêmement riches, nous ont permis d’apprendre beaucoup, notamment sur le comportement de l’iode, ce qui peut d’ailleurs expliquer, monsieur le président – au-delà de ce que vous avez pu appeler des « excursions financières » de CABRI –, que le coût des programmes de l’IRSN soit élevé.

M. Jean Gauvain. Si j’ai employé le mot « simulé », c’était à propos d’un programme sur la trentaine dont j’ai parlé, celui des piscines de combustibles.
Quant à l’expression « installation expérimentale unique au monde », chaque programme est bâti autour d’une installation unique au monde : pour vingt programmes, nous avons vingt installations uniques au monde.

M. Pierre Ferdinand. Le problème de la redondance par rapport à la fibre ne se pose pas, cela pour trois raisons.

Le système de mesure consistant à envoyer une impulsion et à étudier l’écho, on peut localiser au mètre près l’endroit où la fibre – ou le câble – est coupée.

Ensuite, si le câble forme une boucle, c'est-à-dire si l’on a pensé à récupérer l’extrémité du câble et à le ramener vers le système de mesures, on peut alors interroger le second drain et reconstituer ainsi l’information grâce aux deux demi-câbles.

Enfin, rien n’empêche de mettre plusieurs câbles en parallèle avec des sorties différentes.

Pour répondre à la question de la redondance, il existe donc plusieurs solutions : tirer profit de la coupure en la localisant au mètre près,interroger le système par les deux extrémités, installer plusieurs câbles.

M. le président Claude Birraux. De très hautes températures peuvent-elles modifier le comportement de la fibre, voire lui faire perdre son intégrité ?

M. Pierre Ferdinand. La fibre étant fabriquée à partir de silice, on ne pourra jamais mesurer avec un tel matériau des températures supérieures à 1 500 ou 1 600 degrés, puisque le verre fond à de telles températures. Il faudrait alors utiliser des fibres en saphir.
Pour autant, la problématique des capteurs à fibres optiques à réseaux de Bragg aux alentours de 1 000 degrés est un sujet à l’ordre du jour dans les laboratoires de R&D. Encore faut-il, même si des fibres tiennent à 1 000 degrés, que le câble puisse lui-même tenir, ce qui suppose des câbles métalliques et non en polymères.

M. Christian Bataille. Le béton Ductal a-t-il été utilisé pour d’autres installations nucléaires que Cattenom ?

M. le président Claude Birraux. J’en profite pour poser également une question à M. Acker qui a souligné que l’on ne manquait pas de matériau pour fabriquer du béton, alors que le fer et autres métaux pourraient poser des problèmes d’approvisionnement : le béton Ductal n’est pas du tout ferrailé ?

M. Paul Acker. Le béton Ductal est systématiquement ferrailé pour une raison très simple : quand on augmente les résistances, le comportement tend à devenir fragile, ce qui n’est pas acceptable pour des structures de génie civil. On utilise donc deux types de fibres : dans les applications de type pont, il s’agit presque toujours de fibres métalliques qui donnent au matériau une complète ductilité ; dans les produits architecturaux tels que les panneaux de façade, il s’agit de fibres organiques.

Mme Laurence Jacques, directrice Ductal, France Belgique Luxembourg. Ce matériau n’a été utilisé dans l’industrie nucléaire que pour le renforcement de tours de refroidissement, mais il a le potentiel pour servir dans d’autres applications – nous avons d’ailleurs un programme d’études avec EDF à ce sujet. Il s’agit en effet d’un béton assez peu connu car, issu d’une dizaine d’années de recherches à l’initiative de Bouygues, de Rhodia et de Lafarge, il n’a donné lieu à des brevets qu’à la fin des années quatre-vingt-dix.

Dans le cadre des problématiques liées au nucléaire, ses caractéristiques sont intéressantes : résistance en compression ; composition qui permet sinon de s’affranchir des ferrailles, du moins de les réduire là où, dans les centrales nucléaires, il n’est pas besoin de le faire passer à travers des cages de ferraillement souvent extrêmement serrées ; résistance inhabituelle aux explosions, ce qui a été utile pour le renforcement de
plusieurs ambassades ; perméabilités à l’eau et au gaz 100 fois inférieures au béton classique ; très grande durabilité.

Pour autant, ce n’est pas un matériau qui a vocation à remplacer le béton standard, lequel est parfaitement adapté en de nombreux endroits de la centrale nucléaire. En revanche, il méritait d’être plus étudié car peu de personnes, y compris dans l’industrie nucléaire, savent dimensionner avec ce béton voire le connaissent, alors qu’il pourrait apporter, là où le béton trouve ses limites, un autre type de réponse.

M. Bernard Tardieu, membre du comité d’experts, académie des technologies. Tant l’académie des sciences que l’académie des technologies ont très récemment souligné les faiblesses de la sidérurgie française concernant non pas l’amélioration continue des connaissances, mais le risque de baisse de compétences pour parvenir à une qualité d’acier suffisante. Le sujet est-il traité par l’industrie nucléaire ?

M. Georges Servière. La démarche est plutôt extrêmement prudente en matière de développement de nouveaux matériaux, surtout pour les gros composants. Il n’en reste pas moins qu’avant de pouvoir introduire une nouvelle technologie avec toutes les assurances en termes de qualité, de comportement, de durabilité, etc., de nombreuses expérimentations sont nécessaires, ce qui, finalement, constitue un frein majeur à la mise en œuvre concrète de telles technologies. On dit parfois que la sûreté n’aime pas beaucoup l’innovation. La métallurgie ou la sidérurgie sont en tout cas des domaines où l’on est le plus précautionneux dans la mise en œuvre de nouveaux matériaux.

M. Bertrand Barré. Nous sommes en effet très prudents en matière d’innovations, même si pour l’EPR nous sommes passés à la branche monobloc. Ces tuyauteries du circuit primaire, d’un diamètre de l’ordre de 800 millimètres, sont ainsi réalisées sans soudure, y compris les gros piquages : les lingots sont de l’ordre de 170 tonnes pour sortir deux branches de tuyauterie primaire.

Les débuts ont été difficiles et un certain nombre d’essais ont été ratés sur le réacteur finlandais. Nous maîtrisons maintenant la situation : nous sommes à la limite de l’outil industriel.
M. Pierre Ferdinand. Concernant le béton ductile, celui-ci présente-il un avantage par rapport aux phénomènes de corrosion induits, par exemple, par la carbonatation ?

M. Paul Acker. C’est un matériau dont la porosité n’est pas connectée. Il n’y a donc aucun problème de carbonatation identifié.

S’agissant de la corrosion, on constate, dans les ouvrages très anciens armés par des fibres métalliques, des petites tâches de rouille. Mais il ne s’agit que d’une corrosion de surface, sans profondeur. La conséquence est purement esthétique. Sur les poutrelles des aéroréfrigérants de Cattenom, qui connaissent des conditions extrêmement agressives, on ne voit même pas de rouille en surface – ce qui nous laisse d’ailleurs perplexes.

M. le président Claude Birraux. Il me reste à clore nos auditions d’aujourd'hui en remerciant chacun des participants.
L’ORGANISATION DE LA SÛRETÉ NUCLÉAIRE
MARDI 31 MAI 2011

Audition, ouverte à la presse

Après quatre auditions à l’Assemblée nationale et au Sénat, dont celle du 24 mai sur les protections des réacteurs nucléaires et celle qui s’est tenue à Lille sur la gestion des crises, nous voici réunis pour une cinquième audition. La sixième et dernière audition, relative à la transparence en matière de sûreté nucléaire, se tiendra le 16 juin prochain au Sénat.

Je rappelle qu’après les visites réalisées ces dernières semaines aux quatre coins de la France, nous visiterons le 10 juin les centrales de Belleville et de Fessenheim. Nous publierez dès la fin du mois de juin un rapport d’étape consacré à la sécurité nucléaire avant d’aborder le deuxième volet de notre étude, qui portera sur la place de la filière nucléaire dans le mix énergétique français.

La sûreté des installations nucléaires ne se limite pas à concevoir et à mettre en œuvre des dispositions techniques élaborées pour pallier les incidents ou limiter leurs conséquences : elle nécessite une organisation adaptée identifiant les responsabilités de chacun des acteurs.

L’audition de ce jour comprendra deux sessions. La première, présidée par Christian Bataille, député, rapporteur de la mission, porte sur la dimension internationale du contrôle de la sûreté. La coopération internationale est un outil efficace pour faire progresser la sûreté nucléaire,
tant en France qu’à l’étranger. Elle permet aux pays concernés de mieux connaître le fonctionnement de la filière, de prendre connaissance des problèmes auxquels les autres pays sont confrontés et d’harmoniser leurs exigences en matière de sûreté. La deuxième session sera consacrée aux modalités de la sûreté nucléaire en France et à la place de chacun des acteurs de la filière.

Chacune de ces sessions sera suivie d’un débat. Je rappelle que, s’agissant du temps de parole, les parlementaires membres de la mission bénéficient d’une priorité. Les membres du comité d’experts officiellement désignés le 14 avril dernier pourront également poser des questions, tout comme les autres participants, notamment les représentants de la presse.

Première session

La dimension internationale du contrôle de la sûreté

Présidence de M. Christian Bataille, député, rapporteur

M. Christian Bataille, député, rapporteur. Avant d’évoquer la dimension internationale du contrôle de la sûreté, je ne peux pas ne pas faire allusion, en tant que député de l’opposition, à l’annonce stupéfiante de Mme Merkel de fermer l’ensemble des centrales nucléaires allemandes. Cette décision unilatérale est un mauvais coup porté à l’Europe et à la France. Elle est en outre peu crédible car elle implique la remise en service des centrales au lignite, lequel n’est autre qu’une sorte de charbon très polluant, ainsi que des centrales au charbon, prétendument propres, et au gaz de M. Poutine ; les Allemands, confrontés à un déficit d’électricité, achèteront de l’électricité nucléaire en France, ce qui aura des conséquences sur le marché français de l’électricité. Demain, nous aurons peut-être plus peur d’une pénurie d’électricité que du nucléaire…

La France joue un rôle très actif dans la coopération internationale. Il n’est pas forcément très aisé de comparer la démarche des pays en matière de
sûreté nucléaire car les organisations internationales n’ont pas vocation à établir un palmarès de leurs membres. Et cet exercice serait périlleux pour l’Autorité de sûreté nucléaire (ASN), qui joue un rôle majeur au niveau européen dans la coordination internationale des autorités de sûreté, car toutes les autorités ne bénéficient pas de la même indépendance que les autorités françaises vis-à-vis de la sphère politique. Les décisions de Mme Merkel semblent plus motivées par ses déboires dans le Bade-Wurtemberg que par une véritable politique énergétique.

En premier lieu, M. Philippe Saint-Raymond, membre du comité d’experts de notre mission, nous rappellera les spécificités de l’organisation de la filière nucléaire française et nous expliquera pourquoi la comparaison entre différents pays se révèle si délicate.

Nous entendrons ensuite M. Denis Flory, chef du département de sûreté et de sécurité nucléaire de l’Agence internationale de l’énergie atomique (AIEA), qui évoquera le travail de coordination réalisé par l’AIEA en matière de sûreté ainsi que le rôle des autres instances internationales.

La première session se terminera avec l’intervention de M. Laurent Stricker, président de l’Association internationale des opérateurs nucléaires (World Association of Nuclear Operators (WANO), qui détaillera les efforts réalisés par les exploitants en matière de sûreté.

Mais auparavant j’invite M. Jacques Repussard, directeur général de l’Institut de radioprotection et de sûreté nucléaire (IRSN), à faire le point sur la situation à Fukushima.
M. Jacques Repussard, directeur général de l’Institut de radioprotection et de sûreté nucléaire (IRSN). J’évoquerai d’abord la situation des réacteurs accidentés, celle des territoires contaminés, puis les conséquences radiologiques pour la population, et enfin les conséquences techniques de cette catastrophe en France.

La situation des réacteurs est relativement stable. Les exploitants japonais ont devant eux un chantier de longue haleine pour récupérer un système pérenne de refroidissement et concevoir des installations qui permettront d’évacuer les combustibles des piscines des quatre réacteurs. Sauf en cas de nouvelle agression naturelle, en particulier du fait d’un tremblement de terre, la situation ne devrait pas connaître d’évolution.

S’agissant de la contamination des territoires, je rappelle que, le 21 mars, l’IRSN a publié sur son site internet une note d’analyse qualifiant les rejets qui s’étaient dirigés vers l’intérieur des terres, et non plus vers l’océan Pacifique, de « très importants », entraînant la contamination d’une zone assez étendue. Cette crainte s’est malheureusement confirmée puisque, le 21 mai, le Gouvernement japonais a confirmé la nécessité d’évacuer les territoires au-delà de la zone de 30 kilomètres, soit 10 kilomètres de plus que les 20 kilomètres prévus. On a enregistré des zones fortement contaminées en direction du nord-ouest jusqu’à 40, voire 45 kilomètres. Les prévisions de l’IRSN se sont donc malheureusement vérifiées. Le « terme source » fixant les rejets à 10 % de la catastrophe de Tchernobyl a été confirmé par les autorités japonaises et compte tenu de l’étendue des territoires contaminés, le classement 7 sur l’échelle INES nous semble parfaitement justifié.
Le 23 mai, l’IRSN a publié une note, qui a été adressée à un certain nombre de parlementaires, sur les conséquences radiologiques de la catastrophe, dans l’esprit du TSO (Technical safety organisation) français qui, dans une situation équivalente, aurait adressé aux autorités publiques des recommandations sur le traitement des populations présentes dans les territoires contaminés. Dans cette note, l’Institut exprimait son inquiétude face à l’exposition de la population à l’iode. En effet, les autorités japonaises n’ont pas suffisamment développé la prophylaxie par l’iode et l’on ne peut exclure des conséquences sanitaires, en particulier pour les enfants.

J’en viens aux impacts de cette catastrophe pour notre pays.

L’IRSN a fourni 280 dosimètres à des personnes se rendant au Japon, principalement des journalistes et des ingénieurs. Sur les 128 mesures anthropogammamétriques que nous avons réalisées, 60 se sont révélées positives. Les personnes concernées présentaient des doses très faibles de césium, et plus rarement d’iode, mais elles n’avaient passé que quelques jours au Japon. Nous avons mis en place un centre de crise sanitaire (CCS) qui nous a permis de répondre à l’appel de plusieurs centaines de personnes inquiètes des conséquences pour leur santé d’une exposition potentielle. Nous avons en outre aidé de nombreuses entreprises qui souhaitaient poursuivre leur activité au Japon. Notre site internet a reçu 2 millions de visites en France et répondu à plus de 5 millions de consultations.

Au cours de cette période, l’IRSN a enregistré dix-sept saisines, dont six de l’Autorité de sûreté nucléaire, quatre de la direction générale du travail, trois de la direction générale de la santé, deux du SGDSN, une de la DGCCRF, relative à l’importation de produits alimentaires, et une de la direction de la sécurité civile. Ces saisines démontrent l’aspect interministériel d’une crise qui s’est pourtant produite à 15 000 kilomètres de la France.

J’en viens à la polémique engagée par la Commission de recherche et d’information indépendantes sur la radioactivité (CRIIRAD). Dans un courrier adressé au Premier ministre, la CRIIRAD a accusé l’IRSN d’avoir mal évalué la présence d’iode dans l’atmosphère au-dessus de la France et la date à laquelle les masses d’air contaminées devaient survoler notre pays. Il faut rappeler que ces contaminations étaient quasiment imperceptibles. Je rappelle que mesurer l’iode particulière et gazeux exige des instruments
différents et que la mesure de l’iode gazeux nécessite un délai plus long. L’IRSN a bien fait son travail. La CRIIRAD a en outre commis des erreurs dans l’analyse des données publiées par le Réseau national des mesures, dont elle ne fait pas partie. Si cela avait été le cas, elle aurait su que la date indiquée sur le site internet est celle de la mise en place du prélèvement et non celle du début de la contamination. Nous avons réfuté ces assertions dans une note que nous avons rendue publique.

M. Philippe Saint-Raymond, vice-président du groupe d’experts « Réacteurs » de l’Agence de sûreté nucléaire (ASN). Je ne vous livrerai que quelques éléments de comparaison car le sujet est très vaste.

Il y a beaucoup plus de ressemblances que de différences entre les approches nationales en matière de sûreté nucléaire. C’est un domaine éminemment international parce que de nombreux organismes permettent aux États de se rencontrer : l’Agence internationale de l’énergie atomique (AIEA), l’Agence pour l’énergie nucléaire (AEN). La plupart des États membres de l’AIEA ont signé la convention de sûreté nucléaire. Celle-ci énonce des principes très généraux, mais elle exige surtout des États qu’ils se réunissent tous les trois ans à Vienne et rédigent un rapport présentant la façon dont ils l’ont appliquée. C’est un élément important de convergence.

À cela s’ajoutent les rencontres entre les autorités de sûreté – la WENRA, en Europe, et son corollaire international, l’*International Nuclear Regulators Association* (INRA), qui regroupe les grands pays nucléaires, et plus ponctuellement le *Framatome Regulators* (FRAREG), qui regroupe les autorités de sûreté des pays possédant des réacteurs Framatome de fabrication française. Il existe également des rencontres entre exploitants au sein du WANO et du *Framatome Owners Group* (FROG), qui regroupe les exploitants disposant de réacteurs de fabrication française.

Le retour d’expérience international a une importance considérable. Les accidents majeurs de Three Mile Island (TMI), de Tchernobyl et
maintenant de Fukushima ont amené un grand nombre de pays à réfléchir. Nous disposons également d’un retour d’expérience lié aux incidents, et ceux qui sont signalés à l’IAEA sont répertoriés sur un site internet. Les pays mettent également en commun les évaluations de réacteurs. L’EPR étant au départ de conception franco-allemande, les principes de sûreté qui lui sont appliqués ont été examinés par les autorités de sûreté de nos deux pays. Quant au réacteur ATMEA, conçu par Areva et le groupe japonais Mitsubishi, il fait l’objet d’une évaluation par le groupe d’experts français et le Multinational Design Evaluation Program (MDEP), dont le secrétariat est assuré par l’AEN.

En matière de sûreté nucléaire, il existe toutefois des spécificités françaises. Tout d’abord, nous ne sommes équipés que de réacteurs à eau sous pression, contrairement à la plupart des grands pays nucléaires, qui ont également des réacteurs à eau bouillante, comme ceux de Fukushima. La France a fait ce choix, non parce que les réacteurs à eau bouillante sont moins sûrs, mais parce qu’il est plus facile de contrôler une seule filière. Autre particularité, la filière française comprend des paliers successifs, ce qui facilite la tâche de contrôle.

L’approche française est par tradition réglementaire, c’est-à-dire non prescriptive. Dans le domaine de la réglementation des appareils à pression, nous adoptons depuis près de deux siècles une approche non prescriptive, en donnant à l’exploitant des objectifs sans spécifier les moyens qu’il doit employer pour les atteindre. Par exemple, nous lui fixons pour objectif d’éviter la rupture fragile de la cuve, et c’est à lui de démontrer que celle-ci ne peut se produire. Les Américains se contentent, quant à eux, de demander aux exploitants d’utiliser le code de construction ASME. La réglementation française, sans doute plus subtile, est plus difficile à appliquer.

La dernière particularité française vient de ce que notre pays est soumis à des risques naturels modérés. C’est la raison pour laquelle nos centrales ne sont pas équipées de systèmes automatiques d’arrêt en cas de séisme tels qu’ils existent au Japon.

La France a acheté ses premiers réacteurs aux États-Unis, adoptant du même coup la réglementation américaine qui s’appliquait aux réacteurs. Ensuite, la filière a été francisée et la fabrication des réacteurs a été confiée pour l’essentiel à Framatome. Nous avons instauré une réglementation
embryonnaire car nous ne souhaitions pas réglementer les installations nucléaires, préférant les guides de bonne pratique aux textes réglementaires. Par la suite, lorsque nous avons vendu des réacteurs français à l’étranger, nous avons, nous aussi, vendu la démonstration de sûreté en même temps que les réacteurs.

L’homogénéité de notre parc nucléaire – un fabriquant et un exploitant uniques, des réacteurs comparables – a des conséquences importantes sur la sûreté. Tout d’abord, elle permet un contrôle de fabrication rapproché. Ce n’est pas un hasard si la direction de l’ASN, en charge du contrôle des appareils sous pression, s’est installée à Dijon, à proximité du fabriquant, qui est désormais une division d’Areva. Par ailleurs, cette homogénéité améliore nos capacités d’ingénierie. Par exemple, l’exploitant, s’il y est invité par l’ASN, est capable d’améliorer la prévention dans le domaine de la surpression à froid des réacteurs. L’existence d’un exploitant unique présente, en outre, l’avantage de permettre des discussions directes avec l’ASN s’agissant des problèmes génériques qui affectent tous les réacteurs du parc.

Il faut toutefois mentionner un élément négatif : un défaut générique sur les réacteurs remettrait en cause la sûreté de tous les réacteurs du parc, paralysant 80 % de la production d’électricité en France. L’incident qui a affecté les couvercles de cuves il y a quelques années a failli mettre en péril le fonctionnement de l’ensemble des réacteurs français.

En France, les réacteurs à eau sous pression comprennent plusieurs paliers : 900, 1 300 et 1 450 mégawatts et bientôt le palier EPR, chacun étant subdivisé en sous-palisers. Cette division nous offre une vue générale de l’état des réacteurs. Dans les autres pays, les études probabilistes de sûreté concernent le réacteur tout entier. En France, au grand étonnement de nos amis étrangers, chaque palier fait l’objet d’une étude – ne sont naturellement évoqués que les événements liés au fonctionnement interne du réacteur, les risques liés à une agression externe s’appliquant à l’ensemble du site.

Les réexamens de sûreté, prévus tous les dix ans, peuvent également être réalisés palier par palier. Le palier EPR, qui n’existe pas encore, est déjà un élément de référence.
Si l’approche française est déterministe, elle est également probabiliste. Pour prévenir les séquences susceptibles de provoquer des rejets importants et précoces, les Américains doivent démontrer que leur fréquence est inférieure à 10^{-6} par an et par réacteur. En ce qui nous concerne, nous examinons les défaillances qui pourraient affecter chacune des séquences et nous prenons les mesures nécessaires pour les éliminer. Ce n’est qu’ensuite que nous procédons à une modélisation probabiliste. Dans le cas où nous n’atteignons pas l’objectif adopté par les Américains, nous considérons que notre prévention n’est pas satisfaisante.

La disparité des pratiques donne lieu à certaines confrontations. L’AIEA a mis en place le comité NUSSC (Nuclear Safety Standards Committee), lequel a pour mission de définir des normes de sûreté qui, selon l’Agence, seraient les plus exigeantes. Ce n’est pas exact, car elles sont obtenues par consensus. Or chacun sait qu’il est plus facile d’obtenir un consensus sur le plus petit dénominateur commun que sur le plus grand commun diviseur. Au sein du comité NUSSC, la France n’a pas affiché d’exigences contraires à la pratique française. Mais nous sommes allés encore plus loin en établissant par le biais de WENRA des exigences européennes minimales. Celles-ci nous semblent plus cohérentes que celles qui ont été définies par le comité NUSSC.

La particularité de l’organisation française de la sûreté par rapport aux organisations des pays comparables est l’indépendance de notre autorité de sûreté par rapport au Gouvernement. Selon moi ce modèle, bien que de plus en plus répandu, n’est pas fondamental. En effet, lorsque l’autorité de sûreté dépendait de deux ministres, de l’industrie et de l’environnement, elle était déjà suffisamment indépendante pour assurer un bon contrôle de la sûreté.

En France – c’est un point plus important – une seule autorité gère la sûreté et la radioprotection. Ce n’est le cas ni en Allemagne ni en Angleterre. Dans certains pays, les rejets des installations nucléaires sont de la compétence de l’autorité de radioprotection et non de l’autorité de sûreté, bien que cet élément relève du fonctionnement des réacteurs. Or il survient parfois des conflits entre sûreté et radioprotection. Lors de l’incident des couvercles de cuves, l’autorité de sûreté nucléaire a exprimé des exigences qui ont exposé le personnel chargé des contrôles à des doses importantes de radiation. Il a fallu arbitrer entre la sûreté et la radioprotection. Le fait qu’une
seule autorité soit chargée d’assurer la sûreté et la radioprotection favorise les bons arbitrages.

Une autre caractéristique de la France est de disposer avec l’IRSN d’un appui technique dédié, distinct de l’autorité de sûreté, tandis qu’aux États-Unis l’appui technique est assuré par l’autorité de sûreté. Imaginez que l’IRSN soit le procureur, l’exploitant l’accusé, et le juge l’ASN : si le procureur est également le juge, le système ne fonctionne pas de la même façon.

La France a une autre spécificité, qu’elle partage avec les États-Unis, l’Allemagne et le Japon : elle dispose de groupes permanents d’experts.

M. Christian Bataille, député, rapporteur. M. André-Claude Lacoste, président de l’Autorité de sûreté nucléaire (ASN), va nous présenter les cahiers des charges pour l’audit des centrales françaises et les évaluations de sûreté prévues pour le parc nucléaire européen.

M. André-Claude Lacoste, président de l’Autorité de sûreté nucléaire (ASN). J’invite chacun à la plus grande modestie quant aux suites de l’accident de Fukushima et aux retours d’expérience. En effet, il a fallu une dizaine d’années pour établir le retour d’expérience de l’accident de Three Mile Island et six ans pour évaluer l’étendue de la fusion du cœur. Le retour d’expérience de Fukushima ne fait que débuter car l’accident se poursuit et les installations ne sont pas encore refroidies. Limitons-nous à évaluer le retour d’expérience de faits tout à fait avérés. Nous disposons pour cela de deux procédures complémentaires, l’une française et l’autre européenne.

Le Premier ministre a demandé à l’ASN, dans un courrier du 23 mars, d’évaluer la sûreté des installations nucléaires, en commençant par les centrales nucléaires. Il souhaite que nous envisagions toutes sortes de situations : inondations, séismes et autres phénomènes naturels extrêmes, perte totale des ressources électriques et des sources de refroidissement. Depuis le 5 mai dernier, l’exploitant examine les améliorations et modifications nécessaires pour chacune des installations. Voilà pour la filière française.
Dans le même temps s’est développée la filière européenne des *stress tests*, à la suite d’une suggestion du ministre autrichien de l’environnement d’appliquer aux centrales nucléaires européennes le test appliqué aux banques européennes face à la défaillance d’un certain nombre de leurs débiteurs. Cette décision de réaliser des *stress tests* a été prise au cours du Conseil européen qui s’est tenu à Bruxelles les 24 et 25 mars derniers. Le Conseil a demandé à l’ENSREG de définir le contenu de ces tests à partir de la proposition de la WENRA et d’en publier les conclusions. Les rapports nationaux seront établis fin 2011.

L’ASN a participé à la réflexion sur les *stress tests* au cours d’une réunion au sein de la WENRA qui s’est tenue à Helsinki les 22 et 23 mars, avant même la décision officielle du Conseil européen, et une première version de ces tests a été établie vers le 15 avril. Ils ont ensuite été soumis à la consultation et, dès le début du mois de mai, nous avons fait des propositions à l’ENSREG portant sur la mise en place d’évaluations complémentaires de la sûreté française à la lumière des événements de Fukushima.

L’autre différence concerne la sous-traitance, qui a une grande importance pour l’ensemble des exploitants nucléaires français, en particulier pour EDF qui emploie 20 000 personnes dans le secteur nucléaire et 20 000 autres au titre de la sous-traitance, qui peut aller de l’entreprise Areva au peintre en bâtiment. Le Haut comité pour la transparence et l’information sur la sécurité nucléaire (HCTISN), que nous avons consulté, s’est dit favorable à ce que les évaluations complémentaires de sûreté incluent les sous-traitants. Périodiquement, les syndicats dénoncent la façon dont les employés des sous-traitants sont traités. Nous tentons de vérifier ce qu’il en est, mais il nous est extrêmement difficile de trouver des cas particuliers. Les
évaluations complémentaires de la sûreté française se poursuivront jusqu’à la fin de l’année, et cela dans la plus grande transparence.

Nous avons manqué toutefois une belle occasion de faire progresser l’Europe. Sur les 27 pays membres de l’ENSREG, 25 ont approuvé les propositions de WENRA. Deux pays s’y sont opposés, l’Autriche et l’Allemagne, ainsi que la Commission européenne, car ils souhaitaient que le processus contienne des éléments relatifs à la sécurité et au terrorisme. Nous leur avons fait d’abord observer que le terrorisme était traité par les stress tests et par l’évaluation complémentaire car les conséquences d’une perte totale de refroidissement ou de l’alimentation électrique sont proches de celles d’un acte de terrorisme, ensuite qu’il est difficile de traiter le terrorisme avec la même transparence que les autres domaines de la sûreté, et enfin que leur proposition ne figurait pas dans les conclusions du Conseil européen. Mais ces arguments n’ont pas convaincu l’Allemagne, l’Autriche et la Commission européenne, et le combat a duré presque trois semaines, avant que les stress tests ne soient approuvés tels qu’ils avaient été présentés. Cette perte de temps et les polémiques nourries par l’une des deux parties ont donné une image déplorable de la construction européenne.

Nos collègues russes, ukrainiens et arméniens, souhaitant s’arrimer au « vaisseau » européen, vont mener des stress tests suivant la même méthodologie, ce qui montre l’influence de WENRA, de l’ENSREG et de l’Europe. C’est une bonne nouvelle.

La catastrophe de Fukushima nous a enseigné une chose : tous les pays du monde doivent mener des tests analogues, et ceux qui s’y refusent doivent faire l’objet de graves suspicions. J’espère que la conférence ministérielle prévue à la fin du mois de juin à Vienne prendra une décision en ce sens.

M. Christian Bataille, député, rapporteur. M. Denis Flory, Chef du département de sûreté et de sécurité nucléaire de l’AIEA, va évoquer la dimension multilatérale du contrôle de sûreté et la problématique de l’établissement des normes internationales de sûreté (AIEA, Euratom, contrôle conjoint des autorités de sûreté).

La sûreté et la sécurité nucléaire sont assurées au niveau national par les autorités de régulation, chargées d’autoriser les activités nucléaires et de les réglementer.

Sur le plan international, il existe des textes juridiquement contraints comme la convention sur la sûreté nucléaire et la convention commune sur la sûreté de la gestion du combustible irradié et sur la sûreté de la gestion des déchets radioactifs. Les États souscrivent également à des codes de conduites, qui relèvent d’une obligation politique sans pour autant être juridiquement contraints. L’Agence internationale de l’énergie atomique, que j’ai rejointe en septembre dernier, développe des normes de sûreté, des guides de sécurité et des services pour les 152 États membres. Elle tient à leur disposition des missions d’experts internationaux et favorise la création et la diffusion des connaissances dans le domaine de la sûreté.

Les normes de sûreté se situent à trois niveaux : les principes fondamentaux de sûreté qui ont été adoptés par l’Union européenne dans le cadre de la directive sur la sûreté nucléaire ; les exigences de sûreté,
adoptées par le conseil des gouverneurs de l’AIEA ; les guides de sûreté, qui définissent les moyens à mettre en œuvre pour satisfaire les exigences de sûreté.

Ces normes de sûreté et de sécurité comportent des exigences générales et des exigences spécifiques. Après avoir été planifiées par le secrétariat de l’AIEA, ces normes font l’objet d’un examen par quatre comités de sûreté – le NUSSC, le comité en charge des transports, le comité en charge de la radioprotection et le comité chargé d’étudier les déchets nucléaires – et par la Commission des normes de sûreté. Enfin, le conseil des gouverneurs donne son approbation finale. C’est un processus long, qui dure entre trois et cinq ans, mais qui donne un poids aux 150 normes de sûreté actuellement en vigueur. Le même processus est mis en place concernant les guides de sécurité.

Si ces normes de sûreté ne sont pas juridiquement contraignantes pour les États membres de l’AIEA, elles le sont pour les États qui, ayant peu d’expérience en matière nucléaire, utilisent directement les normes de sûreté de l’AIEA dans leur réglementation nationale.

L’AIEA propose également aux États des missions, sortes de peer reviews (revues de pairs), au cours desquels des experts internationaux, très souvent des chefs d’autorités de sûreté, évaluent de façon collective les pratiques d’une autorité de sûreté ou la manière dont est assurée la sûreté dans une installation, et leur conformité aux normes de l’AIEA. Il s’agit des missions OSART, INSARR ou encore IRRS.

La directive européenne sur la sûreté nucléaire exige des autorités de sûreté qu’elles se soumettent à un audit IRSS tous les dix ans. D’ailleurs, la demande des États de réaliser ces audits est en forte augmentation.

La mission OSART, qui a pour objectif d’améliorer la sûreté opérationnelle d’une installation nucléaire, est effectuée par des experts internationaux et s’appuie sur les normes de référence de l’AIEA. Ces missions font l’objet d’une grande transparence. Les États ne sont pas obligés de publier le rapport de mission, mais sauf opposition de leur part sous quatre-vingt-dix jours celui-ci est rendu public. De 1983 à 2010, les
missions OSART se sont concentrées en Europe occidentale, qui est un laboratoire en matière de sûreté.

Le recours à ces missions sera certainement au cœur des discussions de la conférence ministérielle de l’AIEA, qui se tiendra en juin. Il est clair que l’utilisation systématique de ces missions renforcerait la sûreté au niveau international et la confiance réciproque que les États s’accordent en matière de sûreté.

WANO compte une centaine de membres. Il s’agit des compagnies d’électricité qui exploitent les 440 réacteurs actuellement en service dans le monde. Elle est dirigée par un conseil d’administration que j’ai l’honneur de présider, composé de personnalités de haut niveau : chief nuclear officers, chefs d’entreprise ou responsables du nucléaire des entreprises en question. Quatorze pays y sont représentés. La structure de l’association est régionale : outre le support international, basé à Londres, elle comporte quatre centres, dotés d’un conseil d’administration régional et d’une petite équipe. Au total, elle compte environ 150 ingénieurs, qui sont détachés par ses membres. Je précise que tous les opérateurs des centrales nucléaires commerciales sont membres de WANO, ce qui est important puisque la sûreté nucléaire est équivalente à celle du maillon le plus faible. L’organisation en quatre régions permet de prendre en compte les différentes cultures qui existent de par le monde. C’est un point important : le mot « transparence », par exemple, n’a pas le même sens dans tous les pays et évolue dans le temps.

L’action de WANO repose sur un « autocontrôle » permanent de l’ensemble des opérateurs, sur la base de peer reviews. Il s’agit d’ausculter une installation nucléaire, une compagnie dans son ensemble ou un réacteur qui démarre, et ce pendant trois semaines, avec 15 à 20 ingénieurs. Nous
organisons une quarantaine de peer reviews chaque année, sans compter celles des réacteurs qui vont démarrer, dont le nombre tend à s’accroître.

Ces peer reviews sont alimentées par le retour d’expérience des membres de la WANO, lequel constitue une véritable banque de données, et par des indicateurs de performance qui concernent essentiellement le domaine de la sûreté : nombre d’arrêt automatiques, fiabilité des équipements de sauvegarde, par exemple.

A l’issue de la peer review, un plan d’action est proposé par l’opérateur pour prendre en compte les points qui méritent amélioration. On peut dire qu’il s’agit du diagnostic médical, du traitement consistant dans les missions de support technique que propose WANO, qui dispose des meilleures compétences mondiales, afin de corriger la faiblesse identifiée.

Ces missions peuvent prendre la forme d’envoi d’experts, de séminaires ou de formations ciblées.

Une visite de suivi permet enfin de s’assurer que les points qui méritaient amélioration ont bien été pris en compte. Si tel n’est pas le cas, un plan d’action complémentaire est mis en œuvre.

La fréquence minimale que les membres de WANO s’engagent à respecter pour ces peer reviews est de six ans. C’est beaucoup trop long : même si, pour la plupart d’entre eux, cette fréquence s’établit plutôt à quatre ans, voire deux, ce qui est raisonnable si l’on tient compte de la visite de suivi, nous proposerons une amélioration sur ce point lors de notre prochain congrès en octobre.

Qu’a fait WANO après le 11 mars ? Notre organisation n’a pas vocation à faire face à un accident, mais à améliorer le niveau de sûreté. Ainsi, elle ne dispose pas d’un centre de crise. Nous avons fourni une information technique périodique à nos membres. Même s’il n’a pas été facile d’obtenir des informations fiables, nous avons pu informer quotidiennement chacun de nos membres pendant trois à quatre semaines sur l’état des réacteurs et des piscines ou les contaminations à l’extérieur de ces dernières. Nous avons également envoyé des ressources dans notre centre de
Tokyo et participé au recensement des matériels de secours disponibles, qui ont été proposés – avec un succès relatif – à l’exploitant.

Nous avons également établi en un temps record un document appelé SOER (rapport de retour d’expérience en exploitation), qui a été émis le 17 mars, soit six jours après l’accident. Nous avons travaillé avec nos collègues de l’Institute of Nuclear Power Operations (INPO), l’institut américain de sûreté nucléaire. Nous avons adressé à chacun de nos membres un document leur demandant de vérifier sous un mois et demi leurs capacités à faire face à un black out, à une perte totale des alimentations de refroidissement et, de façon générale, à un événement allant au-delà de ceux pris en compte lors de la conception, et de nous préciser ce qui était prévu pour gérer ces situations accidentelles. À l’heure où je vous parle, tous les exploitants, sauf un, ont répondu.

WANO a également publié quelques communiqués de presse, avec des interviews de responsables dans les différentes régions du monde. Enfin, une commission interne a été mise en place pour proposer à nos membres un certain nombre d’améliorations, sur lesquelles je reviendrai.

Les trois grandes fonctions de sûreté sont le contrôle de la réactivité, le contrôle du refroidissement du combustible, y compris après l’arrêt, et le contrôle du confinement des matières radioactives. L’accident de Tchernobyl est lié à une perte de contrôle de la réactivité, perte qui s’est traduite par une destruction totale du confinement. Ceux de Three Mile Island et de Fukushima ont pour origine l’incapacité à évacuer la puissance résiduelle accumulée lors du fonctionnement des installations. Vous devez savoir, d’autre part, que le confinement n’a pas pleinement joué son rôle à Fukushima.

Que peut faire WANO dans ce contexte ? Peut-être faudrait-il mettre en place une organisation de crise pour faciliter le travail du centre sur lequel se produit un accident, ainsi que les échanges d’information montante – depuis la centrale accidentée – ou descendante – et des propositions d’appui. Il conviendrait, par ailleurs, de vérifier la capacité des sites à gérer les situations d’urgence, en élargissant le champ d’investigation des peer reviews à la gestion de crise et au contrôle du stockage – en eau ou sec – des combustibles. Il faudrait enfin vérifier certains aspects de conception.
Nous n’avons certes pas l’expertise suffisante pour procéder à une vérification complète, mais nous devrions pouvoir vérifier que les modifications de conception engagées à la suite d’un accident ont bien été prises en compte. M. Lacoste a indiqué tout à l’heure qu’après TMI, il avait fallu une dizaine d’années pour le retour d’expérience. Pour ma part, je parlerai du double, un certain nombre d’actions n’ayant pas été prises en compte par l’ensemble des exploitants nucléaires. Plus que jamais, ceux-ci se doivent de se prendre en main !

J’en viens à la coopération internationale.

WANO opère donc un contrôle de ses propres membres, qui se fonde notamment sur les retours d’expérience. Nous travaillons en étroite collaboration avec un certain nombre d’organisations : l’INPO aux États-Unis, le Japan Nuclear Technology Institute (JANTI), au Japon, la World Nuclear Association (WNA), organisation internationale qui s’apparente à une organisation de lobbying, le World Energy Council ou encore le Nuclear Energy Institute (NEI), organisation américaine. Nous collaborons également, bien entendu, avec l’AIEA qui, ayant défini des standards, a un rôle à jouer en matière d’harmonisation des pratiques entre les gouvernements et les autorités de sûreté. Il n’y a cependant pas de doublon : l’AIEA est une organisation intergouvernementale, tandis que WANO est une organisation de producteurs.

WANO doit sortir renforcée de Fukushima. Il faut qu’elle ait un rôle contraignant – si vous me permettez ce terme – vis-à-vis des opérateurs. La remarque qu’a faite M. Lacoste au sujet des stress tests pourrait en effet s’appliquer aussi à la prise en compte des retours d’expérience.

Dans la mesure où elle regroupe tous les exploitants nucléaires du monde, sans exception, WANO dispose d’une réelle compétence en matière
nucléaire, au niveau de l’exploitation comme en cas de crise. J’insiste donc pour qu’elle participe à toutes les instances traitant de l’analyse de Fukushima, et je me félicite qu’elle soit invitée à la conférence de l’AIEA du 20 juin prochain.

M. Christian Bataille, député, rapporteur. Ma première question s’adressera plutôt à M. Lacoste.

L’Union européenne piaffe d’impatience de s’impliquer dans le contrôle de la sûreté nucléaire – ce qui n’est pas prévu par le Traité de Rome. Savez-vous comment elle entend le faire ?

Je me tourne maintenant vers vous, monsieur Flory. Nous avons finalement peu évoqué la situation hors d’Europe. En laissant de côté le cas bien connu des États-Unis, pouvez-vous nous dire si vous rencontrez des résistances dans certains pays ? Peut-on espérer parvenir à terme à des normes mondiales de sûreté ?

M. André-Claude Lacoste. L’Union européenne peut agir en matière de sûreté nucléaire ou de radioprotection via le Traité Euratom. Celui-ci avait d’abord été interprété dans un sens restrictif, si bien que l’Union ne s’était occupée que de radioprotection, publiant un certain nombre de directives. Mais en 2002, un arrêt de la Cour de justice des Communautés européennes a estimé que le Traité Euratom donnait toute latitude à l’Union pour intervenir en matière de sûreté. Celle-ci a donc publié une directive sur la sûreté, qui reprend les grands principes désormais connus – elle impose aux États d’avoir une autorité de sûreté et un cadre réglementaire, mais ne va pas plus loin. Une deuxième directive – qui devrait être adoptée à la fin de l’année – est en cours d’élaboration sur les déchets et les combustibles usés. En l’état actuel du droit, l’Union n’a la possibilité d’intervenir directement ni sur les installations, ni sur les affaires de sécurité. Le dispositif européen n’en est pas moins efficace. L’Union peut publier des directives. Elle peut s’appuyer sur un groupe officiel de chefs d’autorité qu’elle a constitué, l’ENSREG, qui s’appuie lui-même sur un club informel pour faire des visites techniques. Cela a bien fonctionné pour les stress tests européens. La révision du Traité Euratom ou l’adoption d’un nouveau traité est cependant un problème d’ordre politique. En l’état actuel du droit, il appartiendra aux gouvernements nationaux de tirer les conséquences des résultats des stress tests ou des évaluations complémentaires de sûreté.

Il faut cependant bien voir que les missions de service sont conduites sur la base des normes de l’AIEA et que les États reconnaissent la validité des recommandations formulées dans ce cadre, dont la mise en œuvre est, en outre, contrôlée par des missions de suivi. On est donc très proche de normes contraignantes – sans doute pas sur le plan juridique, mais en tout cas sur le plan politique. L’élément qui manque, c’est l’engagement des États à demander ces missions.

Les États qui exploitent des centrales nucléaires de puissance sont tous partie à la convention de sûreté nucléaire, sauf un seul : l’Iran. Hormis ce cas particulier, les faiblesses constatées sont la plupart du temps liées à un manque de moyens, de compétences, de connaissances scientifiques ou encore de culture de sûreté. L’une de nos missions les plus importantes consiste précisément à renforcer la culture de sûreté et à aider les États à être capables de se doter d’autorités de sûreté et d’exploitants compétents et responsables.

M. le président Claude Birraux. L’Union européenne a-t-elle renoncé à la tentation d’instaurer une autorité européenne ? Est-elle vraiment la mieux placée pour donner des leçons en matière de gestion de crise ?

M. André-Claude Lacoste. Vous posez là une question politique, à laquelle il ne m’appartient pas de répondre. En tant que citoyen, je trouve le sujet passionnant. Les installations nucléaires sont avant tout des objets politiques, et non techniques. La capacité de l’Union européenne à contrôler ces installations est proche de celle mise en œuvre pour géner l’application des directives sur les OGM, par exemple : c’est un domaine où elle a les plus grandes difficultés à exercer son pouvoir.
M. Jean-Yves Le Déaut. M. Lacoste a rappelé que les stress tests européens avaient été élaborés en suivant le modèle national, à partir de quatre critères : les critères culturels, les pertes totales de sources électriques, les pertes totales de sources de refroidissement et la gestion des accidents graves. Comment se fait-il que la sous-traitance et le contrôle de la chaîne humaine, qui ont fait l’objet de longs débats à l’échelle nationale, n’aient pas été abordés au niveau européen ?

Pourquoi certains pays – je ne parle pas de l’Iran – répugnent-ils à mettre en œuvre des stress tests ? Que peut-on faire pour les contraindre ? On rejoint ici la question de la gouvernance internationale ; et je me félicite que mes collègues l’aient soulevée : sans normes unifiées, on court le risque de voir vendre sur le marché des centrales nucléaires des produits moins chers, mais qui ne garantissent pas les meilleures conditions de sûreté – nous avons évoqué tout à l’heure un certain marché au Moyen-Orient. Or tout accident nuit à la crédibilité de l’ensemble du parc nucléaire mondial.

M. André-Claude Lacoste. Pour la plupart des autorités de sûreté, le contenu des tests de résistance européens devait constituer un tronc commun, sur lequel chaque pays grefferait ce qui revêtirait une importance particulière à ses yeux. En France, nous avons étendu le champ d’investigation au facteur humain et à la sous-traitance ; d’autres pays feront sans doute de même. L’idée est bien d’avoir une ossature commune.

Un certain nombre de pays ne pratiquent pas les peer reviews du type IRS (Système international de notification des incidents). D’autres ne feront pas de stress tests. Je crains que certains ne cumulent les failles. Il serait souhaitable que la conférence ministérielle de Vienne invite les États à faire un minimum, voire publie la liste de ceux qui sont en retard – il y en en a tout de même quelques-uns.

Quant au commerce en matière d’installations nucléaires, il pose un problème de morale. Celle-ci devrait, me semble-t-il, imposer aux États de se fixer comme règle de vendre des installations aussi sûres que possible à des pays capables de les faire fonctionner.

M. le président Claude Birraux. Nous avons visité vendredi dernier le chantier-école de Tricastin, où les employés des prestataires qui
interviennent dans la maintenance des centrales viennent se former, sur tous les postes de travail, à toutes les procédures qu’il devront suivre en situation. Mais y a-t-il des entreprises d’électricité possédant des centrales nucléaires qui en assurent elles-mêmes la maintenance ?

M. Laurent Stricker. C’est relativement rare, et c’est pourquoi certains pays ne comprennent pas pourquoi nous posons la question de la sous-traitance. Aux États-Unis, par exemple, on recherche pour chaque tâche les travailleurs les plus qualifiés au meilleur prix. Le choix se porte sur le meilleur rapport qualité-prix, que celui-ci soit assuré en interne ou par le recours à un prestataire extérieur, et peut changer d’une année sur l’autre. Le volume de sous-traitance varie donc. En Suisse, on privilégie plutôt la maintenance en interne.

M. Christian Bataille, député, rapporteur. Monsieur Stricker, vous avez dit que tous les exploitants n’avaient pas encore intégré les enseignements de l’accident de TMI, qui s’est produit il y a plus de trente ans. La France est-elle du lot ? Avez-vous un autre exemple à citer ?

M. Laurent Stricker. Le statut de WANO comporte une clause de confidentialité qui ne me m’autorise pas à donner publiquement des exemples nominatifs. Je puis cependant vous dire que la France n’est pas concernée par cette partie de mon propos. Mais certains grands pays ont des exploitants qui sont dans ce cas.

M. le président Claude Birraux. La sûreté dans les centrales programmées pour s’arrêter va-t-elle être cristallisée comme ce fut le cas en décembre 1998 ? Je m’explique : lors des révisions décennales, il y a du **upgrading**, c’est-à-dire que le niveau de sûreté se trouve rehaussé par rapport à celui de la dernière revue décennale. Tous les pays pratiquent-ils ces revues décennales ? Font-ils du **upgrading** ? Les évolutions en matière de sûreté nucléaire seront-elles prises en compte pour les centrales destinées à
s’arrêter, ou les Allemands vont-ils en rester jusqu’en 2022 à la notion de sûreté définie en 1998 ?

M. André-Claude Lacoste. Il faut distinguer plusieurs cas. Certains pays procèdent à des réexams périodiques de sûreté, en général tous les dix ans. D’autres ne le font pas, mais affirment améliorer la sûreté de façon continue. D’autres encore disent procéder à des réexams périodiques de sûreté, sans qu’on ait connaissance des décisions pratiques qu’ils prennent. Les plus dangereux restent cependant ceux dont la politique nucléaire varie en permanence. Le problème n’est ici plus de savoir s’il y a ou non réexamen périodique ou *upgrading*, mais comment on arrive à recruter et à conserver du personnel de qualité.

M. Jean-Yves Le Déaut. Ne faut-il pas élaborer une réglementation européenne sur les pays qui arrêtent le nucléaire ? Les opérateurs privés y étant moins enclins à investir dans les révisions, on risque d’avoir de moins en moins de personnels compétents à mesure qu’on s’achemine vers la date d’arrêt des centrales. Cette question devrait donc être traitée au niveau de l’Union européenne ou de l’AIEA, ce qui permettrait de renforcer les conditions de sûreté.

M. Denis Flory. Quels que soient les choix techniques ou politiques d’un État, les autorités de sûreté doivent rester compétentes jusqu’au dernier moment, soit des années après l’arrêt des installations. C’est en tout cas le message politique que nous nous efforçons de faire passer auprès des États membres de l’AIEA. Il faut donc œuvrer pour que les compétences demeurent et que les moyens suivent.

M. Bruno Sido, sénateur, premier vice-président de l’OPECST, rapporteur. Si cela n’est pas couvert par la clause de confidentialité, WANO a-t-elle déjà organisé des *peer reviews* sur des réacteurs programmés pour s’arrêter ?

M. Laurent Stricker. Entendons-nous bien : le seul but de la clause de confidentialité est d’obtenir un maximum de transparence de la part de nos membres.
Tous les sites nucléaires du monde, sans exception, ont reçu au moins une *peer review*. Beaucoup en ont reçu plusieurs. Les réacteurs arrêtés restent concernés par ces revues tant qu’il y a du combustible usé dans le réacteur ou dans les piscines.

M. Yves Marignac, directeur de Wise Paris. Je m’excuse tout d’abord de ne pas avoir endossé – comme il avait été envisagé – la responsabilité de faire un exposé sur la comparaison des approches de sûreté en France et en Allemagne. Bien qu’ayant rédigé il y a quelque temps une note de comparaison des termes de référence des audits prévus en France et en Allemagne, je ne m’estimais pas suffisamment qualifié pour faire un exposé général.

Je souhaite néanmoins poser quelques questions.

La première porte sur le risque d’un défaut générique sur l’ensemble des réacteurs. Prenons l’exemple de deux incidents génériques sur des réacteurs de 900 mégawatts rendus publics par l’ASN peu de temps avant Fukushima. L’un concernait une réévaluation du bon fonctionnement des circuits d’injection à haute pression, l’autre un défaut de fonctionnement des générateurs diesel. Dans les deux cas, on peut se demander si le constat du défaut n’aurait pas dû conduire à un arrêt provisoire du réacteur pour remédier au problème. Lorsqu’il s’agit d’un problème générique sur l’ensemble des réacteurs, c’est évidemment plus compliqué. Existe-t-il des critères qui déterminent le niveau de dégradation de la sûreté qui devrait conduire à un arrêt de l’ensemble d’un palier ? Est-ce à l’appréciation de l’ASN ou du pouvoir politique ?

J’en viens à l’audit et à l’exposé de M. Lacoste. En Allemagne, l’audit doit prendre en compte les phénomènes accidentels liés aux erreurs ou aux activités humaines, notamment les explosions ou les accidents d’avions, y compris de lignes commerciales. Au niveau européen, le commissaire Günther Oettinger a d’ailleurs annoncé que le crash d’avion ferait partie du cahier des charges du *stress test*. Même si la perte totale de refroidissement et la perte totale d’alimentation électrique couvrent l’ensemble des situations accidentelles les plus problématiques, y compris celles pouvant survenir en cas d’accident industriel, la dégradation des barrières ou des équipements auxiliaires n’est pas la même selon que la cause initiale est un séisme, une inondation, une explosion chimique ou un
crash d’avion. Ces situations spécifiques mériteraient donc d’être étudiées séparément.

Vous avez dit qu’il faudrait environ dix ans pour avoir un retour d’expérience complet sur l’accident de Fukushima. *Quid* alors de l’EPR ? Est-il envisageable que, d’ici à dix ans, il ne satisfasse plus aux nouvelles exigences de sûreté qui découleront de ce retour d’expérience ? Si oui, quelles conséquences en tirer pour le programme actuel ?

Ma dernière question concernera le processus de revue des pairs, c’est-à-dire par d’autres spécialistes ou experts institutionnels de la sûreté. On reste donc dans une certaine « monoculture ». Pourquoi ne pas y intégrer le regard d’experts non institutionnels, certes moins pointus sur le plan technique, mais porteurs d’autres exigences et d’autres sensibilités ?

M. Philippe Saint-Raymond. Il n’existe pas de texte général qui réponde aux défauts génériques. C’est donc l’ASN qui apprécie au cas par cas.

M. André-Claude Lacoste. Ce sujet est l’un des plus délicats que nous ayons à traiter. Nous devons donc répondre au cas par cas et être aussi explicites que possible sur les mesures que nous prenons.

J’en viens à l’audit de sécurité. La Commission européenne et le commissaire Oettinger ont pris position en approuvant la position commune de l’ENSREG et de la Commission telle qu’elle a été élaborée le 13 mai. Là-dessus se sont greffés des commentaires, qui n’engagent que ceux qui les font. Il est clair que les *stress tests* ne prennent pas en compte les chutes d’avion. D’autres commentaires ont utilisé le concept de *man-made*, qui semblait couvrir à la fois, dans l’esprit de leur auteur, l’erreur humaine, les chutes d’avion et les actes terroristes. C’est tout de même extrêmement vague ! S’agissant enfin de la sécurité, les autorités européennes et l’ENSREG ont reconnu qu’il s’agissait d’un vrai sujet, qui devait par conséquent être traité dans un groupe *ad hoc*. Le deuxième paragraphe de la déclaration conjointe de l’ENSREG et de la Commission européenne précise bien que les risques liés à la sécurité ne font pas partie du mandat de l’ENSREG, mais qu’ils pourront être traités dans un groupe qu’il appartient au Conseil européen de constituer.
L’EPR est un objet pour les évaluations complémentaires de sûreté françaises ou les stress tests européens. Nous verrons quelles conséquences en tirer. La vie ne doit cependant pas s’arrêter dans l’attente du retour d’expérience de Fukushima – nous continuons bien à utiliser l’électricité, dont une partie est d’origine nucléaire ! Vous savez d’ailleurs qu’à Flamanville, j’ai attiré l’attention d’EDF sur l’intérêt qu’il y aurait – sachant que nous allions sans doute imposer des exigences nouvelles à l’issue des évaluations complémentaires – à différer certaines parties de la construction de l’EPR en attendant d’y voir plus clair. EDF a préféré maintenir le projet initial, et elle est libre de le faire.

S’agissant enfin de l’ouverture à des revues par les pairs, je pense que cela va être fait dans des conditions raisonnables. L’engagement a déjà été pris vis-à-vis du Luxembourg d’associer des experts luxembourgeois, bien qu’ils soient surtout spécialisés dans la radioprotection.

Deuxième session

Les modalités de la sûreté nucléaire en France

Présidence de M. Bruno Sido, premier vice-président de l’OPECST, rapporteur

M. Bruno Sido, sénateur, premier vice-président de l’OPECST, rapporteur. La seconde session de cette audition vise d’abord à préciser le rôle dévolu à chacun des acteurs du contrôle de sûreté, des exploitants aux autorités de sûreté en passant par l’IRSN. Il s’agit ensuite de montrer comment les préoccupations de sûreté remontent jusqu’au stade de la formation des intervenants opérationnels dans les installations nucléaires, qu’ils soient employés ou sous-traitants. Il s’agit enfin d’illustrer toutes les dimensions de ce contrôle, qui couvre des domaines d’activité aussi divers que la fabrication des équipements sous pression, en amont, et les transports de matières radioactives, en aval, et revêt des formes multiples, les lourds contrôles systématiques étant complétés par des contrôles inopinés.
M. André-Claude Lacoste, président de l’Agence de sûreté nucléaire (ASN). Je me bornerai à rappeler les grands acquis de la loi du 13 juin 2006 relative à la transparence et à la sécurité en matière nucléaire, dite loi TSN. Le premier est le principe de la responsabilité première de l’exploitant en matière de sûreté. Cela vaut pour les grosses installations nucléaires comme pour la radiologie médicale. Les institutions telles que l’AIEA ou l’Agence pour l’énergie nucléaire (AEN) ont une forte tendance à penser les suites de Fukushima dans un cadre institutionnel : renforcement des normes, de la coopération internationale, etc. C’est oublier ce rôle essentiel qui revient à ces exploitants, individuellement et collectivement. Il est fondamental qu’ils assument leur responsabilité, individuellement et collectivement, qu’ils fassent entendre leur voix et qu’ils s’efforcent de mettre de l’ordre dans leurs rangs.

Autre grand principe, acquis d’ailleurs depuis 2002 mais conforté par la loi de 2006 : le contrôle de la sûreté nucléaire et celui de la radioprotection sont dans les mêmes mains.

Troisième grand acquis de la loi, le statut d’autorité administrative indépendante conféré à l’ASN, qui est gage d’efficacité pratique.

Enfin, nous avons un appui technique principal : l’IRSN, ce qui est une situation tout à fait satisfaissante.

Nous nous efforçons de mettre en œuvre quatre vertus, qui vont par deux : rigueur et compétence d’une part, transparence et indépendance de l’autre. Un des progrès accomplis à ce dernier égard a été la publication des lettres de suite à l’issue des 2 000 inspections que nous faisons chaque année, d’abord dans les installations nucléaires et désormais dans le secteur médical également. C’est une avancée considérable du point de vue de la transparence. Mais notre nouveau statut nous permet aussi de prendre position sur des problèmes de fond. Nous avions ainsi dit que nous montrerions notre insatisfaction si la France acceptait de couvrir de son drapeau l’exportation de réacteurs de génération II – j’avais indiqué que, pour un pays partant de rien, il fallait dix ou quinze ans avant d’être à même d’accueillir une installation nucléaire.
Pour résumer, nous avons le sentiment de pouvoir exercer correctement notre métier dans le cadre de la loi de 2006.

M. Jacques Repussard, directeur général de l'Institut de radioprotection et de sûreté nucléaire (IRSN). Une des caractéristiques du système français de sûreté nucléaire et de radioprotection est de faire davantage référence à la notion d'état de l’art qu’à celle de conformité à des textes précis. Issu en 2001 d’une initiative parlementaire et conçu pour être un socle de moyens d’expertise scientifique à la disposition des pouvoirs publics, l’IRSN est un organisme indépendant à la fois des exploitants nucléaireset de ceux qui développent les technologies et fournissent un appui technique, comme le CEA. La loi de 2006 a complété le dispositif avec la création de l’ASN, autorité administrative indépendante avec laquelle s’est établi un dialogue. On peut même parler de « quadrilogue » si l’on inclut les commissions locales d’information (CLI) et le Haut comité pour la transparence et l’information sur la sécurité nucléaire.

Ce dispositif repose sur deux piliers, un pilier régalien et un pilier scientifique. J’observe qu’un certain nombre de pays – et de responsables – vivent dans l’illusion que créer une autorité de sûreté, voter des textes et avoir un exploitant à qui l’argent ne manque pas suffit à assurer le contrôle de sûreté. Or rien n’est plus faux. Avoir un exploitant riche mais dépourvu des compétences nécessaires ou mal organisé est une situation potentiellement dangereuse, tout comme le fait d’avoir un organisme de sûreté dépourvu des moyens scientifiques et techniques de son appréciation. Il faut donc ces deux piliers – on ne peut faire la sûreté nucléaire à moitié – et la France a la chance d’avoir pensé à s’en doter à la grande époque de la politique nucléaire. Il va de soi que les exploitants constituent un troisième pilier.

Pour entretenir une capacité scientifique et technique, il ne suffit pas de disposer d’experts : il faut être capable de hiérarchiser les problèmes, de parvenir à des jugements globaux et d’entretenir un savoir-faire scientifique, ce qui suppose un effort de recherche permanent car les technologies et les connaissances évoluent. Pour être au niveau des grands exploitants, il faut donc disposer de moyens de recherche suffisants. Mais il faut aussi être capable d’analyser très précisément les événements qui se produisent en matière de sûreté dans le monde. En effet, le savoir-faire scientifique ne se fonde pas seulement sur la recherche : il repose également sur la
compréhension et l’interprétation de ce qui se passe au quotidien dans les installations. Il faut enfin gérer toutes ces connaissances, c’est-à-dire faire en sorte qu’elles soient opérationnelles et que les experts travaillent ensemble, non seulement dans notre pays mais aussi à l’échelle internationale.

Ce travail suppose des ressources financières et humaines adéquates. Or les budgets disponibles n’ont pas augmenté dans les deux dernières décennies, ce qui veut dire que les moyens ont diminué. Au moment du lancement du grand emprunt, j’ai émis l’idée que la recherche sur la sûreté nucléaire pourrait bénéficier de crédits : on m’a répondu que beaucoup avait déjà été fait. Depuis Fukushima, l’attitude a changé ! J’ai en tête des sujets de recherche précis, comme la maîtrise des accidents de criticité. Les dernières installations qui existent dans le monde sont en effet menacées de fermeture. Les États-Unis sont prêts à cofinancer 50% de l’investissement en France, car ils ont détruit leurs installations, mais nous avons toutes les peines du monde à trouver les quelques millions d’euros nécessaires à la rénovation de cette installation. Même en France, la tentation de faire des économies sur la sûreté nucléaire existe ! Ce n’est pas une bonne orientation.

Une des manières de faire face au problème est de travailler à l’échelle internationale. Le contrat d’objectifs de l’IRSN prévoit que l’expertise de sûreté nucléaire peut et doit être traitée à l’échelle européenne et internationale – ce qui est un gage d’harmonisation, d’économie et d’efficacité. Nous avons donc fondé en Europe une association des organismes d’appui technique (TSO), l’European technical safety organisations network (ETSON), dont est également membre l’organisme japonais d’appui technique. Nous avons l’ambition de lancer avec l’AIEA, lors de la conférence générale en septembre prochain, un forum mondial des TSO. Il faut promouvoir l’idée selon laquelle tous les pays doivent disposer d’une expertise technique – même ceux qui n’ont que quelques installations. La coopération internationale doit donc se développer en matière de recherche comme en matière de traitement des incidents, et l’expertise être mise à la disposition de ceux qui en ont besoin. La France a 58 réacteurs, le CEA, Areva… Mais les Pays-Bas, pour prendre un exemple européen, n’ont qu’un réacteur de recherche, à Petten, et un réacteur électrogène ancien. Ils souhaitent continuer à utiliser l’énergie nucléaire, mais ne seront jamais un grand pays nucléaire. Il faut donc poursuivre dans la voie de la coopération si l’on veut que la sûreté nucléaire soit présente dans tous les pays européens avec le même niveau d’efficacité – ce qui n’est pas le cas aujourd’hui. La mise en réseau des organismes européens avec...
l’appui de la Commission est donc une façon intelligente de construire l’Europe et d’assurer à tous les citoyens de l’Union une égalité devant le risque nucléaire.

Mon propos se veut donc un plaidoyer pour le maintien, voire le développement de l’effort de recherche, ainsi que pour le renforcement du pilier international, source d’économie, d’efficience et d’égal traitement des citoyens au regard du risque nucléaire et radiologique.

M. Bruno Sido, sénateur, premier vice-président de l’OPECST, rapporteur. Comme l’a rappelé M. Lacoste, les exploitants ont un rôle premier en matière de sûreté nucléaire. Nous avons la chance d’en accueillir trois aujourd’hui : Areva, le CEA et EDF. Ils vont nous expliquer comment ils gèrent leur propre effort de sûreté, en mettant en avant leurs spécificités.

Le deuxième contrôle est un contrôle spécifique de sûreté, effectué au niveau des établissements et par des moyens indépendants. Il est réalisé pour le compte du directeur d’établissement, qui a la responsabilité première de la sûreté et de la radioprotection dans l’installation nucléaire qu’il dirige.
Au-delà de ces deux contrôles, un contrôle de sûreté complémentaire – et de niveau supérieur – est réalisé par l’inspection générale Areva pour le compte de la direction générale. L’organisation du groupe est la suivante : sous l’autorité de la direction générale sont placés un certain nombre de directions, puis les directeurs d’établissement, premiers responsables de la sûreté, de la sécurité et donc de la radioprotection dans leur installation. Eux-mêmes s’appuient sur un support fonctionnel sûreté qui assure le contrôle de sûreté au niveau de l’établissement.

L’inspection générale est composée d’un inspecteur général et d’une équipe d’une dizaine de personnes directement nommées par la présidente du groupe. Elle rend compte de ses contrôles au directeur de l’établissement concerné, mais aussi à la direction générale.

La charte sûreté nucléaire pose les principes suivants : un système de responsabilité qui suit la ligne hiérarchique opérationnelle des activités industrielles ; un contrôle indépendant des équipes d’exploitation, placé au niveau du directeur d’établissement ; un contrôle par l’inspection générale.

La charte de l’inspection générale, conforme à une norme internationale de l’audit interne, définit les principes généraux – indépendance, objectivité, compétence… – ainsi que les règles méthodologiques auxquelles obéissent les inspections.

Chaque directeur d’établissement nucléaire formalise annuellement son programme de contrôle, en appliquant une directive qui est émise au niveau du groupe. En 2010, 173 contrôles indépendants ont été réalisés au niveau des établissements.

L’inspection générale établit de son côté un autre programme annuel d’inspections, qui est validé par la direction générale en comité exécutif. Ces inspections donnent chacune lieu à un rapport ; les directions inspectées se voient demander des plans d’action pour remédier aux constats qui sont faits. L’inspection générale rédige enfin un rapport annuel sur l’état de la sûreté des installations du groupe, rapport qui est rendu public après son approbation par le conseil de surveillance. Le rapport pour 2010 est en cours de validation et devrait être publié prochainement. L’inspection générale a réalisé 53 inspections en 2010. Il s’agit aussi bien d’inspections portant sur
des thèmes généraux – elles sont alors répétées sur plusieurs sites – que d’inspections de conformité ou de suivi, ou encore d’inspections déclenchées à la suite d’incidents à l’intérieur d’établissements du groupe.

Mme Edwige Bonnevie, directrice du pôle de maîtrise des risques au CEA. L’organisation de la sûreté nucléaire propre au CEA est définie par des notes d’instruction générale et par des circulaires. De façon schématique, elle repose sur trois niveaux de responsabilité, qui déterminent autant de « lignes d’action » : l’administrateur général ; les directeurs de centre, qui agissent par délégation de l’administrateur général et qui sont les représentants locaux du CEA en tant qu’exploitant nucléaire ; les chefs d’installation – installations nucléaires de base (INB) ou installations classées pour la protection de l’environnement (ICPE) –, qui ont une délégation nominative du directeur de centre dont ils dépendent et dont la mission est de déterminer et de conduire les actions permettant d’assurer la maîtrise des risques inhérents à leur installation.

Les objectifs et les moyens associés sont formalisés par des contrats d’objectifs de sécurité signés entre les différents niveaux hiérarchiques. Chacun de ceux-ci dispose de ses fonctions de soutien : ce sont le pôle maîtrise des risques – que je dirige – pour l’administrateur général, les cellules de soutien pour les directeurs de centre et les acteurs de sécurité de terrain pour les chefs d’installation.

Le pôle maîtrise des risques instruit et prépare les décisions de l’administrateur général dans le domaine de la sûreté et de la sécurité, en définit les modalités d’application, et anime et coordonne tout le réseau de soutien, tant du point de vue technique qu’humain et organisationnel.

Chaque niveau dispose également de ses fonctions de contrôle : contrôle de premier niveau dans chaque installation ; cellule de contrôle au niveau du directeur de centre ; et inspection générale et nucléaire (IGN) au niveau de la direction générale. Pour l’IGN, les maîtres mots sont, comme chez Areva, indépendance, objectivité et compétence.

Le directeur de l’IGN dispose d’un corps de six inspecteurs nucléaires pour réaliser le programme d’inspections arrêté sur sa proposition par l’administrateur général. En outre, il conduit les inspections « réactives »
que peut demander ce même administrateur général mais il peut également s’autosaisir.

La stratégie du CEA en matière de sûreté, de radioprotection, de sécurité et de protection de l’environnement est exposée dans le plan triennal d’amélioration de la sécurité et de la sûreté. Le plan en cours a été signé au début de 2009, à la prise de fonction de l’administrateur général actuel.

C’est sur la base des plans triennaux et de directives de sécurité annuelles établies par le pôle maîtrise des risques que sont élaborés les contrats d’objectifs de sûreté et de sécurité entre les différents acteurs concernés : d’une part, entre l’administrateur général et les directeurs de pôles opérationnels ; d’autre part, entre les directions de centre et les départements. Ces différents documents comportent des indicateurs dont le suivi est assuré dans le cadre de réunions périodiques entre les directions opérationnelles concernées et le pôle maîtrise des risques. En outre, chaque mois, à l’occasion de la réunion du « comité de direction opérations », qui rassemble l’administrateur général, les directeurs de pôles opérationnels et fonctionnels et les directeurs de centre, un point est fait, notamment, sur les événements déclarés aux autorités de sûreté. Enfin, quatre fois par an, le comité stratégique de la sécurité nucléaire effectue une revue de direction, traitant de façon approfondie le sujet de la sûreté pendant tout un après-midi.

Il s’agit d’un processus que l’on peut décrire comme une boucle d’amélioration continue de la sûreté : chaque année, les directives pour l’année suivante prennent évidemment en compte les résultats des audits et inspections et les retours d’expérience des événements et incidents.

Cette organisation et ce processus « bouclé » d’amélioration de la sûreté résultent des efforts consentis au fil du temps pour clarifier les rôles et responsabilités de chacun, pour bien séparer les responsabilités des lignes d’action, de soutien et de contrôle et pour bien préciser la façon de travailler.

Établie en 2008, cette organisation ne se heurte à aucune difficulté particulière d’application sur le terrain. L’appropriation par les acteurs est bonne, ce qui est essentiel puisqu’une organisation – ou un processus – ne vaut que si les acteurs fonctionnent de la façon spécifiée. En 2009, il est cependant apparu nécessaire d’améliorer notre chaîne de remontée de
l’information. C’est pourquoi a été ajoutée à cette organisation une procédure d’information immédiate, depuis le terrain jusqu’à l’administrateur général, pour toute situation susceptible d’évoluer en crise, ce afin de garantir la réactivité nécessaire.

M. Jean Tandonnet, inspecteur général pour la sûreté nucléaire (EDF). Alors que, d’une manière générale, nos homologues étrangers, particulièrement les Anglo-Saxons, sont très forts sur l’organisation, contrairement à nous qui sommes plus forts sur l’ingénierie, nous avons paradoxalement un temps d’avance sur eux pour ce qui est de l’organisation de la sûreté nucléaire, que nous fondons à la fois sur l’indépendance entre le contrôle et l’exploitation et sur la transparence.

La sûreté à la conception est d’autant plus importante pour nous que nous construisons en ce moment Flamanville 3, que nous procédons à des réexamsens de sûreté plus fréquents que par le passé et que nous demandons la prolongation de la durée de fonctionnement de nos centrales. À cet égard, le dialogue avec l’ASN et avec son appui technique, l’IRSN, est essentiel, et les réévaluations de sûreté, qui sont sans doute l’une des caractéristiques de notre pays, nous ont permis de progresser dans la prise en compte des risques de séisme, d’inondation ou d’accidents du type de celui de Three Mile Island, etc. Mais la spécificité d’EDF par rapport à d’autres opérateurs est peut-être de rassembler dans une même main une ingénierie de la conception, de l’exploitation et de la déconstruction, ce qui est fondamental pour la sûreté.

S’agissant de l’exploitation, EDF n’est pas une entreprise comme les autres : le fait d’être le premier exploitant dans le monde avec 58 centrales nucléaires donne des responsabilités particulières à son président. Aussi faut-il à ce dernier des moyens d’inspection, ce que, en ma qualité d’inspecteur général dépendant directement de lui, je lui apporte, avec l’aide d’une petite équipe.

À ce premier niveau de sûreté et de contrôle s’en ajoutent deux autres : celui de la division Production nucléaire (DPN), qui dispose d’un corps d’inspection très nombreux, et celui des centrales, également dotées d’un corps de contrôle, le service « sûreté et qualité ». Ces trois niveaux sont indépendants les uns des autres.
L’inspection générale pour la sûreté nucléaire (IGSN) – au niveau donc de la direction de l’entreprise – a comme bras armé le conseil de sûreté nucléaire. Cette instance, qui se réunit cinq fois par an, est présidée par le président d’EDF et comprend les principaux directeurs de l’entreprise et, depuis peu, des représentants d’EDF Energy, ce qui donne une ouverture sur l’étranger et permet de mener une politique plus cohérente avec British Energy.

Mon rôle, plus précisément, est d’apprécier les performances, d’avoir une vision globale en matière de sûreté nucléaire, de sécurité et de radioprotection – eu égard aux dispositions réglementaires mais aussi à la sensibilité des opinions publiques –, de maintenir une veille active dans les différentes entités, et de porter un regard extrêmement large aussi bien sur l’ingénierie que sur l’exploitation, y compris sur celle des centrales dont nous sommes responsables à l’étranger – aux États-Unis, en Chine et au Royaume-Uni. En outre, comme les corps d’inspection des deux autres niveaux, je dispose d’un droit d’alerte que je peux exercer directement auprès du président, en cas de nécessité.

Mon travail est fait de visites sur le terrain. C’est ainsi qu’ont été dernièrement effectuées 38 visites d’inspection, notamment sur neuf sites français – les sites sont visités une fois tous les trois ans – et qu’ont été conduits 350 entretiens, qui n’ont pas concerné uniquement EDF, mais également des acteurs étrangers et les prestataires. Je m’intéresse particulièrement à ces derniers : chaque fois que je me rends sur un site nucléaire, je rencontre leurs responsables, mais je peux également m’entretenir avec eux dans différents organes parisiens ou autres. Je procède en outre à un benchmarking international – j’ai ainsi passé quinze jours au mois de février à la centrale de Koeberg en Afrique du Sud.

L’IGSN est également présente dans toutes les instances de sûreté du groupe et diffuse largement – que ce soit auprès de notre président, de l’ASN ou encore du public – un rapport annuel dans lequel nous donnons de manière franche et transparente notre avis sur l’état de la sûreté.

M. Philippe Sasseigne, directeur adjoint de la production nucléaire (EDF). La division Production nucléaire d’EDF dispose en propre d’un corps de 35 à 40 inspecteurs hautement qualifiés dans les domaines de la sûreté nucléaire, de la radioprotection ou encore de la protection de
l’environnement. Leur mission est de réaliser des évaluations globales de sûreté des 19 centrales que nous exploitons. Menées tous les trois ans sur chacune d’entre elles, ces inspections, d’une durée de trois semaines, sont effectuées par une trentaine d’inspecteurs dont des pairs venant d’autres centrales afin d’échanger les retours d’expérience. Elles donnent lieu à des rapports détaillés qui sont soumis au directeur de la division, chaque directeur d’unité étant ensuite conduit à élaborer un plan d’action pour améliorer tout ce qui doit l’être. Ce travail, complémentaire de celui que conduit la WANO au moyen des peer reviews, a pour objectif l’amélioration permanente de la sûreté nucléaire sur l’ensemble de nos sites.

Au quotidien, la responsabilité de la sûreté sur un site est avant tout celle du directeur d’unité, mais également, bien entendu, de tous les personnels, agents EDF comme prestataires. Cette responsabilité s’exerce essentiellement par ce que nous appelons le management de la sûreté nucléaire, qui suppose d’avoir un référentiel de sûreté – une sorte de code de la route que chacun doit connaître et respecter –, des personnels formés et compétents et une culture de sûreté, mais aussi un dispositif très robuste de contrôle interne à la centrale : c’est la « filière indépendante de sûreté », qui relève directement du directeur d’unité. Piloté par un chef de mission ou par un directeur sûreté, ce service « sûreté et qualité » est composé de dix à douze ingénieurs totalement dédiés au contrôle. Ils réalisent, en particulier, une évaluation journalière de la sûreté de leur centrale, qui est confrontée à celle du chef d’exploitation, afin de détecter toutes les anomalies qui méritent d’être traitées.

Cet appui sûreté de la direction et de toutes les équipes de la centrale constitue une ressource d’ingénierie dans le domaine de la sûreté. Le référentiel étant complexe et évolutif, il est important que des spécialistes soient au service des équipes pour les guider dans son application et pour le tenir à jour.

Enfin, chaque centrale produit, conformément à la loi TSN, un rapport annuel sur sa sûreté. Ce rapport, qui couvre aussi des aspects de radioprotection et de protection de l’environnement, est soumis aux organismes internes à la centrale, tels que le CHSCT, mais fait également l’objet d’une diffusion externe.
Cette organisation interne permet à chaque directeur de centrale de disposer en permanence d’un état précis de la sûreté de son installation et de pouvoir ainsi améliorer cette sûreté, conformément à sa mission essentielle.

M. Jean Tandonnet. En conclusion, je récapitulerai l’ensemble des inspections réalisées sur un site. Le contrôle interne, d’abord, est exercé à la fois par la présidence, grâce au rapport de l’inspection générale, par les divisions nucléaires, avec des inspections tous les trois ans, et par les unités, avec une inspection journalière. Le contrôle externe, ensuite, est effectué par l’ASN et par son appui technique, l’IRSN avec 350 visites par an, et par le haut fonctionnaire de défense avec une visite tous les deux ans. Le contrôle international, enfin, implique, d’une part, la WANO, avec un contrôle tous les six ans sur chaque CNPE (centre nucléaire de production d’électricité), suivi, deux ans après, par une revue de suivi – follow-up – et, d’autre part, les équipes OSART de l’AIEA, qui viennent une fois par an.

Je tiens à insister sur l’indépendance des corps de contrôle et sur la transparence de l’entreprise, garantie par les rapports annuels de l’inspecteur général et de chaque site.

M. Bruno Sido, sénateur, premier vice-président de l’OPECST, rapporteur. La sûreté suppose un effort de tous les intervenants à tous les niveaux, et la formation professionnelle a donc un rôle essentiel à jouer dans la validation des compétences nécessaires pour travailler dans l’industrie nucléaire. C’est pourquoi j’invite M. Henri Chapotot à nous présenter le dispositif français de certification en matière de radioprotection.

M. Henri Chapotot, directeur du Comité français de certification des entreprises pour la formation et le suivi du personnel travaillant sous rayonnements ionisants (CEFRI). Le CEFRI a été créé en 1990 à l’initiative des exploitants – EDF, Areva NC, le CEA, la Défense –, de la Caisse nationale d’assurance maladie des travailleurs salariés (CNAMTS), de la Société française de radioprotection, de l’IRSN, des médecins du travail et du Groupe intersyndical de l’industrie nucléaire (GIIN) – fédération des entreprises intervenant dans l’industrie nucléaire, hors exploitants. Il a pour mission de certifier les entreprises et les personnes, c’est-à-dire les entreprises prestataires, les entreprises de travail temporaire – 3 500 personnes travaillent ainsi pour EDF, Areva et le CEA –, les
organismes de formation en radioprotection et les formateurs de personnes compétentes en radioprotection (PCR).

Le domaine de certification du CEFRI couvre le management – et non le contrôle – de la radioprotection, afin que les entreprises prestataires s’approprient les règles posées en ce domaine et les appliquent au mieux, qu’il s’agisse de la formation des personnels, du suivi médical ou du suivi dosimétrique.

Le CEFRI attribue ainsi, avec la participation des exploitants, la certification « E » aux entreprises prestataires, « I » aux entreprises de travail temporaire, « F » aux organismes de formation et « R » aux formateurs de CPR. Nous avons bien entendu des équipes d’audit comprenant une soixantaine d’auditeurs qualité, ainsi que deux comités de certification : l’un dédié aux entreprises, dans lequel siègent les exploitants et les représentants des entreprises et auquel vient en appui une commission technique ; l’autre dédié aux formateurs de PCR.

Le CEFRI est lui-même audité par le Comité français d’accréditation (COFRAC) – le dernier audit pour le renouvellement de notre accréditation vient d’ailleurs d’avoir lieu.

En 2010, 520 audits ont été réalisés dont 45 dans le domaine de la formation et 23 dans celui de l’intérim. Les résultats sont au rendez-vous. On constate, en effet, une appropriation croissante des règles de radioprotection par les entreprises certifiées. Ainsi, entre le quatrième trimestre de 2009 et le quatrième trimestre de 2010, le nombre des dossiers sans écart a augmenté de 43 %, tandis que le nombre de remarques en audits a diminué de 34 % et celui des non-conformités en audits de 64 %. Le CEFRI contribue, en outre, aux excellents résultats des exploitants en matière de dosimétrie des intervenants : en 2010, la dose moyenne par intervenant chez EDF– hors intervenants à dose nulle bien entendu – a été de 1,19 mSv, c'est-à-dire à peine supérieure à la dose autorisée pour le public.

Pour résumer, le CEFRI est le certificateur de référence en radioprotection auprès des parties prenantes – les exploitants, les entreprises avec le GIIN, l’IRSN, la Société française de radioprotection (SFRP), la CNAM et les médecins du travail travaillant ensemble. C’est un organisme
M. Lacoste ayant fait état de la dénonciation par certaines organisations d’un prétendu mauvais traitement des salariés prestataires, je précise qu’aucune personne n’a depuis 2004 reçu une dose dépassant 18 mSv, soit moins que la limite réglementaire.

M. Bruno Sido, sénateur, premier vice-président de l’OPECST, rapporteur. Si l’effort de sûreté concerne chacun des employés des exploitants, il n’a de sens que si la sous-traitance y contribue pleinement, ce qui suppose d’en conserver une parfaite maîtrise. La sous-traitance peut en effet avoir du sens pour des tâches très spécialisées techniquement ou périphériques. M. Jean-Marc Miraucourt, directeur de l’ingénierie nucléaire d’EDF, n’ayant pu se libérer, il a demandé à pouvoir présenter le point de vue d’EDF à l’occasion du déplacement que nous devons effectuer à la centrale de Belleville, la semaine prochaine.

Aussi, j’invite de nouveau M. Andrieux, directeur sûreté, sécurité, santé et environnement d’Areva, à nous expliquer comment son entreprise s’assure que la sous-traitance est intégrée dans le dispositif de sûreté.

M. Jean-Luc Andrieux. Concernant la maîtrise de la sous-traitance, la stratégie achats du groupe Areva repose sur plusieurs principes.

En premier lieu, des analyses « cœurs de métier » et des analyses de risques sont effectuées au niveau local avant tout recours significatif à la sous-traitance, notre responsabilité d’exploitant étant de faire la juste part entre notre expertise et celle des entreprises extérieures. C’est au vu de ces analyses que nous avons recours dans certains cas à la sous-traitance lorsqu’elle aura plus de compétences que nous pour réaliser certains gestes.

En deuxième lieu, la sous-traitance est utilisée principalement pour la maintenance des installations et pour quelques activités spécialisées d’exploitation. Areva n’est d’ailleurs pas simplement exploitant d’installations
nucléaires. Elle est aussi prestataire de services, étant elle-même sous-traitante par l’intermédiaire de filiales dans les secteurs de l’ingénierie, des services, de l’assainissement et des transports. Pour prendre l’exemple de La Hague, dont j’ai été le directeur, 40 à 50 % de la sous-traitance réalisée pour le compte d’Areva le sont en fait par des filiales du groupe.

En troisième lieu, nous avons fait le choix de favoriser la sous-traitance à des acteurs locaux. Le directeur d’établissement a un rôle fondamental à cet égard : il doit maintenir autour de son installation un tissu industriel qui contribuera à la pérennité de l’exploitation, y compris en aidant à faire face à des surcroîts d’activité. Il lui appartient de ce fait de veiller à un juste équilibre entre le recours à la sous-traitance externe et le recours aux filiales d’Areva.

En quatrième lieu, enfin, le groupe valorise ses partenariats par l’octroi d’un label « fournisseur Areva », qui intègre des critères de sûreté et de sécurité ainsi que des critères environnementaux.

La politique des achats s’inscrit dans la démarche globale de développement durable et de progrès continu du groupe Areva. Les directeurs locaux ont ainsi la responsabilité de conclure avec les fournisseurs des conventions permettant d’anticiper sur l’évolution des besoins – connaissant relativement mieux leur avenir, nos sous-traitants peuvent se doter des moyens d’assurer les prestations qu’on leur confie – et de fixer des objectifs communs de sécurité et de sûreté.

Le groupe s’est, par ailleurs, engagé dans une démarche volontariste s’agissant de la radioprotection de ses salariés et de ses sous-traitants : Areva applique à tous les mêmes règles. Cela étant, non seulement la dose individuelle moyenne reçues par les salariés des entreprises extérieures – inférieure à 0,5 mSv – est moindre que celle des salariés Areva, mais il en est de même de la dose collective – étant entendu qu’une grande partie des tâches de sous-traitance, en particulier des tâches d’assainissement, est assurée par des filiales du groupe.

Pour ce qui est des conditions générales de travail et d’intervention de nos sous-traitants, un processus achats, commun à toutes les entités, prend en compte les compétences sûreté et radioprotection dans le choix qui est fait des
entreprises. Une directive groupe, que j’ai moi-même émise, précise ces exigences en matière de sûreté et de santé – la radioprotection –, de sécurité et de protection de l’environnement. Un suivi de la qualité des fournisseurs et des sous-traitants est ensuite réalisé sous forme d’une centaine d’audits, effectués par des auditeurs internes à Areva, différents de ceux de l’inspection générale. Cette dernière a cependant un programme pluriannuel d’inspections relatives à la maîtrise des prestataires, qui concernera une quinzaine d’établissements nucléaires entre 2011 et 2013, Enfin, compte tenu des contraintes particulières à ces activités, une commission spécifique d’acceptation des entreprises d’assainissement radioactif (CAEAR) traite des marchés d’assainissement et de démantèlement, qui exigent un agrément qualité et une certification CEFRI des sous-traitants.

S’agissant enfin de la formation à la sûreté, Areva sensibilise ses sous-traitants aux risques de leurs installations et ateliers. Je citerai, à cet égard, la sensibilisation à la culture de sûreté dispensée sur le site du Tricastin aux correspondants sûreté des sous-traitants, et celle prodiguée par Areva NC La Hague au personnel des entreprises extérieures avant toute intervention sur un chantier de démantèlement.

Areva a également pris des initiatives pour former ses sous-traitants aux spécificités de ses installations ou de ses activités nucléaires : sur le site de MELOX, une école dispense une formation certifiante avant toute intervention en boîte à gants cependant qu’à Areva NC La Hague, on prépare les télémanipulations à l’aide d’une maquette à l’échelle 1.

Pour résumer, Areva a une maintenance plutôt centrée sur les établissements – dont la nature, encore une fois, est totalement différente selon qu’on est à l’amont ou à l’aval du cycle. Les directeurs de ces installations ont la responsabilité de maintenir autour d’eux un tissu industriel local et nous nous appuyons sur toute une palette de méthodes pour entretenir la « fibre sûreté » chez nos sous-traitants.

M. Bruno Sido, sénateur, premier vice-président de l’OPECST, rapporteur. Je vais pour finir demander à M. Henri Legrand, conseiller du directeur général de l’ASN, de nous présenter les différents aspects pratiques du contrôle de sûreté : jusqu’à quel point fait-on remonter le contrôle à l’amont et à l’aval de la filière ? Qui déclenche les contrôles systématiques ou, à l’inverse, comment sont organisés les contrôles inopinés ?
M. Henri Legrand, conseiller du directeur général de l’ASN.
Mon propos portera sur les contrôles effectués par l’ASN, sous forme d’inspections – soit l’aval de nos activités, l’amont consistant en la réglementation et l’autorisation.

L’objectif de l’inspection est de vérifier que l’exploitant assume bien sa responsabilité. De manière schématique, je dirai même que l’on inspecte l’exploitant davantage que son installation.

L’ASN compte quelque 250 inspecteurs qui effectuent environ 2 000 inspections par an, dont la moitié sur les installations nucléaires de base – mais elle contrôle également les équipements sous pression nucléaire, le transport de matières radioactives, le nucléaire de proximité, soit à peu près 150 installations nucléaires et 50 000 activités diverses.

Une caractéristique importante de ce contrôle est son caractère intégré : contrairement à ce qui a pu se faire en France à d’autres époques et à ce qui peut se faire dans d’autres pays, l’ASN a à la fois en charge la sûreté nucléaire au sens strict, c’est-à-dire la prévention des accidents, mais aussi la radioprotection, la protection de l’environnement – contre le rejet d’effluents et de déchets – et, dans les centrales nucléaires uniquement, l’inspection du travail.

L’agence, qui cherche, ce qui est la moindre des choses, des inspecteurs compétents et efficaces, tente de varier leurs profils en recrutant non seulement des ingénieurs, mais aussi des médecins et des inspecteurs du travail.

Elle consacre à leur formation un peu plus de 4 % de sa masse salariale, et assure à tout inspecteur débutant une formation initiale de 45 jours.

L’encadrement s’opère par l’intermédiaire d’un dispositif d’habilitation. Les inspecteurs sont habilités en fonction du domaine qu’ils vont contrôler – sûreté nucléaire, radioprotection, équipements sous pression, inspection du travail –, certains pouvant l’être dans plusieurs domaines. Cette habilitation est délivrée sur la base des connaissances et de
l’expérience. Une habilitation « senior » a été créée pour les inspecteurs expérimentés, dont nous cherchons à valoriser au mieux le rôle.

Ces inspecteurs sont polyvalents : ils peuvent ainsi participer au travail de réglementation et d’élaboration des autorisations et à l’information que délivre l’ASN. À la différence de certains autres pays, nous avons choisi de ne pas avoir d’inspecteurs résidents dans les installations : ils sont regroupés dans onze divisions territoriales, ce qui facilite l’échange d’expériences et leur évite d’avoir avec l’exploitant une trop grande proximité, qui n’est pas forcément souhaitable.

Chaque année est élaboré un programme qui fait place à des inspections de différents types et de volume variable : l’inspection simple, qui peut durer un ou deux jours ; l’inspection de revue, qui voit un nombre plus important d’inspecteurs se rendre dans un site pendant une semaine ; l’inspection avec prélèvements ; l’inspection inopinée – elle représente à peu près un quart des inspections réalisées sur les installations nucléaires. Mais d’autres inspections peuvent être déclenchées lorsqu’un événement l’exige, tout le problème étant alors pour nous de réagir dans le délai le plus court possible.

Les inspections programmées font l’objet, un mois à l’avance, de tout un travail de préparation effectué en relation avec l’IRSN, travail qui comporte notamment l’analyse de toutes les informations disponibles afin d’avoir la meilleure efficacité possible sur le terrain.

Toutes les inspections donnent lieu à une lettre de suite qui contient les constats effectués et les demandes adressées à l’exploitant. Ces lettres sont désormais toutes publiées sur Internet. Les inspecteurs de l’ASN peuvent dresser procès-verbal s’ils constatent une infraction, ce qui ne précède pas des suites administratives qui peuvent être de deux ordres : les prescriptions qui obligent, sous peine de sanction, à se plier aux demandes
formulées ; le processus de sanction administrative, institué pour les installations nucléaires de base par la loi de 2006, si un manquement à la réglementation est constaté. Nos moyens vont de la mise en demeure ou de la consignation d’une somme jusqu’à la suspension du fonctionnement de l’installation, en passant par l’exécution d’office de travaux – disposition rarement mise en œuvre car il est préférable que ce soit l’exploitant qui se charge directement de ces travaux.

J’ajoute que l’agence exerce aussi un contrôle, de deuxième niveau, sur des organismes agréés qui interviennent dans les installations pour contrôler certaines activités.

M. le président Claude Birraux. Il est temps maintenant d’ouvrir la discussion.

M. Bruno Sido, sénateur, premier vice-président de l’OPECST, rapporteur. Lors de notre visite au centre nucléaire de production d’électricité (CNPE) de Gravelines, son directeur nous a indiqué que 10 % du temps de travail des employés du site était consacré à la formation. En est-il de même pour les sous-traitants ?

EDF prévoit que, pour passer au niveau de technicité supérieur et pour obtenir des habilitations, ses agents doivent recevoir une formation plus générale que celle qu’exige l’exercice de leur seul métier. Ainsi les candidats apprennent comment fonctionne une centrale et, finalement, en quoi leur travail est essentiel au fonctionnement de la centrale et à sa sûreté. Par quel mécanisme peut-on garantir un niveau aussi exigeant de formation chez les sous-traitants ?

M. Henri Chapotot. Il existe un référentiel CEFRI en matière de formation. C’est sur cette base que tous les personnels reçoivent une formation initiale et continue.

M. Philippe Sasseigne. Les temps de formation dépendent en fait des métiers exercés, et cela vaut pour les personnels EDF comme pour les sous-traitants. Ainsi les opérateurs en salle de commande, qui doivent s’entraîner régulièrement sur simulateur pour répéter des gestes, soit
d’exploitation courante, soit de configuration incidentelle ou accidentelle, sont ceux qui reçoivent le plus de formation dans l’année.

Nos sous-traitants chargés de la maintenance suivent en tout cas, en sus des formations qui relèvent de leur métier, toutes les formations et tous les recyclages obligatoires conformes au référentiel CEFRI. Pour autant, cela ne concernera pas, pour prendre l’exemple d’un peintre, 10 % de son temps de travail. En revanche, un soudeur aura besoin de temps de formation importants, car les qualifications en matière de soudage sont très exigantes dans nos centrales.

M. Jean Tandonnet. Les chantiers écoles sont également ouverts aux prestataires en raison de l’importance pour tous de la culture de sûreté.

M. Yves Marignac, directeur de Wise-Paris, membre du comité d’experts. Une pratique de transparence s’affirme depuis quelque temps : la participation de la société civile, au travers de membres des Commissions locales d’information (CLI), à des inspections menées par l’ASN. Quelle est la proportion des inspections concernées ? D’autre part, comment les exploitants informent-ils les CLI des autocontrôles qu’ils mènent sur leurs différentes installations ?

M. André-Claude Lacoste. Il faut faire attention aux mots en la matière. Ce que l’ASN souhaite pratiquer, c’est une association de membres des CLI ou du Haut comité pour la transparence et l'information sur la sécurité nucléaire (HCTISN) à des inspections. Il faut éviter de laisser croire que ces personnes deviennent elles-mêmes inspecteurs. Elles sont, comme je l’ai dit, associées aux inspections.

Cette participation est destinée à leur montrer ce qu’est une inspection et ce que sont les rapports entre l’ASN et les entités inspectées. Pour donner un ordre de grandeur, cela ne concerne qu’une dizaine de cas par an. Quel qu’en soit l’intérêt, cette pratique n’a en effet aucune vocation à devenir une pratique de masse. Nous nous efforçons d’ailleurs de choisir des thèmes qui ne soient pas trop techniques – tenue de la documentation ou certains aspects qualitatifs ou organisationnels – de façon que les participants puissent suivre le déroulement des inspections.
M. le président Claude Birraux. Je compléterai la question de M. Marignac avant la réponse des représentants d’EDF. En effet, ces derniers nous ont dit que, conformément à la loi TSN, chaque centrale rédigeait un rapport sur la sûreté dans son installation. Or, régulièrement, l’Autorité de sûreté pointe du doigt certaines installations à la traîne en matière de sûreté. Ne faut-il pas en conclure que l’auto-évaluation se confond avec l’autosatisfaction ? Comment EDF fait-elle pour répondre aux injonctions de l’ASN sachant, me semble-t-il, qu’avant la loi TSN de 2006, cette autorité avait, sous menace de suspendre l’activité, mis en demeure les responsables d’une centrale d’appliquer ses consignes ?

M. Jean Tandonnet. C’est là une histoire ancienne qui, je l’espère, ne se renouvellera pas.

M. le président Claude Birraux. Dans le dernier rapport, cinq ou six centrales sont encore pointées du doigt.

M. Jean Tandonnet. En matière de sûreté, s’il faut toujours progresser, certaines centrales progressent plus que d’autres...

S’agissant de l’information des CLI, l’article 21 de la loi TSN nous oblige à leur communiquer les rapports, ce que chaque centrale fait tous les ans.

Quant aux visites, je fais miens les propos du président de l’Autorité de sûreté nucléaire : nous autorisons, au cas par cas, la participation de membres des CLI aux inspections, mais sans intention de généraliser cette pratique.

M. André-Claude Lacoste. Tous les trois ans, l’ASN présente le rapport français à la réunion de revue de la Convention sur la sûreté nucléaire et nous demandons alors à l’inspecteur général pour la sûreté nucléaire d’EDF d’intervenir. Ce qui frappe nos confrères étrangers, c’est la liberté de parole – que l’on retrouve d’ailleurs dans le ton de son rapport – dont dispose et use cet inspecteur général, et la discussion avec nos homologues est alors infiniment plus intéressante qu’en d’autres enceintes.
M. Jean-Luc Andrieux. Areva, qui est également partie prenante dans les CLI, diffuse énormément d’informations, par l’intermédiaire plus particulièrement de ses deux installations de La Hague et du Tricastin.

Il convient aussi de signaler l’existence de groupes d’expertise pluralistes, comme le Groupe radioécologie Nord-Cotentin (GRNC) sur le site de La Hague ou encore le groupe d’expertise pluraliste GEP-Mines, qui consacre ses travaux aux mines d’uranium du Limousin. De telles initiatives ont favorisé un rapprochement entre exploitants et représentants de la société civile. De son côté, le HCTISN s’associe des groupes de travail, ce qui contribue également à des échanges d’informations très détaillées.

Concernant la participation des CLI aux inspections, je partage la position de M. Lacoste. Autant Areva est disposée à montrer ses installations et à expliquer ses processus de fonctionnement, autant nous estimons qu’une inspection, c’est d’abord un rapport entre un contrôleur et un contrôlé. Elle doit suivre des règles précises, et il y a donc une limite à respecter dans cette participation.

Mme Edwige Bonnevie. Si le CEA est évidemment tout prêt, lui aussi, à montrer toutes ses installations, les inspections sont soumises à des objectifs et à un cadre réglementaire extrêmement précis. Il y a en effet un certain rapport à respecter entre inspecteur et inspecté, et il faut donc être très prudent si l’on ne veut pas dénaturer le travail qui se fait à cet occasion.

Tous les centres du CEA concernés participent bien sûr aux CLI et nous publions, conformément à l’article 21 de la loi TSN, les rapports réglementaires relatifs à chacun de nos sites. De plus, nous publions de notre propre volonté un bilan annuel de la maîtrise de risques qui couvre l’ensemble du sujet, sans s’en tenir à la sûreté et à la radioprotection, et qui donne l’occasion au directeur de l’inspection générale de présenter sa perception du niveau de sûreté nucléaire au CEA.

M. Jacques Repussard. Parmi les informations à la disposition du public figurent les rapports que l’IRSN publie chaque année sur les centrales nucléaires et tous les deux ans sur les installations et les transports. Sortes d’analyses des retours d’expérience, ils obéissent à une approche plus scientifique que d’autres documents. Nous essayons ainsi d’apprécier les
effets des plans d’amélioration élaborés par EDF, en fonction d’indicateurs relatifs aux petits incidents qui se produisent tous les jours.

Ces rapports sont d’autant plus intéressants qu’ils sont élaborés « à froid » et permettent de porter un autre regard sur des événements qui ont parfois fait la une des journaux. Ils aident à distinguer entre les situations satisfaisantes et celles qui exigent des mesures, ce qui contribue à l’acculturation de l’ensemble des acteurs du nucléaire et à la progression de la sûreté.

M. Hubert Flocard, chercheur au CNRS, membre du comité d’experts. Si la séparation administrative entre l’autorité de sûreté et le support technique qu’est l’IRSN est l’une des caractéristiques du système français, arrive-t-il à l’ASN de faire appel à un support technique étranger ? Inversement, l’IRSN – le cas de la Hollande a été mentionné – peut-il être appelé à servir de support technique à une autorité de sûreté étrangère ?

M. André-Claude Lacoste. Le principal appui technique de l’ASN est bien sûr l’IRSN, mais nous faisons appel à d’autres sur certains sujets : par exemple à des collègues britanniques à propos de la criticité, ou encore à des collègues belges ou autres pour les appareils à pression. Nous sommes donc ouverts à d’autres collaborations – encore que cela reste marginal – de façon à ne pas avoir une vision totalement monocolore.

M. Jacques Repussard. Les interventions à l’étranger ne représentent également qu’une faible part des activités de l’IRSN. Nous y sommes cependant ouverts, et d’ailleurs des autorités étrangères nous demandent régulièrement de leur apporter soit un appui technique sur un point particulier d’instruction de dossier qui fait appel à des connaissances scientifiques dont elles ne disposent pas nationalement, soit encore pour avoir un deuxième regard. Ainsi l’autorité de sûreté suédoise nous implique dans son évaluation de projets de stockage géologique afin d’avoir, en plus de celui de son appui technique local, l’avis de l’IRSN. De même, nous avons rendu un rapport à l’autorité de sûreté slovène – qui ne lui a sans doute pas fait plaisir – sur la sismicité d’un site qui avait été retenu pour une implantation : nous avons découvert qu’il était situé sur une faille ! Nous travaillons également pour les Émirats arabes unis, pour la Chine, pour l’Afrique du Sud, etc.
Si marginales que soient ces collaborations, le fait pour nos ingénieurs et nos experts de se confronter à d’autres cultures et pratiques de sûreté se révèle très formateur. Nous avons, par exemple, appris à connaître les VVER-1000 russes qui sont potentiellement de bons réacteurs. Cette activité internationale fait de bons experts et crée ainsi de la compétence dont la France et son autorité de sûreté bénéficient.

M. le président Claude Birraux. Un cas d’école pour la nécessaire séparation des activités serait celui d’une installation exploitée par l’IRSN : celui-ci ne pourrait alors être le conseiller et l’appui technique de l’autorité de sûreté.

Ma dernière question concerne la certification des sous-traitants et donc le CEFRI. Comment suivez-vous, monsieur Chapotot, ceux que l’on appelle les « nomades du nucléaire », qui effectuent des travaux très spécifiques dans la France entière, et comment vous assurez-vous qu’ils sont bien formés, car ce sont eux qui sont le plus exposés à la radioactivité ? Qui réussit d’ailleurs à suivre leur dosimétrie ?

Enfin, lorsqu’une entreprise prestataire a une filiale, par exemple en Europe centrale, et que celle-ci intervient sur notre sol, un risque de confusion des rôles peut exister, surtout s’il s’agit d’une filiale d’une entreprise connue. Comment vous assurez-vous alors de sa certification ? Lors de notre visite à Gravelines, les représentants des organisations syndicales nous ont cité le cas d’une entreprise roumaine qui était intervenue sur les turbines.

M. Henri Chapotot. Pour ce qui est de la formation, une obligation de formation initiale et de recyclage périodique s’applique uniformément à tous les personnels.

En ce qui concerne le suivi dosimétrique des personnels, l’IRSN l’assure en totalité.

Enfin, s’agissant des entreprises étrangères, celles qui interviennent en France sont soumises à des audits du CEFRI, dans leur pays d’origine. Elles ne sont au reste que quelques dizaines sur un total de 500, soit 2,5 % environ.
M. le président Claude Birraux. Il me reste à remercier chacun des intervenants et des participants.
M. Claude Birraux, député, président de l’Office parlementaire des choix scientifiques et technologiques (OPECST). – Je vous remercie de votre participation à cette dernière audition avant la publication, à la fin du mois, de notre rapport d’étape sur la sécurité et la sûreté nucléaires.

Pour préparer ce rapport nous aurons ainsi organisé, sur un mois et demi, six auditions ouvertes à la presse. Le 5 mai à l’Assemblée et le 13 mai à Lille, sur la gestion de crise suite à un accident nucléaire. Le 24 mai sur la protection des réacteurs, puis le 31 mai sur l’organisation de la sûreté. Enfin, aujourd’hui, sur la transparence en matière de sûreté nucléaire.

Dans le même temps, les membres de la mission ont visité huit sites nucléaires à Nogent, à Gravelines, au Creusot et à Chalon-sur-Saône, à Flamanville et à La Hague, au Tricastin, enfin à Belleville-sur-Loire et à Fessenheim.

Dès la remise de notre rapport d’étape aux présidents des deux assemblées, le 30 juin, nous aborderons le deuxième volet de notre étude, relatif à la place de la filière nucléaire dans notre mix énergétique. Un déplacement en Allemagne est d’ores et déjà prévu par nos rapporteurs début juillet.

L’audition d’aujourd’hui sur la transparence en matière de sûreté nucléaire nous permettra de prendre connaissance du rôle des différents acteurs. Elle vise également à identifier les forces et les faiblesses du dispositif existant pour dégager des axes d’amélioration.

L’Office parlementaire continue à jouer un rôle important dans ce domaine. D’abord au travers de ses rapports d’information sur le nucléaire : depuis qu’il a été saisi, voici plus de vingt ans, de ces questions, l’Office a publié près de 25 rapports parlementaires sur la sûreté nucléaire. Ces travaux
ont contribué à faire avancer la réflexion sur la transparence, préparant ainsi les lois qui ont permis de mettre en place les mécanismes qui assurent aujourd’hui cette transparence.

Ce dispositif de suivi et d’information a été élargi, par la suite, à l’ensemble des installations nucléaires, avec la création des commissions locales d’information (CLI), par la loi du 13 juin 2006, relative à la transparence et à la sécurité en matière nucléaire, dite loi TSN. Mais nos intervenants auront sans doute l’occasion d’évoquer plus en détail cette loi évidemment centrale pour la transparence en matière de sûreté.

C’est également un rapport de l’OPECST, publié en 2000 par Mme Michèle Rivasi, alors députée, qui suggérait la création d’un plan de gestion des déchets radioactifs. Ce plan est depuis devenu un outil incontournable d’information à destination des associations comme des citoyens.

La loi du 28 juin 2006, dont j’ai été le rapporteur, s’est également employée à améliorer la transparence en matière nucléaire. Elle a entériné la création du plan de gestion des matières et déchets radioactifs ainsi que du groupe de travail pluraliste associé. Ce groupe de travail constitue d’ailleurs la première instance où l’ensemble des acteurs de la filière nucléaire, associations comprises, ont pu échanger sur le sujet de la gestion des déchets et les problèmes de sûreté associés. Elle étend également à ces questions les attributions du Haut Comité pour la transparence et l’information sur la sécurité nucléaire (HCTISN). Elle prévoit les conditions de la transparence pour la création du futur centre de stockage géologique profond. Elle charge l’Agence nationale pour la gestion des déchets radioactifs (Andra) de publier, tous les trois ans, un inventaire des déchets radioactifs. Elle précise les conditions de fonctionnement de la CLI de Bure. Elle assure, par la création d’une commission ad hoc, la transparence sur le financement du
démantèlement des installations et du stockage des déchets qui est une condition sine qua non de la sûreté nucléaire sur le long terme.

L’audition de ce jour comprendra deux sessions. La première sera présidée par Christian Bataille, député, rapporteur de la mission. Elle nous permettra de prendre connaissance des modalités de la transparence en matière de sûreté nucléaire aujourd’hui en place. À ce sujet, nous entendrons les acteurs institutionnels et les exploitants.

La deuxième session sera présidée par M. le sénateur Bruno Sido, premier-vice président de l’Office et rapporteur de notre mission. Elle sera, quant à elle, consacrée aux perspectives d’amélioration de la transparence de la sûreté nucléaire. Cette session se terminera par une présentation du dernier rapport du Haut comité intitulé « Transparence et secrets dans le domaine nucléaire ».

Chacune des sessions sera suivie d’un débat.

Avant d’aborder la première session, je vais à présent laisser la parole à M. André-Claude Lacoste, président de l’Autorité de sûreté nucléaire (ASN), qui nous fait l’honneur d’introduire cette audition par l’évocation du cas pratique de la transparence sur le déroulement des événements à Fukushima.

M. André-Claude Lacoste, président de l’ASN. – Tepco poursuit ses investigations sur le site de Fukushima. Il est aujourd’hui avéré que, dès les premières heures de l’accident, le combustible du réacteur numéro un a fondu et que, dans les jours qui ont suivi, celui des réacteurs deux et trois a fait de même. En revanche, nous ne savons toujours pas si les cuves ont été percées.

Pendant la crise, les informations que nous avons obtenues en France ont été parcellaires, incomplètes, mais cet état de fait a été dû à plusieurs facteurs : l’accès au site était très difficile et le travail y était particulièrement compliqué du fait de la forte quantité d’eau très contaminée. De plus, nos interlocuteurs étaient absorbés par leurs problèmes domestiques. Enfin, nous devons prendre en compte la conception japonaise de la transparence.

Aujourd’hui, des éléments écrits sont disponibles : un rapport a été rédigé par la mission d’experts, présidée par mon homologue britannique, M. Mike, qui a été envoyée par l’Agence internationale de l’énergie atomique (AIEA) et qui a passé une semaine au Japon. Cette mission dont a fait partie
M. Philippe Jamet de l’ASN a publié un rapport qui estime que les risques de tsunami à Fukushima avaient été sous-estimés mais elle n’a pas formulé de critiques majeures sur la gestion de la crise.

Le gouvernement japonais a envoyé un remarquable rapport à l’AIEA en vue de la réunion ministérielle du 20 juin et il comporte plusieurs propositions. En outre, il critique la façon dont la centrale de Fukushima a été construite, exploitée et la manière dont la crise a été gérée.

J’ai reçu il y a deux jours le parlementaire japonais qui a géré la crise pour le compte du Premier ministre et il s’exprime avec clarté et un esprit critique inhabituel pour le Japon.

A la suite de l’accident de Fukushima, diverses instances internationales se sont saisies du problème. Ce fut le cas, en mai, lors du sommet du G8 à Deauville, lors du séminaire ministériel qui s’est tenu à Paris le 7 juin et lors du forum des autorités de sûreté nucléaire le 8 juin. Toutes ces contributions seront reprises par la conférence ministérielle qui débutera lundi prochain à Vienne. La France fait tout ce qu’elle peut pour que cette conférence prenne des décisions concrètes, notamment en matière d’actualisation de certaines conventions internationales et d’amélioration des standards internationaux. Il faudra aussi demander des efforts supplémentaires aux exploitants nucléaires et aux associations qui les représentent.

Fin juin, il serait souhaitable qu’un plan d’action soit élaboré sous l’égide de l’AIEA.

Les modalités de la transparence

M. Christian Bataille, député, rapporteur. — Merci pour cet exposé clair qui prouve qu’en matière de transparence, le Japon doit encore faire des efforts. J’espère que tel ne sera pas le cas dans notre pays le jour où cela s’imposera.

Cette première session va nous permettre de faire un point sur les modalités de la transparence telle qu’elle fonctionne aujourd’hui dans notre
pays, avec les institutions qui en sont chargées ainsi que les exploitants. Comme l’a indiqué en ouverture de cette audition Claude Birraux, le cadre général de la transparence en matière de sûreté nucléaire a été mis en place par la loi TSN du 13 juin 2006 qui définit la transparence en matière nucléaire comme « l’ensemble des dispositions prises pour garantir le droit du public à une information fiable et accessible en matière de sécurité nucléaire ».

Cette loi définit également la sûreté nucléaire comme « l’ensemble des dispositions techniques et des mesures d’organisation relatives à la conception, à la construction, au fonctionnement, à l’arrêt et au démantèlement des installations nucléaires de base, ainsi qu’au transport des substances radioactives, prises en vue de prévenir les accidents ou d’en limiter les effets ». Ces deux termes seront au cœur du rapport d’étape en cours de préparation et qui sera présenté d’ici la fin du mois.

La loi TSN est aussi à l’origine de la création du Haut Comité pour la transparence et l’information sur la sécurité nucléaire, à laquelle, Claude Birraux et moi-même, avons rendu visite ce matin, et elle a permis la généralisation des commissions locales d’information à l’ensemble des installations nucléaires.

Si la loi du 13 juin 2006, ainsi que les autres lois évoquées par Claude Birraux, ont créé les conditions de la transparence en matière de sûreté nucléaire, c’est évidemment sur le terrain, au jour le jour, que cette transparence se construit, au travers de l’implication de toutes les parties prenantes : l’ASN, le HCTISN, les CLI, les exploitants, mais aussi et surtout, les associations et les citoyens.

Dans cette première session, nous allons entendre les positions de l’ASN, du Haut comité et des exploitants. L’ANCCCLI, association des CLI, s’exprimera lors de la deuxième session. Il nous a semblé délicat de demander à une association, plutôt qu’à une autre, d’intervenir pour présenter sa vision sur l’état de la transparence. Celle-ci aurait, par la force des choses, été particulière. Néanmoins, j’espère que les associatifs ici présents, notamment ceux de notre comité d’experts, n’hésiteront pas à poser des questions après les présentations.

Mais il revient à André-Claude Lacoste, président de l’Autorité de sûreté nucléaire d’intervenir pour nous présenter tout à la fois le cadre général de la transparence en matière de sûreté nucléaire et le rôle tout à fait
central que joue, sur ce plan, l’Autorité de sûreté nucléaire, notamment au travers du contrôle qu’elle exerce sur les exploitants.

M. André-Claude Lacoste, président de l’ASN. – L’article 1er de la loi TSN dit que « la transparence en matière nucléaire est l’ensemble des dispositions prises pour garantir le droit du public à une information fiable et accessible en matière de sécurité nucléaire ». Je tiens tout de suite à lever une ambiguïté : le mot de sécurité a été employé à tort. C’est de sûreté qu’il s’agit ici.

L’ASN souhaite promouvoir l’application de la loi TSN, notamment les dispositions relatives à la transparence. Elle soutient l’action en faveur de la transparence des CLI et du HCTISN.

Je tiens à souligner l’importance particulière des articles 19 et 21 de la loi TSN. L’article 19 est en effet tout à fait novateur puisqu’il dit que « toute personne a le droit d’obtenir auprès de l’exploitant d’une installation nucléaire ou du responsable d’un transport de substances radioactives les informations détenues sur les risques liés à l’exposition aux rayonnements ionisants ». Le mot « information » est essentiel, car il fait référence non seulement aux documents établis mais aussi à toute forme d’information, même si elle n’a pas été consignée par écrit. Ce droit n’a pas d’équivalent dans d’autres domaines mais il est encore peu utilisé. Nous sommes cependant intervenus auprès d’exploitants qui avaient refusé la communication d’informations pour les inciter à avoir une interprétation moins extensive de la notion de secret industriel ou commercial.

L’article 21 impose à tout exploitant d’installation nucléaire de base (INB) d’établir un rapport public sur l’installation et les actions qu’il conduit en matière de sûreté nucléaire et de radioprotection. Fin 2010, l’ASN a publié un guide sur la rédaction de ces rapports après une concertation longue et approfondie avec les CLI. Chaque année, nous procédons à une analyse de ces rapports et elle est publiée dans notre rapport annuel sur la sûreté nucléaire et la radioprotection. Nous tirons un bilan globalement positif de ces rapports dont la qualité s’est améliorée.

J’en viens à la consultation du public : l’ASN est vigilante sur la qualité des dossiers présentés par les exploitants et sur les moyens dont disposent les CLI pour émettre un avis indépendant. En outre, elle associe le public et les associations à ses actions et décisions, notamment pour le réseau national de mesures de la radioactivité de l’environnement, le plan national de gestion des matières valorisables et des déchets radioactifs, le comité
directeur « post-accidentel » (CODIRPA). En outre, nous avons constitué des groupes de travail sur divers sujets.

M. Christian Bataille, rapporteur. – Je vais profiter de la présence de M. Jean-Luc Andrieux qui représente Areva pour répéter ce que j’ai dit ce matin au Haut comité : nous sommes attachés au maintien de Mme Lauvergeon à la tête d’Areva car la filière a besoin de stabilité. Ce serait une grave erreur politique de la remplacer par toute autre personne.

M. le président Claude Birraux. – Je vous confirme les propos de M. Bataille : il ne s’agit pas d’une position partisane mais bien d’une volonté commune d’assurer l’avenir de cette filière. S’il y a des journalistes dans la salle, ils peuvent rapporter nos paroles !

M. Jean-Luc Andrieux, directeur sûreté, sécurité, santé et environnement Areva. – Merci pour ces paroles. Compte tenu des circonstances, je vous prie d’excuser M. Saulnier, directeur de la communication chez Areva.

Jusqu’à la fin des années 1990, c’est la culture du secret qui a dominé en matière nucléaire, ce qui était sans doute dû aux origines militaires de la filière. Dès sa création en 2001, et surtout sous la présidence de Mme Lauvergeon, Areva a choisi la transparence. C’était en rupture avec les habitudes du secteur, plus familier des débats techniques et scientifiques. D’une faiblesse, le groupe a fait le pari que la transparence pourrait devenir une force en ouvrant les portes de ses installations industrielles, en installant des webcams dans les installations de La Hague, en allant à la rencontre de ses publics. Depuis plus de 10 ans, conformément à la Charte des valeurs, qui est un des guides d’Areva, le groupe a poursuivi ses activités en faisant preuve de transparence, de pédagogie, d’ouverture au dialogue, notamment avec ses opposants, considérant que tout dialogue était source de progrès. Pour instaurer la confiance, nous avons écouté les citoyens, entendu leurs

Le groupe est donc transparent envers le grand public : il met à disposition des supports d’information et il participe activement à tous les débats. Nous avons ouvert les établissements d’Areva au public : ainsi, l’usine de La Hague accueille chaque année plus de 9 000 personnes, le programme de conférence du Tricastin a reçu 2 500 visiteurs et plus de 1 400 personnes ont découvert le site de Melox.

Le site Internet d’Areva accompagne la démarche de dialogue du groupe en délivrant des informations claires sur les activités et les sites et il permet aux internautes de s’exprimer. Plus de 16 000 membres sont inscrits sur ce site et en moyenne 25 questions sont traitées par jour. De plus, les 150 questions les plus intéressantes restent en ligne et sont consultables. Nous organisons des chats live vidéo autour de sujets importants. La politique que nous menons explique sans doute que nous sommes assez peu saisis par le biais de l’article 19 de la loi TSN.

Grâce à la loi TSN et à la loi déchet de 2006, nous participons de façon active aux travaux du HCTISN. En 2010, suite aux saisines de M. Borloo, alors ministre d’État, et de l’OPECST, nous avons publié un rapport sur la transparence de la gestion des matières et des déchets nucléaires produits aux différents stades du cycle du combustible.

Le plan national de gestion des matières et déchets radioactifs nous concerne au premier chef. Dans sa deuxième phase triennale, ce plan a abordé la question du cycle du combustible en partant des mines jusqu’au traitement et au recyclage des matières.

Areva a confié au Comité 21 la conception et l’animation d’une concertation avec un panel de parties prenantes externes : ces rendez-vous ont lieu tous les dix-huit mois et ils ont vocation à renforcer l’adéquation de la stratégie du groupe aux attentes de la société civile. La synthèse de ces échanges qui ont eu lieu en France, mais aussi aux États-Unis, est disponible sur le site internet d’Areva.
Au niveau local, nous participons aux CLI qui se réunissent régulièrement pour examiner les diverses activités autour de nos sites nucléaires. À La Hague, la CLI s’est réunie quatre fois en 2010 pour étudier divers dossiers. Au Tricastin, la CLI a consacré deux réunions aux activités du site et une réunion exceptionnelle s’est tenue le 17 septembre 2010 pour présenter les résultats de l’étude sur la détermination de l’origine du marquage de la nappe en uranium au sud du site. À Romans, la CLI a été mise en place en juin 2009 et elle s’est réunie deux fois en 2010. Dans le cadre de ces CLI, les événements significatifs que nous déclarons sont également examinés. En moyenne, Areva déclare chaque année 130 événements significatifs, dont une vingtaine qui constituent des anomalies de niveau 1 sur l’échelle INES et exceptionnellement de niveau 2.

Chaque année, des documents relatifs à la sûreté, la santé et l’environnement sont présentés au CHSCT, aux autorités de contrôle, aux CLI, aux élus locaux et ils sont mis à disposition du public.

Nous avons un dispositif spécifique pour la vallée du Rhône : en 2010 et 2011, nous avons lancé une vaste campagne d’information de proximité pour aller à la rencontre des riverains. Les rendez-vous se sont déroulés sur une vingtaine de journées et nous avons eu 3 200 visiteurs.

J’en viens aux médias : Areva a une attitude proactive en entretenant des relations fortes avec les médias. Le groupe a institutionnalisé l’existence d’un porte-parole et d’un conseiller scientifique pour les sujets plus techniques. Areva distribue aux investisseurs un document annuel qui comporte de très nombreuses informations. Enfin, le groupe a de nombreux contacts avec les élus.

Un groupe radio-écologique nord-cotentin a été constitué autour de l’usine de La Hague pour réunir l’exploitant et des experts et il a permis de définir le mode d’évaluation des rejets de l’usine. De même, nous avons participé à un groupe d’expertise pluraliste sur les mines en France.

Depuis dix ans, le credo d’Areva, c’est toujours plus de sécurité, de sûreté et de transparence. Nous estimons que ce sont les conditions de la poursuite de notre développement. L’accident de Fukushima vient, hélas !,
de nous le rappeler. Le groupe Areva intégrera tous les retours d’expérience de cette catastrophe. Le débat sur le nucléaire est légitime et nous y participerons.

M. Georges Servière, EDF. – Pour EDF, la transparence repose sur le dispositif réglementaire et institutionnel instauré par la loi TSN et différentes instances comme les CLI et le Haut comité. EDF contribue directement au fonctionnement de ces instances.

Mais au-delà de ces dispositifs, EDF souhaite se montrer transparente pour renforcer la confiance de nos concitoyens. Comme a dit André Comte-Sponville, « la transparence, c’est la capacité à dire aux autres ce qu’ils n’aimeraient pas apprendre par d’autres que vous ».

Cette volonté s’appuie sur un dispositif de communication solide et connu. Pour autant, nous sommes confrontés à un certain nombre de difficultés pratiques : il faut communiquer sur ce qui est important mais les attentes des uns et des autres varient. En outre, les informations publiques sont limitées par celles qui doivent être protégées.

En France, notre dispositif réglementaire comprend la charte de l’environnement, le code de l’environnement, notamment la partie relative à l’information et à la participation du public pour l’élaboration des grands projets, et surtout la loi TSN du 13 juin 2006. Au niveau supranational, la convention d’Aarhus et diverses directives s’imposent à nous.

En ce qui concerne le dispositif réglementaire, il convient de distinguer la phase projet de celle qui concerne les autorisations, la construction et l’exploitation. Lors de la phase projet, comme celle de Flamenville 3, des débats publics sont nécessaires et EDF y participe en tant que maître d’ouvrage. Dans la phase autorisation et construction, nous sommes dans un processus d’enquêtes publiques en application du décret du 2 novembre 2007. Dans la phase dite d’exploitation, le dispositif est cadré par la loi TSN, notamment les articles 19, 21 et 54. L’article 19 oblige l’exploitant à répondre à toute question qui lui est posée. L’article 21 prévoit des rapports annuels. Enfin, l’article 54 traite des événements qui surviennent dans l’installation et impose des déclarations systématiques de ces incidents et accidents.

M. Dominique Minière, directeur du parc nucléaire EDF. – Au-delà du dispositif réglementaire, EDF a développé une culture de la transparence. Depuis 2005, nous respectons un guide de déclaration qui est
applicable aux INB et qui prévoit de déclarer tous les événements inférieurs au niveau 1 de l’échelle INES avec des niveaux de détection de plus en plus précis. En 2000, nous déclarions en moyenne par réacteur et par an 1,7 événement de niveau 1. Aujourd’hui, nous en déclarons 1,2, ce qui prouve les progrès réalisés, mais, dans le même temps, nous déclarons beaucoup plus d’événements de niveau zéro parce que notre finesse de détection d’événements est de plus en plus grande. En outre, nous déclarons tous les écarts pour non-respect de procédure même mineurs, ce qui nous permet de progresser en matière de retour d’expérience et d’aller bien plus loin en ce domaine que d’autres pays qui se contentent de déclarer les incidents intervenus.

En matière de transparence, EDF veut connaître et comprendre les attentes des publics locaux et nationaux, informer le grand public, entretenir ses relations avec les relais d’opinion, être réactive, ne dire que ce qui est sûr et porter des messages clairs en étant le plus pédagogique possible, ce qui est parfois difficile pour des ingénieurs habitués à s’exprimer avec des termes techniques.

Au-delà de la participation aux débats publics et aux enquêtes publiques, EDF met en œuvre des actions de transparence spécifiques en mettant à disposition une version publique du rapport de sûreté. De plus, EDF signe des conventions spécifiques avec les CLI, elle dispose d’un site internet dédié aux centrales en construction, elle diffuse une lettre d’information régulière sur l’avancement des chantiers, et elle les fait visiter. Une fois que la centrale est en exploitation, nous informons systématiquement le grand public sur le fonctionnement de ces centrales : nous diffusons une lettre d’information, nous mettons à disposition du public des numéros verts pour donner des informations sur le fonctionnement technique en temps réel. Nous déclarons systématiquement sur le site internet d’EDF tout incident de niveau 1. Nous déclarons aussi à l’ASN tous les écarts de niveau zéro.

Notre organisation interne nous permet de communiquer à tout moment, sept jours sur sept et 24 heures sur 24.

Notre formation sur la transparence est destinée à sensibiliser tous les acteurs concernés par l’impératif de transparence : nous revenons régulièrement sur la phrase d’André Comte-Sponville que M. Servière vient de citer. Nos ingénieurs doivent comprendre que lorsque des événements se produisent, même s’ils se situent au niveau zéro, une communication est indispensable, surtout s’ils touchent à l’environnement ou à la santé.
M. Marc Léger, directeur juridique et du contentieux au CEA.
– Je ne développerai pas les aspects réglementaires, déjà largement exposés.

Dans le domaine nucléaire, la transparence n’a pas attendu la loi du 13 juin 2006, car des mesures réglementaires existaient déjà, des pratiques étaient établies. Il reste que la loi TSN a transformé un slogan politique en réalité juridique. Contrairement à ce qu’il en est pour d’autres activités, la transparence nucléaire est définie par la loi. Il en va de même pour sa mise en œuvre.

La première obligation légale concerne l’information du public sur la sûreté nucléaire. Ainsi, le CEA participe aux CLI et est tenu de publier un rapport annuel consacré à chaque centre comportant une installation nucléaire de base. Ce document est disponible sur le site du CEA. À l’instar de tous les exploitants, le Commissariat doit déclarer tout événement significatif susceptible d’affecter la radioprotection, la sûreté nucléaire ou l’environnement par exemple. Sur 108 événements, on en comptait en 2010, 94 de niveau zéro, 13 de niveau 1 et un de niveau 2.

La seconde obligation concerne le droit d’accès des citoyens à l’information. Ce droit spécifique s’ajoute à la législation préexistante, qui organise d’une manière générale l’accès aux documents administratifs et l’accès aux informations relatives à l’environnement, relevant des pouvoirs publics, et qui prévoit l’accès spécifique aux informations nucléaires, relevant de l’exploitant. Dans ce cadre, j’ai reçu en 2010 moins d’une dizaine de demandes à finalité environnementale ou nucléaire.

À propos des obligations légales, je voudrais formuler trois remarques.

Tout d’abord, les droits d’accès ont beau être étendus, ils comportent des limites, hélas incertaines. Ainsi, nous ne disposons d’aucune définition légale du secret industriel ou commercial, mentionné par M. Lacoste.

Ensuite, une information peut être à la fois nucléaire, environnementale et administrative. Il est parfois difficile de savoir comment répondre à telle demande précise.

Enfin, nos concitoyens peinent à s’y retrouver dans l’empilement de droits d’accès.

M. le président Claude Birraux. – Ce décompte inclut-il le plutonium oublié de Cadarache ?

M. Xavier Clément. – Oui.

À la fois exploitant nucléaire et organisme public de recherche, le CEA diffuse l’information et met des documents pédagogiques à la disposition du public. Cette dualité caractérise toute notre communication, de la recherche dans le domaine des énergies à la défense, en passant par la sûreté globale et les technologies de l’information ou de la santé.

À propos de l’information nucléaire, le HCTISN a constaté qu’elle «existe bien, qu’elle est abondante, éparsé, disparate et difficile d’accès pour le public.» Devant ce constat, nombreux sont ceux pour qui les données brutes doivent s’accompagner d’éléments pédagogiques et de contexte. Historiquement doté d’une culture de recherche et d’enseignement, le CEA considère que cette dualité est structurante pour aider les citoyens à se déterminer.

Chaque entité du Commissariat exerçant une activité nucléaire publie le rapport annuel institué par la loi de 2006. Disponible sur le site Internet de l’organisme, ce document est relayé par celui de CEA.

En outre, le pôle « maîtrise des risques » publie un bilan annuel sur la sûreté, communiqué à la presse au mois de juin. Celui relatif à l’année 2010 a été présenté hier aux journalistes. Dans le contexte de l’après Fukushima, il a été élargi au programme de stress tests.

Enfin, les publications sur papier - à savoir Le défi du CEA, publié mensuellement et Clés CEA, qui est semestriel - contribuent à la formation du public.

Les liens très forts établis entre d’une part la culture scientifique et technologique, d’autre part la transparence, permettent aux citoyens de choisir en toute connaissance de cause. L’inquiétude se nourrit de l’ignorance et accroît la défiance.

M. Matthieu Schuler, directeur de la stratégie, du développement et des partenariats de l’IRSN. – Historiquement, la
transparence désigne l’accès aux documents, mais le concept a fortement évolué avec l’introduction du baromètre des risques et le vote de la loi TSN. J’ajoute que le droit international de l’environnement, notamment la Convention d’Aarhus, comporte des obligations de transparence.

On peut distinguer quatre familles d’acteurs face au risque nucléaire : les industriels, les autorités, les experts et la société civile.

Pour jouer notre rôle, nous devons être proactifs en matière de transparence. Pour que la société civile puisse exercer son droit à l’information, nous devons ne diffuser que des informations validées, après les avoir rendues intelligibles. Je précise que cette préoccupation est antérieure à l’établissement de notre statut actuel.

Bien que notre institut n’ait pas le monopole des actions au service de la transparence, il met concrètement en œuvre ce principe. Ainsi, nous nous sommes dotés en avril 2009 d’une charte d’ouverture sur la société, partagée ensuite avec nos partenaires. Au plan interne, cette charte est largement diffusée, car elle constitue un fil rouge de notre activité.

Ne voulant pas nous focaliser sur l’actualité médiatique, nous agissons au quotidien en publiant des rapports sur le parc nucléaire, sur l’environnement ou sur l’exposition radiologique des travailleurs. Ayant constaté que les relais d’opinion permettaient de progresser, l’IRSN a multiplié les démarches destinées à mettre en débat ses éléments scientifiques ou techniques ; il s’est même doté d’un comité associant des représentants de la société civile, chargé de réfléchir en amont sur les orientations de la recherche.

Dans son action, l’institut a surmonté trois types de difficultés. D’abord, le droit à l’information peut entrer en conflit avec d’autres droits. Ensuite, le calendrier de la mise en débat est un sujet complexe. À notre sens, la société civile doit participer dès le début de la réflexion. Enfin, élargir le champ des interlocuteurs est primordial, car la vigilance de la société civile s’exerce avec le plus d’efficacité lorsque le plus grand nombre est informé.

J’en viens aux perspectives d’évolution. Le baromètre des risques montre que le besoin de savoir est considérable. En outre, les experts demandent que l’information diffusée soit mise en perspective. L’opinion souhaite plus de structures de dialogue.
Notre action proactive nous fait aller du premier pilier de la convention d’Aarhus – le droit à l’information – au second pilier, qui institue le droit à la participation.

Nous avons bien sûr mis en ligne une information sur l’accident de Fukushima. Elle a suscité plus de 6 millions de connexions en une semaine, attestant ainsi la vigilance de la société. Me tournant vers l’avenir immédiat, j’ajoute que l’IRSN travaille aux stress tests voulu par le Premier ministre. Il y a là une opportunité ouverte à la société civile de participer à la gouvernance des risques.

M. Henri Revol, président du HCTISN. – Le Haut comité, qui s’est réuni ce matin en session plénière, est honoré de participer à l’audition organisée par l’OPECST.

Créé par la loi TSN, il est composé de sept collèges, dont le premier est composé par deux sénateurs et deux députés. Complétés par le collège des personnalités choisies pour leurs compétences scientifiques, techniques, économiques ou sociales, les autres collèges représentent respectivement les CLI, les associations de protection de l’environnement ou de la santé publique, les autorités nucléaires, les organisations syndicales de salariés représentatives, enfin l’Autorité de sûreté nucléaire, l’État et l’IRSN.

Installé en juin 2008 le Haut comité s’est intéressé à l’importation et au transport d’uranium entre la Grande-Bretagne et la France ; il a remis à M. Borloo le rapport qu’il avait demandé après l’incident survenu au Tricastin. À cette occasion, il a formulé 19 propositions. En outre, le
HCTISN a examiné la gestion des anciennes mines d’uranium et celle des déchets radioactifs ; il s’est attaché à la transparence du cycle du combustible. Je crois que nous avons donné une vision claire du cycle nucléaire. Nous avons aussi travaillé sur l’incident de Cadarache.

Dans le cadre de notre réflexion juridique, nous avons publié un rapport sur l’antinomie entre obligation de transparence et protection du secret, qu’il s’agisse du secret-défense, du secret commercial et industriel ou du secret médical. Pour améliorer l’information du public, nous avons créé un groupe de travail chargé d’étudier la mise en œuvre d’un portail informatique destiné à faire en sorte que l’information cesse d’être « foisonnante ».

Un groupe de travail réfléchit sur la transparence relative aux sites de stockage de déchets nucléaires. Un autre se penche sur les risques dus à la radioactivité. Enfin, un groupe de travail a été constitué après les événements de Fukushima.

Le ministre du développement durable a saisi le Haut comité, qui participe à l’élaboration d’un cahier des charges conjointement avec l’Autorité de sûreté nucléaire.

En coopération avec l’ANCCLI, nous étudions l’application de la convention d’Aarhus dans le domaine nucléaire.

Notre rapport annuel d’activité a été publié aujourd’hui et j’ai le plaisir de vous en remettre un exemplaire. C’est le deuxième depuis la création du Haut comité.

M. le président Claude Birraux. – Je salue votre action, dont je vous remercie.

Dès les premières questions posées sur l’uranium appauvri, retraité en Russie, le Haut comité a su réagir en temps, en heure et à propos. Il s’est par là même installé dans le paysage.

M. Bruno Sido, sénateur, premier vice-président, rapporteur. – Je ne suis pas l’auteur de la formule « trop d’information tue l’information », mais il est vrai que l’on ne retire pas grand-chose d’un flux qui vous submerge.

Le site de l’IRSN a été bloqué après l’accident de Fukushima. Que se passerait-il si une centrale française était touchée ? L’appétence de nos
concitoyens pour l’information serait sans doute impressionnante. Des mesures ont-elles été prises pour que l’IRSN soit en mesure de répondre aux questions qui seraient alors posées ?

M. Christian Bataille, rapporteur. – Nous sommes confrontés à l’opacité des mesures de la radioactivité. Au mieux, cela suscite l’incompréhension du grand public ; au pire, cela facilite la mauvaise foi alarmiste. Peut-on espérer obtenir un indice clair et compréhensible, établi par référence à la radioactivité naturelle ?

D’autre part, la volonté de transparence conduit à une large ouverture au public des sites nucléaires. Après l’avoir obtenue, ceux qui réclamaient cette accessibilité se plaisent à souligner les risques d’attentat, voire le danger d’une éventuelle chute d’avion. Que fait EDF pour surmonter cette contradiction ?

M. Didier Guillaume, sénateur. – Dans un contexte mouvementé pour l’industrie nucléaire française, aggravé par l’accident de Fukushima, j’insiste sur un point bien connu de mes collègues bretons : on ne change pas le capitaine d’un bateau pris dans la tempête ! Changer aujourd’hui la présidence d’Areva serait une grave faute. Ce n’est pas une question, mais une observation que je formule.

En tant que président de CLI, je note que la loi TSN a constitué une grande avancée pour les initiés, pour quelques associations, mais pas pour nos concitoyens, dont les réactions de l’après-Fukushima restent d’une épidermique immédiateté. Copenhague et les gaz à effet de serre sont oubliés ! L’industrie nucléaire prise dans le cyclone.

Nous devons aller vers une deuxième étape, car à force d’être répétitifs, les processus de transparence institués en 2006 finissent par être redondants ; leurs effets sont confinés. Si nous ne changeons pas d’air, nos concitoyens estimeront que rien n’a changé. Or, les Français savent qu’on leur a menti en 1986. Refusant que cela se reproduise, ils exigent la vérité.

Dans notre CLI, nous essayons d’éviter l’écueil des postures et des jeux de rôle, car il est inutile de se réunir si chaque participant conserve jusqu’à la fin les convictions qu’il avait en entrant.

Sur un autre plan, je rappelle que la transparence nucléaire ne bénéficie toujours pas du financement annoncé dans la loi TSN.
Enfin, nous devons tous rétablir la crédibilité du discours. À défaut, ce qui se passe ici restera sans effet. Il appartient aux parlementaires et aux industriels de fournir une information compréhensible à nos concitoyens.

M. Daniel Raoul, sénateur. – J’étais un fervent partisan des CLI, une structure que l’on retrouve dans la loi Bachelot sur le risque industriel, et qui a failli apparaître dans la loi sur les organismes génétiquement modifiés (OGM). Aujourd’hui, j’éprouve des doutes quant à leur intérêt. Le Haut conseil des biotechnologies comporte un Comité éthique et social, caractérisé par des postures figées, insensibles à l’information scientifique fournie.

Que faire pour que l’information soit partagée ? Comment nos concitoyens peuvent-ils mettre bout à bout l’information glanée sur les multiples sites Internet ? Je suggère que le HCTISN réfléchisse à l’appropriation de l’innovation par la population, qu’il s’agisse du nucléaire ou d’autres domaines, car les scientifiques n’ont plus la confiance de nos concitoyens.

M. Sylvain David, CNRS, membre du comité des experts. – Certains orateurs paraissent confondre communication et transparence. Pour avoir visité des installations nucléaires avec des étudiants, j’ai pu apprécier la différence entre ces deux notions. De même, l’uranium enrichi en Russie a fait l’objet d’une importante communication, mais pas de transparence. Dans le domaine nucléaire, les sites Internet sont souvent des outils de communication, guère de transparence. Comment sont-ils gérés ?

M. le président Claude Birraux. – On pourrait se demander aussi comment on organise l’interface avec certains médias. Aujourd’hui, le titre d’un article publié dans la presse vaut plus que tout. Dès lors qu’il apparaît en première page, peu importe s’il est faux !

Lorsque j’ai commencé ma vie dans ce domaine, il y a 20 ans, je recevais souvent des appels de journalistes me demandant d’éclaircir telle ou telle information. Il n’y a plus rien de tel depuis une quinzaine d’années.

M. Bernard Tardieu, Académie des technologies, membre du comité des experts. – La notion de transparence est évoquée principalement à propos des incidents, pas de la conception. On dit à nos concitoyens que l’EPR bénéficie d’une meilleure conception. Mais où est le débat ? Qu’en
pensent-ils ? Ce nouveau réacteur rendra-t-il caduques les centrales plus anciennes ? La réflexion en amont n’est pas traitée.

M. le président Claude Birraux. – Il me semble pourtant avoir insisté sur les révisions décennales et sur la mise à niveau technique de la sécurité des centrales.

M. Philippe Deslandes, président de la commission nationale du débat public. – La commission nationale du débat public a demandé à EDF de dire pourquoi les autorités de sûreté nucléaire française, britannique et finnoise avaient émis des réserves sur la sécurité de l’EPR. Nous avons souhaité connaître les causes des retards subis par les travaux à Flamanville et en Finlande. EDF a pris nos demandes en compte. Lors du débat, la conception des réacteurs était abordée, mais le secret-défense nous a été opposé lorsque nous avons voulu connaître la résistance du toit à la chute d’un avion. En revanche, nous avons obtenu une réponse à la question posée sur ce même sujet à propos du site de Penly.

La confiance est obtenue en tenant ses promesses. EDF s’était publiquement engagée à ne pas construire de deuxième EPR en France avant que le premier ne soit opérationnel. Cet engagement n’a pas été tenu. À propos des nanotechnologies, le Gouvernement a promis de rendre publiques ses décisions, qui tiendraient compte des éléments versés aux débats. Cet engagement n’a pas été tenu. Monsieur Xavier Clément, nous n’avons pas connu à propos des nanotechnologies un souci de transparence analogue à celui que vous avez formulé aujourd’hui !

M. le président Claude Birraux. – Il n’y a pas eu de débat sur les nanotechnologies !

M. Philippe Deslandes. – Si ! Une forte opposition s’est exprimée sur Internet. Les autres pays d’Europe n’ont pas organisé de débat ; nous, si. C’était courageux !

M. le président Claude Birraux. – Surtout après l’inauguration du Minatec de Grenoble !

Les interrogations des autorités de sûreté nucléaire française ou étrangère portaient sur le contrôle commande au sein de l’EPR.

M. Xavier Clément. – Le CEA participait sincèrement au débat public, jusqu’à ce qu’il soit perturbé par l’irruption des agitateurs de Pièces
et Main-d’œuvre. Les citoyens n’ont pas pu poser de questions. Si nombre de réunions n’ont pu se tenir, ce n’était pas de notre fait.

Il est exact que transparence et communication ne sont pas synonymes, mais comment exposer à nos concitoyens des sujets compliqués ? Bien qu’elle ne suffise pas à garantir la transparence, la communication est indispensable.

Internet est un moyen considérable, à condition de l’organiser et de lui fournir des contenus. Ceux fournis par le CEA sont validés par nos chercheurs, non par la direction de la communication.

Enfin, je suis aujourd’hui directeur de la communication, mais j’ai un passé d’ingénieur chimiste chercheur. Je connais le fond des sujets abordés.

M. Henri Revol. – Nous voulons créer un portail permettant à chaque citoyen d’y trouver ce dont il a besoin, outre des liens vers tous les fournisseurs d’informations. Notre cahier des charges est établi. Il reste à trouver un opérateur afin que les gens puissent accéder à une connaissance précise de leur environnement.

Un mot du travail dans les CLI : il a, dans certains cas, infléchi les décisions. À l’occasion d’une visite décennale à Fessenheim par exemple, des contre-expertises ont été demandées, menées par des experts indépendants, avec une suite concrète.

Quant au risque terroriste, nos sites comprennent différentes zones, plus ou moins sensibles : certaines, qui abritent centre d’information ou simulateur, peuvent accueillir le public, dans d’autres il faut une autorisation d’accès, afin d’éviter que n’importe qui se promène n’importe où. Les visites se déroulent plutôt dans les parties non nucléaires. Je signale que nous organiserons en septembre prochain une grande journée portes ouvertes de nos installations.

M. le président Claude Birraux. – Je me souviens que la première visite décennale de contrôle à Fessenheim à laquelle participait la CLI – notamment le président M. Charles Haby, et Monseigneur Gillon,
grand spécialiste des questions nucléaires – avait donné des résultats satisfaisants. Mais pour le directeur du site, c’était une arête dans la gorge, et lorsqu’il a quitté ses fonctions, il a transmis cette arête à son successeur. Les choses ont évolué depuis...

M. Henri Revol. – Je rappelle que M. Borloo avait saisi le Haut Comité sur la question des matières et déchets qui étaient envoyés en Russie ou ailleurs ; le rapport très clair, très complet, n’a pas eu la faveur des médias, mais chacun peut le consulter sur le site du Haut Comité.

M. Georges Servière. – Je veux apporter trois précisions.

Nous avons la capacité de bousculer le fonctionnement normal de notre site internet vers un mode « crise », pour tenir compte des sollicitations spécifiques dans ces moments-là. Avec 35 millions de clients à gérer, nous avons forcément développé cette compétence…

Dans les phases de projet, d’autorisation, de construction, les aspects liés à la conception font partie des informations mises à disposition, à l’occasion du débat public en particulier. Les rapports de sûreté sont à disposition du public – la totalité des données sauf ce qui est protégé.

La protection contre les agressions, chutes d’avions par exemple, a été abordée lors des débats publics de Flamanville ou Penly. EDF a exposé ses dispositifs de protection : sans détailler les informations techniques, bien sûr, l’opérateur en a dit beaucoup !

M. Xavier Clément. – Nous avons également un site internet plus léger, plus réactif, pour les temps de crise. Nous nous sommes inspirés de ce qu’ont mis en place nos collègues de l’IRSN, un site permettant de twitter et d’alimenter des interlocuteurs par des flux d’information très compacts, très efficaces.
Mme Marie-Pierre Comets (ASN). – L’ASN donne plus que « trois sous » aux CLI : 50% de leurs budgets. Ceux-ci demeurent insuffisants et chaque année, nous rappelons que les commissions sont éligibles, depuis la loi sur la transparence et la sécurité nucléaire dite loi TSN, à une fraction du produit de la taxe sur les installations nucléaires de base. Peut-être la disposition sera-t-elle un jour enfin mise en œuvre ?

Un gros travail a été mené depuis 2005 par l’ASN, avec le Haut Comité, sur l’indice de radioactivité dans l’environnement. Cet indice prend tout son sens dès lors que les nombreuses mesures effectuées par les exploitants, l’IRSN, les associations, sont regroupées sur un même site mais forment un ensemble indigeste. L’indice a un intérêt pédagogique.

Le travail a été présenté au Haut Comité ce matin. L’indice comporte trois grades, vert, jaune, rouge : il est simple et clair. Une expérimentation sera mise en œuvre prochainement pour savoir si l’indice répond aux attentes.

M. Alain Delmestre, directeur général adjoint de l’ASN. – L’ASN aussi a connu des problèmes sur son site : un collapsus s’est produit, heureusement nous avons réussi, pour reprendre votre expression, à l’up-grader rapidement. Une montée en charge du site se manifeste depuis Fukushima. Nous prolongeons le site par une newsletter ; et un call center sera bientôt accessible en cas de crise. Nous avons réduit la dimension globale du site après le 11 mars dernier, pour que les visiteurs accèdent directement à la partie concernant la situation à Fukushima.

Depuis 2002, nous publions les lettres de suivi d’inspection telles qu’envoyées par les inspecteurs à l’exploitant nucléaire : elles sont diffusées intégralement, sans modification. Au début, la publication était parcellaire ; à présent, hormis celle de l’inspection du travail, toute la production des 250 inspecteurs est en ligne.
M. Bruno Sido, Sénateur, Premier vice-président de l’Office, rapporteur. – Nous venons de faire le point sur la transparence et les progrès réalisés. À présent, nous allons étudier les améliorations possibles de la transparence, condition de la sûreté, condition de la confiance des citoyens. Nous allons nous intéresser à l’expérience de certains autres pays et recueillir l’avis de trois instances qui participent directement à la transparence en France.

En ouverture, MM. Javier Reig et Jean Gauvain vont présenter le travail de fond réalisé par l’Agence de l’OCDE pour l’énergie nucléaire afin d’assurer la diffusion internationale des bonnes pratiques.

M. Jean Gauvain, Agence de l’OCDE pour l’énergie nucléaire. – L’OCDE aide les gouvernements et leurs autorités de sûreté à améliorer la transparence en matière nucléaire. L’Agence a été créée en 1958 et l’article 1er de ses statuts indique que ses actions répondent à un objectif d’intérêt public. Les efforts des autorités depuis lors ont visé à donner au contrôle toujours plus de crédibilité. À la veille du G8 de Deauville, l’Agence a fêté son cinquantième anniversaire et cette session a réuni onze premiers ministres de pays importants, français et japonais notamment. Tous ont évoqué le besoin de transparence.

Cinquante ans, c’est à peu près l’âge des applications nucléaires dans le monde. Durant cette période, la communication s’est transformée : nous sommes loin de l’information purement gouvernementale des débuts. Maintenant, avec les blogs et twitter, tout citoyen peut créer l’information. Les attentes du public ont évolué également. La première loi de liberté d’accès à l’information a été votée en Suède, en…1766 ! Et la seconde aux États-Unis en 1966. La plus récente dans l’OCDE est la loi allemande de 2006.

A l’origine, chaque autorité communiquait à sa façon et l’on estimait que les différences culturelles rendaient vain tout partage. Après l’accident de Tchernobyl, un travail en commun a été lancé, en premier lieu pour définir une échelle internationale des événements nucléaires. Le premier atelier a porté sur la façon d’établir la confiance en les autorités de sûreté. Il y eut un grand moment, lorsque M. Ancelin, alors président de la CLI de Nogent-sur-Seine, a décrit l’exercice d’évacuation de la centrale qui,
précisément, était intervenu peu de temps avant. Un groupe de travail a été formé, qui réunissait les communicants des diverses autorités de sûreté. Échanges, séminaires, rapports, notes de synthèse se sont multipliés, sans oublier le réseau constitué, qui a été activé après le 11 mars pour savoir comment communiquer à propos de Fukushima.

Un rapport récent se penche sur les meilleures pratiques de transparence : le cadre juridique le plus moderne est celui de la France, depuis la loi TSN ; auparavant les États-Unis étaient en pointe (participation du public aux décisions, utilisation de l’internet…). A propos d’internet, je signale qu’après le 11 mars, l’autorité nucléaire japonaise et l’ASN française ont été les seules à recourir au site restreint – en l’occurrence, restreint à un dossier sur Fukushima.

Nous cherchons à promouvoir la culture de la transparence, que les États-Unis ont, les premiers, intégré. Information sur internet, rapports d’inspection publiés : la France a adopté ces pratiques depuis neuf ans, ce qui implique un changement de culture comme l’a souligné M. Guillaume. Les ingénieurs doivent apprendre à écrire une langue simple et intelligible ! Au Japon, les rapports demeurent totalement indigestes pour le grand public. Il faut parvenir à rendre accessible un sujet complexe : par exemple, la centrale de Fukushima fonctionnant sur une technologie qui n’existe pas en France, il faut commencer par expliquer des principes et des phénomènes que nous ne connaissons pas.

Concilier rapidité de l’information et précision est encore une autre difficulté. On l’a vu dans le domaine sanitaire tout récemment : une mauvaise information diffusée trop rapidement peut causer bien des dommages… La présentation du président Ancelin qui a été citée précédemment est demeurée une référence pendant de longues années !

Les améliorations juridiques se poursuivent. En Espagne, l’an dernier, un comité consultatif pour l’information du public a été créé, qui va dans le bon sens. C’est le Canada qui est le plus en avance pour la participation du public : pas un texte réglementaire n’est pris sans consultation. Comment les autorités de sûreté doivent-elles communiquer à un public local ? L’expérience des États-Unis est également enrichissante.

Le tableau n’est ni noir ni rose. Le groupe de travail achevait le 10 mars dernier son rapport sur la communication en temps de crise… Autre coïncidence, la réunion annuelle se tenait la semaine suivante. Aussitôt a été lancée une enquête sur les attentes du public, les moyens mis en œuvre, les
principaux messages délivrés par les autorités de sûreté, les difficultés rencontrées. La plus grande est le manque d’outils et l’obligation de travailler « à la débrouille » – un séminaire international est d’ailleurs prévu. L’OCDE, vous le voyez, aide les autorités de sûreté nucléaire de ses membres à progresser vers une crédibilité toujours meilleure.

M. Bruno Sido, rapporteur. – Nous avons le plaisir d’accueillir M. Jan Blomgren, à qui nous avons demandé de faire part de l’expérience suédoise en matière de transparence. Il a souhaité être présenté en tant que directeur du Swedish Nuclear Technology Centre, qui a pour mission de coordonner les efforts des industriels et des institutionnels en faveur de la formation et la recherche universitaire dans le domaine nucléaire. M. Blomgren, qui est également professeur de physique nucléaire appliquée, m’a demandé de ne pas évoquer son appartenance d’origine à l’entreprise Vattenfall, exploitant qui fait partie du consortium qui soutient le centre. Hélas, je n’ai pu m’empêcher de vendre la mèche, sans doute une déformation chez moi, car notre mission suit une logique de complète transparence – et l’audition d’aujourd’hui est entièrement consacrée à cette question. Mais qu’il se rassure, nous savons que ses propos sont uniquement ceux du directeur du centre !

M. Jan Blomgren, directeur du Swedish Nuclear Technology Centre. – La transparence dans l’industrie nucléaire en Suède est une affaire ancienne. Elle n’est pas spécifique au nucléaire mais relève d’une tendance profonde de la société suédoise. La constitution suédoise de 1766 – avant la Révolution française ! – a établi la liberté d’expression et la liberté de la presse et imposé la transparence de tous les actes de l’exécutif. Tous les documents administratifs sont accessibles aux citoyens, sauf motif de sécurité nationale. Cette application très large de la transparence suscite parfois une incompréhension dans les autres pays. Chez nous, la plus anodine note transmise à un agent public, par exemple un professeur d’université, est considérée comme un document administratif adressé à un responsable administratif. Copie peut donc en être réclamée par tout citoyen, par exemple un journaliste.

Cette règle constitutionnelle s’impose uniquement à l’administration publique, mais elle s’est diffusée dans l’ensemble de la société et les entreprises affichent souvent une volonté de transparence bien plus large que ce qui se fait dans les autres pays. En Suède, la transparence est un élément essentiel de la confiance, sans en être l’unique composante. La maîtrise du risque de corruption est une dimension particulièrement sensible pour les autorités de contrôle. Si de nombreuses enquêtes
internationales placent la Suède parmi les pays les moins enclins à la corruption, ce n’est pas le résultat d’un tropisme naturel car la Suède était considérée comme un pays très corrompu au XIXᵉ siècle. Preuve que la corruption n’est pas endémique et peut être vaincue.

Voyons comment fonctionne le processus de choix d’un site pour le stockage du combustible usé. Les industriels concernés ont formé une société commune, indépendante, SKB, la Compagnie suédoise de gestion des déchets nucléaires. La séparation des rôles est claire : les autorités politiques imposent les objectifs et les contraintes, les industriels proposent des solutions techniques et la responsabilité de la sûreté leur incombe. L’autorité de contrôle ne prescrit aucune solution, mais pose une exigence et vérifie a posteriori le respect du cahier des charges. Deux communes, Östhammar et Oskarshamn, étaient de longue date candidates pour l’installation du site de stockage géologique, avec l’accord de leur population. Il a fallu trente années d’efforts persévérants pour parvenir à un tel résultat.

Seules les collectivités locales volontaires ont été retenues : il était hors de question d’imposer une localisation par une décision venue d’en-haut. Chaque fois qu’un vote local s’est traduit par un veto, SKB s’est retirée. La compagnie a veillé à établir des relations de long terme avec les communes intéressées, ouvrant sur place un bureau tenu par du personnel recruté dans la région, chargé d’informer les habitants. Au lieu de procéder par grand-messes médiatiques, SKB a multiplié les réunions de proximité chez les gens, autour d’une tasse de café, autrement dit des réunions « Tupperware » ! Ce n’est pas une plaisanterie, cela s’est vraiment passé ainsi.

Toutes les études entreprises ont fait l’objet d’une publication très médiatisée. Le stockage géologique était la piste principale, mais l’étude de solutions alternatives, dépôt dans des forages profonds, séparation et transmutation, envoi dans l’espace intersidéral, a bénéficié d’un soutien financier. Ces recherches ont associé un grand nombre de scientifiques et
universitaires, ce qui a certainement contribué à la réussite du processus de gestion des combustibles nucléaires usés.

La critique a pu disposer d’une tribune. Les organisations hostiles à l’énergie nucléaire ont reçu des aides financières de SKB pour financer des études indépendantes, dont SKB a publié les résultats dans ses rapports avec cet avertissement : « Les points de vue exprimés ici ne coïncident pas nécessairement avec ceux de SKB ».

La décision d’implantation a été prise essentiellement sur le critère de la qualité du socle rocheux, un critère considéré comme loyal, ce qui a joué un rôle important dans l’acceptation sociale du processus.

La Suède a une superficie presque équivalente à celle de la France, pour une population inférieure à celle de Paris. Elle doit trouver d’autres solutions que celles mises en œuvre dans les grands pays. Elle ne dispose pas d’un grand organisme de recherche comme le CEA. Les universités, les industriels et les autorités de contrôle sont obligés de coopérer étroitement, par exemple pour fournir le maximum d’information à la population. Fukushima n’a eu qu’une très faible incidence sur l’acceptation sociale du nucléaire et n’a guère relancé le débat politique.

J’en viens aux défis actuels. L’industrie nucléaire suédoise est très ouverte : en vingt ans, près de 10% de la population a ainsi visité une centrale nucléaire – et beaucoup plus parmi les écoliers, car les centrales nucléaires sont très prisées pour les visites de découverte. Les statistiques le montrent, la perception personnelle s’améliore considérablement après qu’on a vu de près l’intérieur des installations. Après le 11 septembre 2001, la sécurité a été sensiblement renforcée. Les formalités d’entrée ont pris un temps tel que l’on a fini par cantonner les visites du public derrière la grille de protection. Je crains que ce repli, aussi justifié soit-il du point de vue de la sécurité, ne soit nocif pour l’acceptation sociale de l’énergie nucléaire.
J’ai évoqué la corruption. Un système reposant sur une forte interaction entre autorités de contrôle, industriels et universités suppose qu’on élimine tout risque de corruption. Il doit y avoir au sein de l’autorité de contrôle une muraille de Chine entre la collaboration avec l’industrie et l’inspection des installations industrielles. La transparence est certainement la clé de voûte de l’acceptation sociale, mais elle doit s’accompagner d’une organisation stricte des relations entre les acteurs du système.

La France ne doit pas copier la Suède, pas plus que la Suède ne doit copier la France. Nos cultures sont différentes, de même que nos atouts, nos potentialités, nos contraintes. Mais c’est un grand honneur pour moi d’avoir été consulté par des représentants de la Nation française, auxquels je tiens à dire mon très profond respect.

M. Bruno Sido, rapporteur. – Nous vous remercions d’être venu de Suède et de vous être si bien exprimé dans notre langue.

La loi sur le débat public de 1995 met en œuvre le principe de participation. La liste des équipements concernés, fixée par décret comme il se doit dans un pays de droit écrit, inclut les installations nucléaires. La Commission nationale du débat public a organisé trois débats en ce domaine, deux sur des EPR et un sur la politique en matière de déchets nucléaires. Un débat est plus simple sur un équipement que sur une politique : les participants, à Flamanville ou Penly, se sentaient très concernés ! Les débats se sont bien passés, il est vrai que les projets d’EPR se situaient dans des sites qui accueillaient déjà des installations nucléaires. Je ne sais pas quel tour aurait pris un débat aujourd’hui, sur un nouvel EPR, dans un site vierge…

Les débats ont porté sur « Flamanville comme tête de série » ou sur le statut des employés sous-traitants à Penly. Il faut dire que les sous-traitants se sont invités dans les réunions ; après ces échanges, le conseil
d’administration d’EDF a pris une délibération – rendue publique – pour s’engager à traiter enfin la question de façon beaucoup plus stricte.

Sur les déchets nucléaires, il y avait eu avant la loi de 2006 des réunions et des auditions publiques sans recevoir une grande publicité. La Commission nationale du débat public tient beaucoup aux réunions publiques, lors desquelles le maître d’ouvrage est directement confronté au public et doit répondre à ses questions – il n’y a pas d’échappatoire ! Les animateurs, neutres et indépendants, et qui ne sont pas des spécialistes des questions traitées, veillent à la sincérité et au sérieux des réponses. Ils s’assurent ensuite que les actes du porteur de projet sont conformes aux réponses données.

Aujourd’hui, ce n’est pas parce que l’on est expert que l’on est cru sur parole. Trop d’incidents ont entamé la crédibilité des sages. Jeune fonctionnaire au moment de Tchernobyl, j’ai assisté à Matignon à une réunion où tout n’était que mensonge organisé. Or si la confiance se construit lentement, la défiance émerge et envahit tout en un instant.

Dans les réunions publiques, la Commission nationale du débat public applique plusieurs principes : transparence, c’est-à-dire information complète, compréhensible, sincère ; équivalence, car tous les participants sont égaux, ce que les élus ont parfois du mal à comprendre ; argumentation, car seuls sont pris en compte les arguments, non les proclamations. La force du débat, c’est sa publicité : réunions, cahiers du débat, verbatim, films, comptes rendus des réunions animées par chaque commission particulière du débat, bilan établi par la Commission nationale. Le porteur de projet doit finalement dire, après les échanges, s’il décide de poursuivre son entreprise, s’il a intégré les enseignements et compris les arguments développés.
Le cas des EPR est spécial car les décisions avaient été prises avant le débat, mais dans huit cas sur dix, la confrontation entre maître d’ouvrage et habitants du territoire a modifié le projet initial. Si le débat public n’existait pas en France, il faudrait l’inventer.

M. Bruno Sido, rapporteur. — M. Delalonde, président de l’association nationales des CLI, va nous présenter son point de vue sur les progrès réalisés et à réaliser en matière de transparence.

En outre, l’Autorité de sûreté et l’IRSN ont fait de gros progrès en mettant à disposition du public un maximum d’informations via internet. Il importe de le reconnaître honnêtement, les CLI ont en trente ans permis de trouver un langage commun, chacun ayant fait un effort pour comprendre le langage de l’autre. Apprendre à s’écouter et se comprendre est indispensable pour être efficace. La qualité d’une intervention ne se mesure pas à sa technicité ; la population et les associations ont une réelle expertise de terrain, mais elles l’expriment avec des mots simples, ce qui les expose à ne pas être prises au sérieux ni comprises. De même que les partenaires de la société civile ont consenti des efforts pour comprendre le langage ésotérique des spécialistes, de même les exploitants et l’ASN doivent poursuivre les leurs pour comprendre les populations qui vivent à côté des centrales. Si chacun garde sa posture, comme le disait le sénateur Guillaume, tout le
monde reconnaît maintenant qu’on peut désormais parler de tout dans les CLI sans tomber dans la polémique stérile ou le manque de respect de l’interlocuteur.

Cependant, force est de constater que le rôle de la CLI est celui d’un organe d’information à sens unique ; sa capacité à émettre des connaissances sur l’impact du site a été négligée. Mais les choses évoluent. Sa vocation n’est pas de décider, elle est de discuter pour donner des informations fiables et de formuler des propositions afin d’éclairer l’administration et les exploitants en relayant les préoccupations du territoire.

Les dernières années, avec leurs catastrophes en série, ont fait émerger durablement la préoccupation d’une nouvelle transparence en matière de gestion des déchets et de sécurité nucléaire. Il était devenu indispensable pour l’État de créer une véritable culture de préparation au risque et de donner de nouvelles responsabilités aux collectivités territoriales. La protection de la population et de l’environnement est en effet une mission essentielle des pouvoirs publics, notamment des collectivités territoriales dont les élus voient croître leurs responsabilités. Le Parlement a voté à cet égard trois lois importantes : la loi Bachelot de juillet 2003 relative à la prévention des risques technologiques et naturels ; la loi de modernisation de la sécurité civile d’août 2004, qui impose la réalisation d’un plan communal de sauvegarde à toute commune soumise à un risque technologique ou naturel majeur ; enfin la loi TSN de juin 2006. Depuis cinq ans, les collectivités n’ont pas encore pris toute la mesure de leurs nouvelles responsabilités. Grandes ou petites, rurales ou urbaines, elles commencent à s’apercevoir qu’il s’agit d’un transfert d’importantes responsabilités, sans que la plupart d’entre elles disposent de l’expertise – M. Lacoste l’a dit – ou des moyens financiers de les assumer. Alors que la population ne supporte plus la survenue de risques et que la société devient de plus en plus assurantielle, les collectivités locales doivent s’organiser pour maîtriser les risques et relever le défi de faire coexister les activités économiques, la sécurité et l’environnement. C’est encore plus vrai avec la loi TSN qui a deux conséquences : l’indispensable augmentation des compétences des CLI et le profond renouvellement de leur composition, notamment dans le collège des élus. La loi attend de ces commissions une participation plus grande dans le suivi des activités nucléaires, notamment avec la délivrance d’avis.

Les CLI sont-elles adultes ? Cinq ans après la loi, elles ont achevé leur mutation. Leur financement est prévu par des subventions de l’État et des collectivités, et les CLI associatives reçoivent en plus un pourcentage de la taxe INB versée par les exploitants à l’État – plus de 500 millions d’euros
par an. Et pourtant, l’ASN ne peut distribuer que 600 000 euros par an aux 37 CLI et aux 15 commissions d’information (CI) présentes auprès des installations nucléaires de la défense nationale, et, cela pour informer quelque 60 millions de citoyens. Les moyens manquent. Le pourcentage sur la taxe INB n’est toujours pas inscrit en loi de finances et la suppression de la taxe professionnelle conjuguée à la réforme des collectivités territoriales crée une incertitude nouvelle pour le financement alors même que la loi de 2006 a donné aux CLI de plus grandes responsabilités dans l’information des populations et la réalisation d’expertises indépendantes. Nous serons incapables de remplir ces missions, sauf à faire la manche auprès d’André-Claude Lacoste – qui répond souvent présent – mais qui ne pourra pas le faire lorsque les 37 CLI et les 15 CI viendront lui réclamer les moyens indispensables. Ce sera impossible !

Nous demeurons optimistes, parce que les CLI sont devenues un maillon essentiel de la nécessaire concertation et de la transparence autour des activités nucléaires. C’est maintenant une spécificité française, garant de la démocratie relative au nucléaire. Plus de 3 000 personnes s’y réunissent régulièrement, dont plus de 1 500 élus ; elles sont riches de leur pluralité. La mission des CLI et des CI n’est pas de décider, mais d’éclairer le débat démocratique. L’expérience de Tchernobyl et de Fukushima montre que, sans l’implication des acteurs locaux, on risque une crise de confiance. L’État sait qu’il devra s’appuyer sur les plans communaux de sauvegarde, les réserves civiles communales et les CLI, mais les territoires touchés resteront confrontés, après la gestion de crise, à des problèmes complexes – gestion des territoires contaminés, des mouvements de population, indemnisation, réanimation des activités. Dans tout cela, l’État a le rôle de soutenir les acteurs territoriaux. Il faut donc construire un dialogue et un partenariat sincère, pluraliste et à plusieurs niveaux, en un domaine où les élus n’ont pas encore réellement pris conscience de la réalité du risque nucléaire et de l’ampleur de leurs responsabilités. Sur ce sujet technique et opaque pour ces élus comme pour la population, un dialogue et un langage commun apparaissent nécessaires, trente ans après la circulaire Mauroy.

Les collectivités et les CLI ont gagné, grâce à ces différentes lois, un droit de cité dans les domaines de la gestion des risques majeurs, de la transparence et de l’information de la population. Cela leur confère des responsabilités civiques, sociétales et politiques, parfois assorties de sanctions pénales. Il faut donc les doter de l’expertise et des moyens nécessaires ; notre devoir est d’y veiller. L’ANCCLI a l’intention d’organiser à l’automne des États généraux afin d’évaluer si nous avons les moyens
nécessaires au suivi des installations nucléaires, à la gestion des déchets et des situations accidentelles et post-accidentelles. Et si nous constatons que ce n’est pas le cas, nous dirons à l’État que nous n’avons plus de raison de subsister et demanderons que les problèmes soient désormais résolus par ceux qui savent puisque nous, après trente ans, nous n’aurons pas su convaincre.

M. Michel Lallier, membre du HCTISN, pilote du groupe de travail « Transparence et secrets » - Le Haut Comité pour la transparence et l’information sur la sécurité nucléaire a mis en place un groupe de travail chargé d’examiner comment concilier « transparence et secrets ». Ce groupe de travail a été élargi à des associations extérieures et à des personnalités telles que des hauts fonctionnaires de la défense.

Ce problème de la conciliation entre transparence et secret s’est posé au Haut Comité très rapidement, en 2008, à l’occasion des auditions qu’il réalisait sur un transport de plutonium entre la France et le Royaume-Uni : nombre de ses questions n’ont pas obtenu de réponse au motif que cela était couvert par le secret de la défense nationale ou par le secret commercial. Notre groupe de travail a donc formulé des constats puis énoncé six préconisations tendant à améliorer la transparence des informations tout en préservant la légitime confidentialité de certaines informations sensibles.

Le Haut Comité a constaté que la loi TSN du 13 juin 2006 constitue un indéniable progrès quant à l’accès à l’information et la transparence en matière nucléaire. L’accès à certaines informations couvertes par le secret industriel et commercial avait pu être géré, par le passé, via la mise en place de conventions, moyennant un engagement de confidentialité. Le Haut Comité prend acte qu’il ne peut en être de même pour les informations couvertes par le secret de la défense nationale.

Sans remettre en doute la légitimité de la classification de certaines informations en matière nucléaire, il recommande de veiller à ce que la diffusion de ces informations ne puisse en aucun cas mettre en péril ou amoindrir la résistance du dispositif répondant aux impératifs de sûreté et de sécurité. Il considère donc que le véritable enjeu se situe au moment de la décision de classification, pour distinguer ce qui relève du secret, de ce qui ne devrait pas en relever.

Le Haut Comité attire l’attention des autorités et experts sur l’importance d’une utilisation parcellée et à bon escient des informations protégées afin de ne pas rendre certains documents, rapports,
expertises ou audits, non communicables alors même que leur contenu principal ne relèverait pas du secret.

Il considère que la rédaction d’un guide, semblable à celui élaboré en Grande-Bretagne et formalisant la nature des documents susceptibles d’être classifiés et les raisons de cette classification, est complexe et prématurée en l’état des discussions actuelles entre parties prenantes.

Le Haut Comité prend acte des difficultés que comportent la rédaction et la construction des rapports de sûreté mis à disposition du public dans le cadre d’une procédure d’autorisation d’une installation nucléaire : ils doivent être à la fois accessibles au public et permettre une instruction technique, tout en occultant les éléments dont la divulgation portera atteinte aux intérêts protégés. Si la loi permet à l’exploitant de rédiger un dossier séparé qui regroupe de tels éléments, le Haut Comité préconise cependant l’élaboration d’un seul document en adoptant une démarche d’identification des informations occultées des rapports. Il recommande d’améliorer la transparence par la mise en place d’un « tiers garant ».

Le Haut Comité appelle à rationaliser l’information nucléaire et à veiller à ce qu’elle soit davantage hiérarchisée ou mise en perspective.

Enfin, nous pensons nécessaire d’engager une réflexion approfondie sur la transparence dans le secteur médical et la qualité des informations apportées au patient : information préalable au traitement, information sur la dosimétrie ou en cas d’incident.

À partir de ces constats, notre rapport énonce six recommandations. D’abord, les modalités de recours en cas de refus d’information sont peu connues. D’où notre première recommandation : promouvoir les possibilités de saisine de la CADA et, lorsqu’elles existent, promouvoir le rôle des PRADA (personnes responsables de l’accès aux documents administratifs).

La deuxième recommandation concerne les informations touchant à la défense nationale. Une procédure judiciaire est nécessaire pour obtenir l’avis de la CCSDN sur l’opportunité de déclassifier certains documents. Nous recommandons de modifier la loi pour permettre de saisir cette Commission consultative en dehors des seules procédures judiciaires. Cependant, vu la nécessité d’encadrer ces saisines, le Haut Comité propose d’être une entité nouvelle autorisée à saisir le Comité consultatif sur
l’opportunité d’une déclassification pour les informations en matière nucléaire. C’est donc une modification législative que nous demandons.

Troisième recommandation, nous proposons de mettre en place des procédures permettant de mandater un tiers garant pour examiner les informations couvertes par le secret industriel et commercial, lorsqu’il est difficile de concilier information et défense des intérêts protégés. Un tiers garant est une personne, un groupe de personnes ou une entité, reconnus et missionnés par tous les acteurs concernés en vue de se faire une opinion sur les documents dans leur version complète, excepté les informations couvertes par le secret de la défense nationale, et de rendre compte à ceux qui l’auront missionné. Cette formule a déjà été expérimentée, nous proposons de l’étendre, puis, au vu des résultats obtenus, de la généraliser. Cette solution ne peut être mise en œuvre dans le cas du secret de la défense nationale.

Quatrième recommandation : nous demandons au législateur de mieux préciser la définition légale du secret industriel et commercial. Nous avons rencontré la mission interministérielle qui prépare un projet de loi sur le secret des affaires. Nous lui avons dit que ce texte ne pourrait en aucun cas contredire les dispositions de la loi TSN, ni remettre en cause les principes du droit à l’information (directive européenne ; articles 124-1 et 124-8 du Code de l’environnement), ou du droit environnemental.

Cinquième recommandation : reconnaissant qu’il peut y avoir contradiction entre la protection, au titre du secret médical, des informations dosimétriques, et le suivi et la maîtrise de l’exposition individuelle des travailleurs, le Haut Comité recommande qu’une instance de concertation existante ou un groupe de travail pluraliste impliquant toutes les parties prenantes, puisse se saisir de ce débat et proposer des solutions conciliant les différents impératifs.

Sixième recommandation, il faudrait modifier les dispositions réglementaires du Code de la défense afin de mettre en place des commissions d’information, semblables à celles des installations nucléaires de base secrète, autour des sites et installations d’expérimentations nucléaires intéressant la défense (SIENID), qui en sont dépourvues.

M. le président Claude Birraux. – La recommandation sur le secteur médical rejoint celle qu’a formulée l’ASN dans son dernier rapport annuel. Vous parlez de l’information des patients ; il faut aussi penser à leur exposition aux irradiations et rappeler aux médecins que lorsqu’un malade
passe du 2ème au 4ème étage d’un hôpital, il est inutile, et même dangereux, de lui faire passer un second scanner... Je rappelle aux représentants de l’État que, il y a quelques années, après les incidents d’Épinal et de Toulouse, l’OPECST avait organisé une audition sur la radiologie, puis envoyé une lettre à quelqu’un qui n’est plus ministre. Nous en attendons toujours l’accusé de réception.

M. Bruno Sido, rapporteur. – Comment la France se situerait-elle dans un « hit-parade » de la transparence ? Les autres pays nucléarisés ont-ils des pratiques intéressantes à importer ?

M. Javier Reig, Agence de l’OCDE pour l’énergie nucléaire. – Il y a quinze ans, la situation était bien différente en Amérique du nord et en Europe où, sauf dans quelques pays comme la Suède, l’information sur le nucléaire était très contrôlée. Depuis les choses ont logiquement évolué. Alors qu’autrefois les autorités ne considéraient les installations que sous l’angle technique, elles ont ensuite pris en compte leur conformité à la réglementation et considéré l’angle légal. Ensuite, après Three-Mile-Island puis Tchernobyl, elles ont dû intégrer un troisième facteur : l’acceptabilité par la population. Tout cela a fait évoluer les systèmes d’information européens qui se sont rapprochés du niveau américain. La France, depuis sa loi de 2006 est très en avance sur les autres pays européens. Quant aux États-Unis, même si tout y est accessible, il n’est pas facile, même pour un expert, de trouver ce qu’on cherche. L’accès à l’information n’est pas la transparence. En Europe subsistent encore des restrictions d’accès et la France fait partie des pays européens les plus avancés en la matière.

M. Jean Gauvain. – Aux États-Unis, pour 100 réacteurs nucléaires, il y a 900 réunions publiques locales entre l’Autorité de sûreté américaine délocalisée et le public. En France, la communication est beaucoup plus centralisée.

M. le président Claude Birraux. – Aux États-Unis, sous la présidence de Richard Meserve, la NRC a considérablement modifié ses procédures. Les auditions publiques se limitent à une audition avant construction et à une autre après construction, où l’on se borne à vérifier que le résultat est conforme au projet. En effet, le Congrès jugeait alors que trop de réglementation nuisait à l’efficacité.

Mme Saïda Laarouchi Engström. – Lorsqu’on travaille à l’information sur les risques, comme je l’ai fait pendant une quinzaine d’années en pilotant la sélection des sites de stockage profond en Suède, on
s’attend à ce que toute la population concernée soit intéressée. Or on constate qu’il y a toujours deux petits groupes, toujours présents, ceux qui sont pour et ceux qui sont contre. La grande majorité ne réagit pas. Comme si la question de la gestion des déchets n’était pas une priorité pour nos contemporains. Depuis Slovic, les chercheurs ont montré que la communication sur les risques du nucléaire et de ses déchets se fait en réalité beaucoup plus via des blogs sur internet, ce qui n’incite pas au dialogue objectif ni au contrôle des arguments.

Mme Monique Sené (HCTSIN, ANCCLI). – Quand bien même on parviendrait à une information et à une concertation véritables avec la population, cela amènerait-il à modifier une décision prise par les autorités nucléaires ? On obtient quelque chose pour une autoroute mais, dans le domaine nucléaire ? La transparence totale consisterait à obtenir tous les documents, et l’on ne peut jamais obtenir que les documents dont on sait qu’ils existent. L’implication des gens, même dans les CLI, est très moyenne et le bénévolat a ses limites, ce qui gêne le passage de relais. Bref, je ne vois pas comment on pourrait arriver à la transparence.

M. le président Claude Birraux. – C’est quelque chose vers quoi l’on tend sans jamais être sûr de l’atteindre… Pour sa part, l’OPECST a contribué à organiser des débats et il a soulevé des questions qui fâchent.

Comment les principaux exploitants réagissent-ils face au modèle suédois d’accès direct à tous les documents internes ?

M. Dominique Minière. – Il est vrai qu’on a souvent du mal à réunir dans un débat l’ensemble des parties prenantes. Il y a toujours ceux qui sont pour, ceux qui sont contre ; mais ceux qui viennent s’informer et dialoguer, on a du mal à les rencontrer.

Nous avons beaucoup travaillé sur la notion de transparence, et conclu que cela consiste à dire aux gens ce qu’ils n’aimeraient pas apprendre par d’autres que nous. Cela nous oblige à nous mettre à la place de l’autre et à raisonner selon sa logique, ce qui est difficile pour un peuple de techniciens et d’ingénieurs qui ne raisonne que selon son échelle d’importance des événements.

Pour répondre à M. Sido, nous avons pu comparer nos pratiques de déclarations d’événements avec celles d’autres pays nucléaires. Nous déclarons les événements de niveau 1 mais aussi ceux de niveau 0, ce qui nous conduit à en déclarer plus de 600 par an. Ce niveau 0, c’est la matière

M. le président Claude Birraux. – Je faisais partie de la commission Curien, chargée de réfléchir à la façon dont EDF devait communiquer, notamment en cas de crise et nous avions alors détecté des difficultés entre le niveau local et le niveau central. Par exemple lors de l’incident de Golfech, le niveau local attendait le feu vert du niveau central, lequel n’avait pas toutes les informations…

M. Dominique Minière. – Aujourd’hui, la communication vient du niveau local.

M. Alain Delmestre. – Certes, les États-Unis ont tenu neuf cents réunions publiques, comme l’a rappelé Jean Gauvain, mais la France, dont le parc nucléaire est pourtant bien moindre, n’a pas à rougir en la matière : entre les réunions de CLI, les réunions de concertation et celles du Haut comité, nous sommes en avance sur les autres pays, qui prennent d’ailleurs conseil auprès de nous pour développer leur politique de communication.

Pendant toute la phase « chaude » de la crise de Fukushima, les journalistes se sont montrés très désireux de comprendre, très disponibles. Malheureusement, une actualité chassant l’autre, la crise libyenne a remplacé le Japon à la « une »…

Il est difficile de diffuser une vraie culture du risque. En 2009, nous avons mené une campagne d’information du public : dans les zones PPI, autour des centrales, 80 % de la population avait vu la campagne, mais moins de 50 % des habitants étaient allés chercher les comprimés d’iode que nous distribuions...

L’apparition des acteurs nouveaux que sont les réseaux sociaux, Facebook ou Twitter, est positive car elle répond à un besoin ; néanmoins, c’est aussi facteur de risque : on l’a vu récemment avec l’affaire de la fausse Syrienne, ou, plutôt du vrai Américain diffusant des informations erronées !
M. le président Claude Birraux. – N’oubliez pas qu’au niveau local, le calendrier des pompiers ou des facteurs, que l’on trouve dans presque tous les foyers, peut être un support d’informations.

Il me reste à remercier les rapporteurs et l’ensemble des intervenants, et particulièrement notre ami suédois, qui nous a fait l’amabilité de parler dans un excellent français. Le compte rendu sera publié, transparence oblige, et nous rendrons notre rapport d’étape fin juin.
RÉUNION
JEUDI 14 AVRIL 2011

Présidence de M. Claude Birraux, président de l’Office

- Point sur l’évolution de la situation de la centrale nucléaire de Fukushima

 M. Claude Birraux, député, président de l’Office parlementaire d’évaluation des choix scientifiques et technologiques (OPECST). - Nous nous réunissons aujourd’hui dans une configuration particulière, puisqu’à la demande des présidents des deux assemblées parlementaires, l’étude sur « la sécurité nucléaire, la place de la filière et son avenir » sera conduite par l’Office auquel sont adjoinds huit de nos collègues députés et huit de nos collègues sénateurs membres des commissions compétentes.

 Avant l’examen de l’étude de faisabilité de cette saisine, je laisse la parole à M. Thomas Houdré, Directeur des centrales nucléaires à l’Autorité de sûreté nucléaire (ASN), pour qu’il nous dresse un état de la situation de la centrale nucléaire de Fukushima.

 M. Thomas Houdré, Directeur des centrales nucléaires, ASN. – La centrale nucléaire de Fukushima Daiichi compte 6 réacteurs à eau bouillante, qu’il faut distinguer des réacteurs à eau pressurisée français. Les premiers ne possèdent qu’un seul circuit d’eau, alors que les seconds en ont deux. Dans un bâtiment réacteur de la centrale de Fukushima, la cuve est protégée par une enceinte métallique surplombée d’une enceinte en béton, la piscine de combustible se trouvant dans la partie haute du bâtiment. Le 11 mars dernier, le séisme d’intensité 9.0 a entraîné l’arrêt automatique des réacteurs et la perte des alimentations électriques externes. En conséquence du tsunami, les diesels de secours n’étaient plus opérationnels. Les cœurs des
réacteurs ainsi que les assemblages combustibles en piscine n’ont plus été refroidis. L’échauffement des combustibles irradiés a conduit à l’éclatement des gaines de combustible et à la fonte de celui-ci.

L’augmentation de température a entraîné des dégagements d’hydrogène par décomposition de l’eau. La cuve a donc vu la pression augmenter en son sein. Des décompressions volontaires de la cuve, conduisant à des rejets radioactifs, ont été nécessaires pour maîtriser cette situation. Les gaz, contenant de l’hydrogène, se sont alors accumulés dans l’enceinte de confinement et dans le bâtiment. Dans les réacteurs n° 1,2 et 3 de Fukushima, l’hydrogène ainsi accumulé a explosé, endommageant l’enceinte de confinement, ce qui a conduit à des rejets radioactifs importants.

M. Yves Cochet, député. – Quelle est l’origine de cet hydrogène ?

M. Thomas Houdré. – Il provient d’une réaction chimique à haute température de l’eau avec le zirconium des gaines de combustible.

Dans les piscines, la perte d’électricité a rendu inopérantes les pompes permettant de faire circuler l’eau. L’échauffement des cœurs a créé une élévation de la température de l’eau et une baisse de son niveau. En cas de dénoyage des combustibles, l’élévation de la température s’accélère, pouvant conduire à l’éclatement des gaines puis à la fonte du combustible. Nous n’avons toutefois pas de vision très précise de ce qui s’est passé sur ce plan.

Aujourd’hui la situation à la centrale de Fukushima n’est pas stabilisée. Le refroidissement continue à s’opérer en circuit ouvert dans les réacteurs n° 1,2 et 3. La priorité de l’exploitant japonais est de rétablir un refroidissement en circuit fermé et de mettre en place un échangeur de chaleur qui permette d’assurer le refroidissement de cette eau. C’est uniquement à ces conditions que l’on pourra considérer la situation comme stabilisée.

De nombreuses inconnues demeurent. L’ASN ne possède pas d’informations fiables sur le niveau d’endommagement du combustible dans les cuves des réacteurs n° 1,2 et 3, ni sur le degré d’endommagement des cuves et des enceintes de confinement.

La réévaluation des quantités de radioactivité déjà rejetée a entraîné le reclassement par l’Autorité japonaise de l’accident au niveau 7 sur l’échelle international des événements nucléaires (INES). Ces rejets
correspondent à un dixième de ceux observés lors de l’accident de Tchernobyl. Les débits de dose diminuent sur le site où les conditions de travail demeurent toutefois difficiles. Les rejets se sont produits essentiellement au début de l’accident et sont moins importants aujourd’hui.

Au-delà des mesures d’évacuation prises immédiatement par les autorités japonaises, une gestion des territoires contaminés devra être mise en place dans la durée. La gestion post-accidentelle inclut des mesures d’interdiction de commercialisation et de consommation des denrées alimentaires ainsi qu’une évacuation de la population dans un rayon de 20 km, en conséquence de l’exposition chronique attendue.

En France, aucune conséquence sanitaire n’est à craindre du fait de la dispersion et de la dilution des rejets. Aucune action de protection des populations n’est à envisager. Un contrôle systématique des importations de produits en provenance du Japon a été mis en place.

M. le président Claude Birraux. Je vous remercie pour cet état des lieux. Nous pourrions commencer chacune de nos auditions publiques par un point sur la situation à Fukushima.

M. Yves Cochet. – D’un point de vue théorique, une explosion, non nucléaire évidemment, mais chimique, demeure-t-elle possible dans les réacteurs n° 1, 2 et 3 de la centrale de Fukushima ? Une telle explosion pourrait projeter des matériaux radioactifs à des hauteurs élevées, où ils se retrouveraient pris dans des courants aériens susceptibles de les disperser au loin, avec, certes, des effets de dilution. Une telle possibilité existe-t-elle encore ?

M. le président Claude Birraux. - Quelle sont les différences notables avec l’accident de Tchernobyl où le réacteur était modéré au graphite, ce qui a entraîné un incendie corrélatif et simultané à l’explosion ?

M. Thomas Houdré. – Les mécanismes accidentels sont très différents à Tchernobyl et à Fukushima. A Tchernobyl, on a assisté à un emballlement incontrôlé de la réaction nucléaire, qui a conduit à une explosion de grande puissance, puis à un incendie qui a duré plusieurs jours. A Fukushima, la réaction nucléaire a été arrêtée dès le séisme. Le risque d’emballement est très faible. Un risque lié à la présence d’hydrogène, susceptible de conduire à des explosions libérant des rejets radioactifs importants, demeure toutefois. Même si une telle explosion se produisait, aucun impact significatif ne serait à craindre en France. Les prévisions les
plus pessimistes de l’Institut de radioprotection et de sûreté nucléaire (IRSN), qui resteraient valables, ne portent que sur des conséquences infinitésimales.

M. Ladislas Poniatowski, sénateur. — Serait-il possible de profiter du point qui sera fait sur la situation à Fukushima, préalablement à chacune de nos réunions, pour disposer d’une présentation sur les conséquences de l’accident sur la chaîne alimentaire ? Des produits transformés au Japon sont exportés en France. Des spécialistes nous assurent que tous ces produits sont contrôlés. Il serait souhaitable qu’un point soit effectué sur cet aspect au cours de l’une de nos futures réunions.

M. le président Claude Birraux. — Nous pourrons aborder ce point lors des deux auditions publiques prévues sur la gestion de crise suite à un accident nucléaire.

Mme Catherine Procaccia, sénatrice. — Il serait utile d’entendre l’Institut français de recherche pour l’exploitation de la mer (IFREMER) sur cette question de la chaîne alimentaire, pour examiner par exemple comment les poissons contaminés circulent dans les océans.

M. Yves Cochet. — Une soixantaine de laboratoires ont été mis en place dans le monde pour détecter de façon ultrafine la radioactivité, à la suite du traité d’interdiction complète des essais nucléaires (TICEN). L’ASN et l’IRSN ont-ils accès aux données brutes de ce réseau ? Celles-ci pourraient-elles être rendues accessibles sur Internet ?

M. Thomas Houdré. — Je note votre question sur le réseau TICEN pour y répondre ultérieurement car je n’ai pas d’information précise sur ce sujet, mais je rappelle que tout citoyen a aujourd’hui accès aux résultats bruts des mesures du réseau "mesure-radioactivite.fr" supervisé par l’IRSN et l’ASN. Ces mesures, qui sont réalisées par des laboratoires disposant d’un agrément, sont des mesures très fines et très précises de la radioactivité.

M. le président Claude Birraux. — Je vous remercie pour cette présentation.

M. Thomas Houdré, Directeur des centrales nucléaires, ASN. — La centrale nucléaire de Fukushima Daiichi compte 6 réacteurs à eau bouillante, qu’il faut distinguer des réacteurs à eau pressurisée français. Les premiers ne possèdent qu’un seul circuit d’eau, alors que les seconds en ont deux. Dans un bâtiment réacteur de la centrale de Fukushima, la cuve est
protégée par une enceinte métallique surplombée d’une enceinte en béton, la piscine de combustible se trouvant dans la partie haute du bâtiment. Le 11 mars dernier, le séisme d’intensité 9.0 a entraîné l’arrêt automatique des réacteurs et la perte des alimentations électriques externes. En conséquence du tsunami, les diesels de secours n’étaient plus opérationnels. Les cœurs des réacteurs ainsi que les assemblages combustibles en piscine n’ont plus été refroidis. L’échauffement des combustibles irradiés a conduit à l’éclatement des gaines de combustible et à la fonte de celui-ci.

Un système a permis de décompresser la cuve dans l’enceinte de confinement. Celle-ci a donc vu la pression augmenter en son sein. Des décompressions volontaires de l’enceinte, conduisant à des rejets radioactifs, ont été nécessaires pour maîtriser cette situation. Les gaz, contenant de l’hydrogène, se sont accumulés dans l’enceinte de confinement et dans le bâtiment. Dans les réacteurs n° 1,2 et 3 de Fukushima, l’hydrogène ainsi accumulé a explosé, endommageant l’enceinte de confinement, ce qui a conduit à des rejets radioactifs importants.

M. Yves Cochet, député. — Quelle est l’origine de cet hydrogène ?

M. Thomas Houdré. — Il provient d’une réaction chimique à haute température avec le zirconium des gaines de combustible.

Dans les piscines, la perte d’électricité a rendu inopérantes les pompes permettant de faire circuler l’eau. L’échauffement des cœurs a créé une élévation de la température de l’eau et une baisse de son niveau. En cas de dénoyage des combustibles, l’élévation de la température s’accélère, pouvant conduire à l’éclatement des gaines puis à la fonte du combustible. Nous n’avons toutefois pas de vision très précise de ce qui s’est passé sur ce plan.

Aujourd’hui la situation à la centrale de Fukushima n’est pas stabilisée. Le refroidissement continue à s’opérer en circuit ouvert dans les réacteurs n° 1,2 et 3. La priorité de l’exploitant japonais est de rétablir un refroidissement en circuit fermé et de mettre en place un échangeur de chaleur qui permette d’assurer le refroidissement de cette eau. C’est uniquement à ces conditions que l’on pourra considérer la situation comme stabilisée.

De nombreuses inconnues demeurent. L’ASN ne possède pas d’informations fiables sur le niveau d’endommagement du combustible dans
les cuves des réacteurs n° 1, 2 et 3, ni sur le degré d’endommagement des cuvettes et des enceintes de confinement.

La réévaluation des quantités de radioactivité déjà rejetée a entraîné le reclassement par l’Autorité japonaise de l’accident au niveau 7 sur l’échelle international des événements nucléaires (INES). Ces rejets correspondent à un dixième de ceux observés lors de l’accident de Tchernobyl. Les débits de dose diminuent sur le site où les conditions de travail demeurent toutefois difficiles. Les rejets se sont produits essentiellement au début de l’accident et sont moins importants aujourd’hui.

Au-delà des mesures d’évacuation prises immédiatement par les autorités japonaises, une gestion des territoires contaminés devra être mise en place dans la durée. La gestion post-accidentelle inclut des mesures d’interdiction de commercialisation et de consommation des denrées alimentaires ainsi qu’une évacuation de la population dans un rayon de 20 km, en conséquence de l’exposition chronique attendue.

En France, aucune conséquence sanitaire n’est à craindre du fait de la dispersion des rejets. Aucune action de protection des populations n’est à envisager. Un contrôle systématique des importations de produits en provenance du Japon a été mis en place.

M. le président Claude Birraux. - Je vous remercie pour cet état des lieux. Nous pourrions commencer chacune de nos auditions publiques par un point sur la situation à Fukushima.

M. Yves Cochet. – D’un point de vue théorique, une explosion, non pas nucléaire évidemment, mais chimique, demeure-t-elle possible dans les réacteurs n° 1, 2 et 3 de la centrale de Fukushima ? Une telle explosion pourrait projeter des matériaux radioactifs à des hauteurs élevées, où ils se retrouveraient pris dans des courants aériens susceptibles de les disperser au loin, avec, certes, des effets de dilution. Une telle possibilité existe-t-elle encore ?

M. le président Claude Birraux. - Quelle sont les différences notables avec l’accident de Tchernobyl où le réacteur était modéré au graphite, ce qui a entraîné un incendie corrélatif et simultané à l’explosion ?

M. Thomas Houdré. – Les mécanismes accidentels sont très différents à Tchernobyl et à Fukushima. À Tchernobyl, on a assisté à un emballement incontrôlé de la réaction nucléaire, qui a conduit à une explosion de grande puissance puis à un incendie qui a duré plusieurs jours.
A Fukushima, la réaction nucléaire a été arrêtée dès le séisme. Le risque d’emballage est très faible. Un risque lié à la présence d’hydrogène, susceptible de conduire à des explosions libérant des rejets radioactifs importants, demeure toutefois. Même si une telle explosion se produisait, aucun impact significatif ne serait à craindre en France. Les prévisions les plus pessimistes de l’Institut de radioprotection et de sûreté nucléaire (IRSN), qui resteraient valables, ne portent que sur des conséquences infinitésimales.

M. le président Claude Birraux. – Nous pourrons aborder ce point lors des deux auditions publiques prévues sur la gestion de crise suite à un accident nucléaire.

Mme Catherine Procaccia, sénatrice. – Il serait utile d’entendre l’Institut français de recherche pour l’exploitation de la mer (IFREMER) sur cette question de la chaîne alimentaire, pour examiner par exemple comment les poissons contaminés circulent dans les océans.

M. Yves Cochet. – Une soixantaine de laboratoires ont été mis en place dans le monde pour détecter de façon ultrafine la radioactivité, à la suite du traité d’interdiction complète des essais nucléaires (TICEN). L’ASN et l’IRSN ont-ils accès aux données brutes de ce réseau ? Celles-ci pourraient-elles être rendues accessibles sur internet ?

M. Thomas Houdré. – Je note votre question sur le réseau TICEN pour y répondre ultérieurement car je n’ai pas d’information précise sur ce sujet, mais je rappelle que tout citoyen a aujourd’hui accès aux résultats bruts des mesures du réseau supervisé par l’IRSN et l’ASN. Ces mesures, qui sont réalisées par des laboratoires disposant d’un agrément, sont des mesures très fines et très précises de la radioactivité.

M. le président Claude Birraux. – Je vous remercie pour cette présentation.
- Sécurité nucléaire, place de la filière et son avenir – Présentation de l’étude de faisabilité

La saisine précise que cette étude aurait pour objet d’établir des informations objectives sur l’état actuel de nos connaissances et sur les développements à attendre de cette filière industrielle, à la lumière des événements dramatiques auxquels le Japon est confronté.

Cette mission ad hoc, associant membres de l’Office parlementaire et représentants des trois commissions, fonctionnera comme s’il s’agissait d’une étude de l’Office, sous réserve d’un aménagement, vis à vis des parlementaires non membres de l’Office : j’ai souhaité que tous les membres
de la mission disposent à égalité d’un droit de vote au moment des délibérations.

Par ailleurs, il nous a été demandé de constituer, à l’occasion de cette étude, un comité d’experts composé de scientifiques spécialistes de la sûreté nucléaire. Je reviendrai sur cette question à la fin de notre réunion.

Enfin, je me dois de préciser que cette mission se déroulera dans un cadre financier contraint, limité par le budget de l’Office, sans moyen supplémentaire. C’est un arbitrage de M. Bernard Accoyer, président de l’Assemblée nationale. Il sera possible de financer, sans trop de difficulté, nos frais de déplacement en France, au cours de la première partie de la mission consacrée à la sécurité nucléaire, jusque fin juin. Mais pour les déplacements à l’étranger qui interviendront dans la seconde partie de la mission, seuls nos deux rapporteurs seront pris en charge par l’Office. Ceux d’entre vous nommés par une commission qui souhaiteront accompagner les rapporteurs hors de France, devront, préalablement, demander à leur commission d’ouvrir et de mettre à la disposition du secrétariat de l’Office, a priori, les crédits correspondants à leurs frais de déplacement, de restauration et d’hébergement. Le secrétariat de l’Office n’aura pas les moyens de faire l’avance de fonds. En effet, nous avons un certain nombre d’études en cours et d’auditions prévues qui doivent suivre leurs cours.

M. Yves Cochet. - Dans la mesure où l’Office est l’opérateur de cette mission, ne pourriez-vous pas demander aux présidents des deux assemblées une dotation exceptionnelle ?

M. Jean-Marie Bockel, sénateur – J’approuve cette proposition.

M. le président Claude Birraux. – Cette demande a été effectuée et la réponse est négative. La mission doit se dérouler dans le cadre du budget de l’Office et de ceux des commissions.

M. Christian Bataille. – Je suis également surpris car, au départ, il était question de nous attribuer des moyens exceptionnels.
M. Yves Cochet. – Peut-être faudrait-il ré-insister auprès des présidents des deux assemblées ?

M. Ladislas Poniatowski. – Je pense aussi qu’il faudrait reformuler une demande auprès des présidents des assemblées, car le moment venu, les commissions risquent de nous répondre qu’il n’y a plus de crédits disponibles pour les déplacements de cette mission parlementaire.

M. le président Claude Birraux. – Jusqu’au mois de juin, il n’y a pas de déplacement à l’étranger prévu. Pour la suite, il est envisageable de reformuler une demande de crédits.

Mme Catherine Proccacia. – Les membres de l’Office qui ne sont pas rappeleurs risquent de se trouver dans une situation inégale, si les commissions financent les déplacements de leurs membres tandis que l’Office n’a plus de budget pour financer les déplacements de ses membres, en dehors des rappeleurs. Un budget supplémentaire me paraît indispensable, pour que l’ensemble des membres de l’OPECST puissent être associés aux déplacements de la même façon que les membres des commissions.

M. le président Claude Birraux. – J’écrirai une lettre aux présidents des deux assemblées parlementaires pour que nous puissions nous déplacer à l’étranger dans les mêmes conditions qu’une mission d’information.

M. Yves Cochet. – Des courriers des présidents des groupes politiques et des commissions pourraient utilement appuyer cette démarche.

M. le président Claude Birraux. – Notre collègue Bruno Sido, rapporteur et vice-président de l’Office, m’a demandé de le remplacer pour vous rappeler les événements dramatiques qui sont à l’origine de cette saisine, l’ampleur des travaux réalisés, par le passé, sur ces questions, par l’Office, et esquisser le calendrier de notre mission.

M. le président Claude Birraux (au nom de M. Bruno Sido). - Le contexte de notre saisine est particulier parce qu’elle intervient au moment même où l’accident de Fukushima est au premier plan de l’actualité.

Les interrogations que suscitent les événements japonais commandent que nous répondions aussi rapidement que possible aux inquiétudes légitimes qui se sont manifestées dans notre pays – et que nos travaux se déroulent dans la plus grande transparence.
De plus, notre étude s’insère dans un calendrier parlementaire traditionnellement très contraint en cette saison.

C’est pourquoi Christian Bataille et moi-même vous proposons de décomposer nos travaux en deux phases complémentaires :

– Une première phase serait consacrée à la sécurité de nos centrales, c’est-à-dire aux éléments qui préoccupent le plus nos concitoyens. Elle devrait déboucher sur un premier rapport, qui serait un rapport d’étape, à la fin du mois de juin. Cette première partie de nos travaux comporterait une analyse des risques, un examen des dispositions prévues pour y parer, ainsi qu’une évaluation des réponses qui devraient être apportées en cas d’accident nucléaire, portant aussi bien sur les dispositifs permettant de circonscrire un incident sur le site que sur les conditions de mise en œuvre des mesures destinées à protéger la population.

– La deuxième phase, qui devrait aboutir vers la fin de l’année, pourrait, autant que de besoin, compléter nos premiers constats sur la sûreté de notre filière nucléaire et traiterait le second volet de notre saisine : les perspectives d’avenir de la filière nucléaire.

Il va de soi que nos travaux seront coordonnés avec, d’une part, la mission d’expertise confiée à l’ASN, dont le cahier des charges devrait être connu début mai, et les premiers résultats en fin d’année, et, d’autre part, avec les travaux du groupe, créé au sein de l’Académie des sciences, pour tirer les conséquences des événements de Fukushima, lequel remettra ses conclusions au mois de juillet prochain.

Le temps nous est compté, ce qui rendra la tâche plus difficile.

Mais nous avons un atout, l’expérience de l’Office dans le domaine de l’évaluation de la filière nucléaire.

Et ceci, contrairement à ce qui a été écrit, ça et là, en toute indépendance vis-à-vis de la filière électronucléaire.

Je ne donnerai qu’une illustration de cette indépendance : le dernier rapport sur le Plan national de gestion des matières et des déchets radioactifs,
dont le moins que l’on puisse dire est qu’il n’est pas toujours tendre avec les principaux opérateurs de cette filière.

Cette expertise est, chaque année, confortée par les auditions de l’ASN, de l’Agence nationale pour la gestion des déchets radioactifs (ANDRA) et de la commission nationale chargée d’évaluer les recherches sur l’aval du cycle.

Enfin, l’Office a aussi un acquis sur l’estimation des dangers présentés par les risques naturels à la suite des études effectuées par nos collègues Christian Kert et, plus récemment, sur les risques de tsunami par Roland Courteau.

Cette expérience devrait nous faire gagner un temps précieux.

M. Christian Bataille. - La première partie de notre étude, consacrée à la sécurité des installations nucléaires, comportera six auditions publiques en mai et juin.

La première se déroulera le jeudi 5 mai prochain matin, à l’Assemblée nationale. Elle nous permettra de faire le point sur l’avancement des réflexions sur la gestion de crise après un accident nucléaire. Nous élargirons au niveau international le champ de cette évaluation de l’état de préparation face à une crise nucléaire.

Cette première audition publique à Paris sera suivie, le vendredi 13 mai, par une deuxième audition publique, en région, après une visite de la centrale de Gravelines prévue le jeudi 12 mai. Nous écouterez, à cette occasion, les responsables locaux, qui seraient chargés de gérer, sur le terrain, une éventuelle crise nucléaire, ce qui conduira à élaborer un scénario concret.

La troisième audition, sur les risques naturels majeurs en France, est prévue le jeudi 19 mai matin au Sénat. Elle nous permettra de mesurer l’ampleur des risques naturels auxquels sont exposées nos installations nucléaires, notamment par comparaison avec la situation au Japon, où nous pourrions nous rendre au cours de la seconde phase de notre travail.

Nous entendrons donc des scientifiques spécialistes de phénomènes naturels tels que les tremblements de terre, les tsunamis ou encore les tempêtes, voir même de cataclysmes, tels que les chutes d’astéroïdes. Il faudra aller des risques historiquement connus aux risques théoriques de plus grande ampleur.

Notre cinquième audition aura lieu le 31 mai après-midi au Sénat. Elle nous permettra de prendre connaissance du fonctionnement de notre organisation en matière de sûreté nucléaire, mais aussi de la comparer à celle mise en place dans d’autres pays. Elle sera aussi l’occasion de présenter les cahiers des charges définis au niveau national et européen pour l’audit des centrales nucléaires. Elle nous permettra également de nous interroger sur les conséquences, en matière de sûreté, du statut des exploitants et de leurs personnels ou encore sur le niveau approprié, national, européen ou international, pour le contrôle des installations nucléaires.

Notre dernière audition de la première phase portera, le jeudi 16 juin après-midi, sur la transparence en matière de sûreté nucléaire. Il nous a semblé essentiel de conclure cette série d’auditions par cet aspect fondamental. La sécurité des installations nucléaires ne peut en effet s’envisager en l’absence d’un effort permanent de transparence et d’information, en direction du public et de toute la société civile, notamment les associations.

L’objectif de ces travaux est de pouvoir présenter devant la mission un rapport d’étape, centré sur la sécurité nucléaire, le 30 juin.

Pour l’ensemble des auditions je souhaite une ouverture exceptionnelle aux moyens d’information afin que le public puisse être directement informé.

Par ailleurs, malgré la campagne électorale qui contraindra les sénateurs, j’estime qu’on ne peut s’interrompre de manière trop prolongée entre les deux phases de notre étude. Je souhaite que l’on enchaîne rapidement avec la deuxième phase, consacrée à l’avenir de la filière nucléaire, au cours de laquelle il sera nécessaire d’entendre nos grands voisins sur leurs propositions alternatives à l’énergie nucléaire.
M. le président Claude Birraux (au nom de M. Bruno Sido).

L’échéance de notre rapport d’étape est assez proche. Cela nous force à limiter nos déplacements.

Nous avons envisagé d’aller sans tarder au Japon, mais le fait que la situation n’y est pas maîtrisée et, surtout, les remarques du Président de l’ASN, selon qui il n’est guère possible d’y recueillir des informations complètes et sereines avant la fin du mois de juin, nous ont conduit à écarter cette hypothèse.

Au surplus, il nous a semblé qu’il était essentiel que nos déplacements en France nous permettent d’appréhender l’ensemble de la filière nucléaire. Nous devons prendre en compte les différentes situations des centrales nucléaires françaises, qu’il s’agisse de leur exposition aux risques ou de leur ancienneté. Enfin, nous ne devons pas nous limiter aux centrales, mais visiter aussi les autres installations de la filière nucléaire.

Nous vous proposons donc six visites d’ici la fin juin :

- la première, assez courte, aurait lieu le lundi 9 mai à Nogent-sur-Seine.

- la deuxième est prévue à Gravelines, le jeudi 12 mai et serait complétée, le vendredi 13 mai matin, à Lille, par une audition publique de l’ensemble des services locaux appelés à intervenir en cas de crise, et plus spécifiquement à prendre des mesures pour protéger la population. Le choix de Gravelines résulte du fait qu’il s’agit du site le plus important, qu’il est situé en bord de mer et qu’il y a une population importante à proximité ;

- la troisième est prévue le jeudi 19 mai sur les sites de Flamanville et de La Hague, et comprendrait une visite des centrales en activité et de l’EPR en construction, ainsi que la visite des installations de retraitement de combustible d’Areva ;

- la quatrième est prévue le vendredi 27 mai sur le site du Tricastin, avec une visite de la centrale nucléaire et de l’usine Eurodif Georges Besse, site qui présente, en outre, un risque sismique ;

- la cinquième aurait lieu à Fessenheim, qui est une des plus anciennes installations et qui présente un risque sismique, peut-être plus caractérisé que le Tricastin ;
une sixième visite serait organisée au Creusot et à Chalon-sur-Saône, pour voir les usines de fabrication de cuves d’Areva.

M. le président Claude Birraux. - Je suggérerais de visiter aussi l’une des centrales pointées du doigt par l’ASN dans son dernier rapport annuel, par exemple celle de Belleville. La visite de la centrale de Belleville pourrait être proposée comme alternative à celle de Fessenheim.

M. Jean-Marie Bockel. – Il pourrait nous être reproché de ne pas être allé à Fessenheim, car cette centrale est aujourd’hui dans la position symbolique de la centrale qu’il faudrait fermer à tout prix.

Mme Marie-Christine Blandin. – Cette étude concernera l’ensemble des sites nucléaires, et pas seulement les centrales. Je rappelle que Superphénix dispose de deux piscines, l’une avec du combustible ayant déjà servi et l’autre avec un cœur neuf : c’est un site très sensible qu’il faudrait pouvoir étudier dans le cadre de ce travail.

M. Ladislas Poniatowski. – Il y a 126 installations nucléaires de base ; le fait d’avoir renforcé l’Office ne nous permet-il pas de visiter beaucoup plus de sites que ceux envisagés ? Je suggère un programme beaucoup plus complet, avec de petits déplacements à trois personnes, ce qui permettrait de visiter l’ensemble des 19 centrales françaises.

M. Christian Bataille. – Je suis prêt, en ma qualité de rapporteur, à accompagner ces visites supplémentaires, mais il nous reste peu de jours utiles d’ici la mi-juin pour les effectuer.

M. Yves Cochet. – Le champ de notre étude ne doit pas être restreint. Le type de risque pris en compte au cours de la première phase me semble trop limité. Il faut évidemment envisager les risques naturels majeurs, mais aussi d’autres types de risques liés au terrorisme. Par ailleurs, le choix de la méthode d’analyse des risques est épistémologique et politique.

M. le président Claude Birraux. – Il est bien prévu, lors de l’audition du 24 mai, de mesurer les conséquences potentielles de tous les types de sinistres quelles que soient leurs causes, qu’ils soient d’origine nature ou humaine.

M. Christian Bataille. – Je confirme que notre réflexion prend en compte une approche de type fonctionnel afin justement d’en couvrir tous les aspects.
M. Yves Cochet. – La question des axiomes de départ, c’est-à-dire des méthodes d’analyse des risques, est aussi essentielle. On peut par exemple calculer l’espérance mathématique du risque, en multipliant la probabilité du dommage par son ampleur attendue. Lorsque la probabilité est très faible, mais le dommage potentiellement très important, cette multiplication est instable et le résultat peut varier de plusieurs ordres de grandeur.

M. le président Claude Birraux. – Cette question pourra être abordée lors de l’audition du 19 mai sur les risques majeurs.

M. Ladislas Poniatowski.- J’aurais souhaité que la mission puisse dire, en fin de parcours, que l’ensemble des centrales françaises ont été visitées. Cet objectif pourrait être atteint si chacun d’entre nous se rend dans les centrales de sa région.

M. Claude Birraux. - Certes, mais il faut qu’un administrateur puisse accompagner chacune de ces missions, ce qui implique l’obtention de moyens supplémentaires.

M. le président Claude Birraux. - L’exhaustivité, c’est la commande du Gouvernement à l’ASN. Nous ne sommes pas tenus d’effectuer des « inspections » mais d’élaborer un rapport d’information à partir de ce que nous aurons relevé sur des aspects significatifs.

M. Didier Guillaume, sénateur. – J’approuve la proposition de M. Ladislas Poniatowski. Par exemple, à la suite de la visite de la centrale du Tricastin, il serait souhaitable de visiter celle de Cruas ainsi que l’usine FBFC de fabrication de combustibles nucléaires à Romans.

Par ailleurs, il faut que nous examinions la question du cumul des risques. Il faut que nous travaillions sur des modèles intégrant ces cumuls.

Enfin, il me paraît impossible de ne pas évoquer le terrorisme.

M. Christian Bataille. – Les visites de sites français sont susceptibles de se poursuivre au cours de la deuxième phase.

M. le président Claude Birraux (au nom de M. Bruno Sido). - J’ai conscience que le programme pourrait paraître incomplet à certains d’entre nous.

Mais j’insiste sur le fait qu’il ne s’agit que d’un rapport d’étape sur la sécurité, qui pourra, à partir de l’automne, être complété par d’autres visites, dont les enseignements nourriront le rapport définitif.

Lors de la seconde partie nos travaux, et plus spécifiquement à l’occasion de l’étude du volet consacré à l’avenir de la filière, nous serons confrontés à une triple obligation :

– examiner les implications de chacune des alternatives à la filière électronucléaire, en faisant apparaître le bilan écologique et économique de chacune d’entre elles ;

– expertiser l’état de la recherche dans ce domaine ;

– et étudier les possibilités de développement de celle-ci en France et à l’étranger.

Là encore, le temps nous sera mesuré. Nous devons, au surplus, prendre en compte les contraintes découlant du renouvellement de la moitié du Sénat en septembre.

Mais, nous croyons indispensable :

– d’aller, dès septembre, dans un ou deux pays européens et, en particulier, en Allemagne dont les implications du schéma de sortie du nucléaire doivent être analysées y compris à l’aune des importations grandissantes d’électricité nucléaire de ce pays, et peut-être en Finlande, qui en est presque le contrexemple ;

– d’étudier le modèle américain, dont le bouquet énergétique, complexe et évolutif, repose sur le plus grand parc nucléaire du monde avec des centrales dont la durée de vie a été prolongée de 40 à 60 ans, mais aussi sur une sur-utilisation des combustibles fossiles y compris les gaz de schistes, dont l’exploitation est controversée, ainsi que sur une ouverture de plus en plus forte aux énergies renouvelables, assise sur une recherche très active ;

– peut-être d’aller aussi dans un des grands pays émergents qui développent des programmes d’installation de centrales (Inde ou Chine),
mais également en Corée pour expertiser la validité du développement de centrales à moindre coût, mais, peut-être sous-sécurisées.

Pour la première partie de nos travaux, nous souhaitons que la visite de Gravelines soit effectuée par l’ensemble des membres de notre mission et que l’audition publique à Lille soit une réunion de l’Office élargie, avec la participation de tous ses membres, ouverte à la presse, et faisant l’objet d’un compte rendu exhaustif.

Pour les autres déplacements, il nous semble souhaitable de prévoir :

– un accès aussi large que possible aux cinq autres visites prévues au printemps et à celles qui pourraient être proposées à l’automne sur les sites français ;

– une participation plus mesurée aux déplacements à l’étranger, dans la limite des crédits que les questeurs des deux assemblées ainsi que les présidents de commissions accepteront d’attribuer à la mission.

Dans les deux cas, nous nous efforcerons d’équilibrer les participations entre les députés et les sénateurs.

M. Christian Bataille. - Il me semble souhaitable que cette seconde phase se termine avant la fin de l’année 2011, pour que nous ne tombions dans le tumulte de la campagne électorale de 2012.

M. Christian Bataille. – On pourrait faire l’économie du déplacement en Chine si le rapport Roussely était rendu public et que nous puissions connaître le projet de réacteur franco-chinois. Mais il est vraisemblable que les autorités chinoises ne nous donneront pas davantage d’informations.

Mme Marie-Christine Blandin. – Sur le fond, au cours de cette seconde phase, on parle des alternatives au nucléaire, mais on n’évoque pas l’efficience et la sobriété énergétiques. Je souhaite que les scénarios qui mettent en scène les bouquets énergétiques abordent ces questions.
M. Christian Bataille. – Il sera tout à fait possible d’intégrer ces problématiques au rapport, d’autant qu’avec Claude Birraux nous avons récemment consacré une étude au bâtiment de basse consommation.

Mme Catherine Procaccia. – Je suis défavorable à ce que des parlementaires se déplacent seuls pour des auditions car cela est contraire à la méthode qui fonde la solidité des rapports de l’Office.

M. Christian Bataille. – Je pense qu’il faut qu’un rapporteur soit toujours présent lors de ces déplacements, et je suis prêt pour cette raison à m’associer à d’éventuelles visites supplémentaires.

La mission a adopté alors l’étude de faisabilité du rapport consacré à la sécurité nucléaire, la place de la filière et son avenir.

J’ai annoncé qu’en dehors des spécialistes de l’ASN et de l’IRSN, seuls des experts sans lien direct avec la filière nucléaire seront retenus, afin de garantir l’indépendance de notre conseil scientifique vis-à-vis des industriels. De la même façon, j’ai demandé que chacun des participants aux auditions publiques communique par avance un curriculum vitae détaillé.

Mme Marie-Christine Blandin. – Toutes les expertises scientifiques sont confrontées au même dilemme : si l’on veut des gens compétents, on fait appel à des gens « de la partie ». Toutefois, en nous reposant sur l’ASN et sur l’IRSN, nous nous reposons sur ceux qui nous disent qu’ils garantissent la sécurité. Pour la diversité du regard du Parlement, on ne peut pas s’appuyer uniquement sur eux. Je propose de faire appel à des experts du groupement de chercheurs « Global chance », dont le sérieux est reconnu, même par le Gouvernement qui a fait appel à eux par le
passé, et plus précisément je vous propose d’intégrer au conseil scientifique M. Yves Marignac.

M. Christian Bataille.- C’est un scientifique reconnu que l’on peut effectivement retenir.

M. Yves Cochet. – Je propose également de faire appel à Mme Monique Sené, du Groupement scientifique d’information sur l’énergie nucléaire (GSIEN).

M. Christian Bataille. – Cette proposition est également tout à fait acceptable.

M. le président Claude Birraux. – La composition ainsi modifiée du conseil scientifique est approuvée.

Je vous remercie d’avoir participé au lancement de cette mission parlementaire. Je souhaite que la première phase nous permette de faire la lumière, en toute indépendance et en toute transparence, sur le niveau de sécurité de nos installations nucléaires avant d’aborder la question de l’avenir de la filière.
AUDITION DES MEMBRES DU COMITÉ D'EXPERTS
SUR LA SÛRETÉ NUCLÉAIRE

MARDI 28 JUIN 2011

Présidence de M. Claude Birraux, président de l’Office

M. Claude Birraux, député, président de l’Office parlementaire
d’évaluation des choix scientifiques et technologiques (OPECST). La
première partie de la mission parlementaire sur la sécurité nucléaire, la place
de la filière et son avenir touche à sa fin. Même si les rapporteurs –
M. Bruno Sido, ici présent, et M. Christian Bataille, qui est empêché
aujourd’hui – le peaufinent encore, le rapport d’étape sur la sécurité
nucléaire sera présenté à la mission puis à la presse le jeudi 30 juin. Avant
son examen, j’ai souhaité recueillir votre avis sur la manière dont nous avons
travaillé au cours des trois derniers mois et sur l’organisation de la deuxième
partie de la mission, qui porte sur l’avenir de la filière nucléaire.

M. Bruno Sido, sénateur, premier vice-président, rapporteur.
Nous vous avions réunis lors du lancement de la première partie de la
mission, ce qui nous a aidés à en définir rapidement le cadre. Vous nous avez
apporté un appui essentiel pour préparer les auditions ouvertes à la presse.
Lors de leur déroulement, vous nous avez éclairés par vos questions.
Certains d’entre vous ont même accepté d’intervenir sur certains sujets. Nous
vous remercions pour votre aide.

Quels enseignements avez-vous retiré des auditions ? Pensez-vous
que cette forme d’échange – en partie imposée par la saisine – soit la plus
adaptée ? Souhaitez-vous mettre certaines informations en exergue ?

Pour préparer la seconde partie de notre étude, un déplacement est
prévu la semaine prochaine en Allemagne. Il nous permettra de prendre
connaissance, après les récentes décisions de la Chancelière Angela Merkel,
des orientations de la politique énergétique de notre principal partenaire
economique. M. Bataille rencontrera des responsables politiques et des
industriels tant allemands que français, et visitera des centrales nucléaires et des centrales au gaz et au charbon. D’autres pays que l’Allemagne vous semblent-ils particulièrement représentatifs par leur politique énergétique ou par la manière dont ils développent certaines énergies ? Enfin, quels thèmes devrions-nous aborder lors des auditions et quels doivent être, selon vous, les axes majeurs de la mission ?

M. Hubert Flocard, chercheur à l’Institut international de l’énergie nucléaire. La Grande-Bretagne, qui vient de publier un rapport sur le sujet, est un des pays qui pourrait nous fournir le plus d’informations sur l’impact des énergies intermittentes, qui se développent offshore. Par ailleurs, il serait intéressant de savoir pourquoi elle a renoncé à construire un barrage dans la baie de la Severn pour exploiter l’énergie marémotrice.

M. le président Claude Birraux. Un rapport plus ancien avait étudié la possibilité d’installer sur le plateau continental de la Manche, qui est peu profond, des atolls de stockage. Ils pourraient fournir des réserves, en cas de besoin, pour alimenter la Bretagne, qui ne produit que 5% de son électricité.

M. Philippe Saint-Raymond, vice-président du groupe d’experts pour les réacteurs nucléaires de l’Autorité de sûreté nucléaire. J’interviendrai sur la première partie de la mission, la seconde ne me concernant qu’en tant que citoyen. Les exploitants nous ont convaincus que leurs installations sont suffisamment bien conçues et réalisées pour résister aux risques envisagés lors de la conception. Mais que se passe-t-il quand une situation échappe aux prévisions ?

Dix ans avant l’accident de Fukushima, le risque sismique et le risque d’inondation, qui ne se posent pas dans les mêmes termes en France et au Japon, étaient déjà connus, et leur impact sur les installations nucléaires a été réévalué récemment. La situation dans laquelle s’est retrouvé le Japon n’avait cependant pas été prévue, signe qu’il faut raisonner non à partir d’un risque ou d’un scénario pouvant mener à telle ou telle situation, mais à partir des situations elles-mêmes, comme EDF a tenté de le faire après l’accident de Three Mile Island. Si des procédures hors dimensionnement avaient été prévues pour pallier la perte de la source froide et des alimentations électriques, leur perte conjointe, qui s’est produite à Fukushima, n’avait pas été envisagée.
Par ailleurs, EDF a fait porter ses efforts sur la protection du cœur du réacteur pendant la réaction. Cependant, au moment de l’arrêt, quand le combustible est entreposé en piscine, il est moins défendu, même s’il est aussi moins dangereux. La piscine n’est-elle pas le point faible en cas de situations extrêmes ?

M. Michel Schwarz, directeur scientifique de l’Institut de radioprotection et de sûreté nucléaire (IRSN). Cette conclusion rejoint celle du groupe de travail « Solidarité Japon » de l’Académie des sciences, qui a insisté sur le fait que les piscines peuvent recevoir des combustibles équivalant à celui que contient le cœur de plusieurs réacteurs, et sur la nécessité de prévoir la combinaison d’événements extrêmes. Il a aussi pointé la nécessité d’une recherche publique, extérieure à celle que mènent les exploitants, et consacrée à la prévention ou à la limitation des accidents.

M. Robert Guillaumont, professeur honoraire à l’université Paris-Sud 11, membre de l’Académie des sciences. L’accident de Fukushima, d’une nature et d’une durée inédites, a révélé les risques que crée le combustible à chaque étape du cycle, notamment après sa sortie du réacteur, quand il est en piscine. La recherche se poursuit en tout temps, mais chaque accident la réactive. Il faut à présent la maintenir constamment à un niveau élevé, en coordonnant les travaux effectués sur la sûreté.

M. le président Claude Birraux. « Se méfier du paradoxe de la tranquillité » : tel était le sous-titre du rapport sur les déchets nucléaires que nous avons publié en janvier. La formule est toujours d’actualité.

Mme Monique Sené, présidente du groupement des scientifiques pour l’information sur l’énergie nucléaire. En tant que vice-présidente de l’Association nationale des commissions et comités locaux d’information (ANCCLI), je rappelle que les commissions locales se sont aussitôt emparées du problème. Des groupes de travail ont été créés, notamment à Gravelines, Fessenheim, Flamanville, Cadarache et Tricastin. Ils désirent pouvoir mener une expertise pluraliste, à côté d’EDF ou d’Areva, en recourant par exemple à des universitaires. Pour autant, ils ne souhaitent pas se passer de l’Institut de radioprotection et de sûreté nucléaire (IRSN), même si cet expert public ne peut s’exprimer sur les dossiers qu’il instruit.
Les visites décennales ont permis de pointer, à Fessenheim, l’insuffisance du radier en cas d’accident ou le problème posé par certaines enceintes de confinement un peu fuyardes et dont les fuites pourraient avoir des conséquences sur l’environnement et la santé. Pour les comités locaux d’information (CLI), l’important est le post-accidentel. Or, jusqu’à présent, les scénarios envisagés portent sur des périodes courtes, d’un ou deux jours ; mais, à Fukushima, l’ampleur des destructions a gravement compliqué l’évacuation et l’on a vu que les problèmes demeurent irrésolus pendant des mois. Il faut à présent revoir les choses sous l’angle de la durée.

Le collège syndical est très préoccupé par la sécurité des travailleurs. En cas d’accident, y aura-t-il suffisamment de robots ? Les comités d’hygiène, de sécurité et des conditions de travail (CHSCT) souhaitent en parler avec les commissions locales.

Les CLI et le Haut Comité pour la transparence et l’information sur la sécurité nucléaire ont réfléchi à ce qui se passerait en cas de séisme et d’événement extrême. En cas de problème, j’avais imaginé, par exemple, que les eaux du Rhône seraient suffisantes. Or, depuis près de soixante ans, elles n’ont jamais été aussi basses et, en cas de problème, le besoin en eau du secteur nucléaire entrerait en compétition avec celui de l’agriculture. La situation est donc moins simple qu’on pourrait le croire.

Enfin, j’espère que les commissions locales, qui ont accompli un travail considérable, recevront un financement qui leur permettra d’être plus efficaces.

M. le président Claude Birraux. À Fessenheim, la commission locale d’information, qui avait demandé à être impliquée depuis la première visite décennale, comptait alors dans son comité de pilotage M. Jochen Benecke et Mgr Luc Gillon.

Mme Monique Sené. Ainsi que deux physiciens du CNRS : Patrick Petitjean et Raymond Sené, qui avaient été désignés par le prix Nobel Jack Steinberger, du Conseil européen pour la recherche nucléaire (CERN). Celui-ci avait décliné l’invitation à siéger dans le comité de pilotage parce qu’il ne connaissait pas les centrales françaises.
Ses membres se sont heurtés à toutes sortes de difficultés. On les a fait attendre toute une journée avant de les admettre dans le bâtiment du réacteur, parce qu’il leur manquait le code d’accès. Lors de cette visite, M. Gillon s’est rendu compte qu’une sortie réservée en cas d’accident était impraticable, la clef étant cassée dans la serrure…

M. André Zaoui, directeur de recherche émérite au CNRS, correspondant de l’Académie des sciences. Pendant la seconde partie de ses travaux, je suggère que la mission continue de traiter du nucléaire, en particulier du nucléaire du futur – les réacteurs de la quatrième génération - et de la gestion des déchets, et non pas seulement des autres formes d’énergie. D’autre part, puisqu’elle sera amenée à comparer diverses énergies, il me semble nécessaire qu’elle soit informée sur l’évaluation des coûts.

M. Sylvain David, chercheur à l’institut de physique nucléaire d’Orsay, CNRS. Outre cela, pour le nucléaire, le retour sur investissement est si long que pour construire un réacteur par an pendant vingt ans, afin de remplacer le parc, il faudra imaginer des modes de financement innovants.

M. Robert Guillaumont. On ne fera pas l’économie d’une étude sur les perspectives d’avenir des réacteurs de la génération IV. La mission, qui a plaidé pour la transparence dans la première partie de ses travaux, devra appliquer ce principe dans la seconde partie de son étude. Elle devra dire que la montée en puissance d’un parc de réacteurs à neutrons rapides de quatrième génération, qui demandera cent ans, engage l’avenir pour au moins deux siècles. Elle devra dire aussi que cet engagement implique un changement de filière et la construction d’installations nucléaires très différentes de celles que nous connaissons.

L’accident de Fukushima n’arrêtera pas le nucléaire de troisième génération. Cependant, le choix de la quatrième est difficile à prendre non sur le plan technique, pour lequel on peut faire confiance aux physiciens, mais sur le plan social et politique. Si l’on s’apprête à prendre une option nucléaire qui vaudra pour plusieurs siècles, il faut jouer la transparence et organiser une audition à ce sujet pour que tout le monde soit éclairé.
M. Sylvain David. La loi de 2006 prévoit un rendez-vous en 2012 pour décider de l’avenir de la quatrième génération et de la construction éventuelle d’un prototype de réacteur nucléaire à neutrons rapides au sodium, nommé « Astrid ». La mission a-t-elle pour rôle d’émeter un avis préalable à cette décision ?

M. le président Claude Birraux. Dès l’instant où l’on parle de l’avenir de la filière, il faut l’envisager dans son ensemble.

M. Hubert Flocard. L’évaluation de la sûreté est affaire de professionnels, même s’il peut être bon d’y associer des universitaires, le public, et, pourquoi pas, un évêque…

M. le président Claude Birraux. Mgr Gillon, formé à l’Université de Louvain, était docteur en sciences physiques et spécialisé en énergie nucléaire.

M. Hubert Flocard. L’Autorité de sûreté nucléaire (ASN), qui joue un rôle national, puise toujours dans le même vivier de chercheurs. Il est essentiel qu’elle fasse réaliser des évaluations de sûreté par des compétences internationales externes, de même qualité que l’Institut de radioprotection et de sûreté nucléaire (IRSN).

M. le président Claude Birraux. L’ASN a anticipé votre demande, puisque ses groupes permanents comprennent des experts étrangers. En outre, elle ne fait pas systématiquement appel à l’IRSN, puisqu’elle sollicite aussi l’Association Vincotte Nucléaire en Belgique, ou le Nuclear Installations Inspectorate britannique. Les opinions croisées sont intéressantes.

M. Hubert Flocard. Quand j’ai posé la question aux représentants de l’ASN, ils m’ont indiqué faire très peu appel à des compétences étrangères.

M. Philippe Saint-Raymond. Pour peu qu’ils parlent français, les experts européens qui siègent dans les groupes permanents apportent une vision enrichissante, mais l’essentiel de l’expertise repose sur un rapport de
l’IRSN. Il est rare que des organismes techniques étrangers contribuent à sa rédaction : il est plus simple de travailler avec des experts qui sont sur place et qui connaissent les installations, et de ne sous-traiter à des organismes étrangers que des parties distinctes de l’expertise.

M. Michel Schwarz. Pour les programmes Cabri et Phébus, il a été fait appel à des experts belges et à des experts allemands de la Société pour la sûreté des installations et des réacteurs nucléaires (*Gesellschaft für Anlagen- und Reaktorsicherheit*). Cela dit, il n’est pas facile de sous-traiter à un organisme technique de sûreté étranger l’instruction d’un dossier, qui demande une excellente connaissance de l’installation, de l’historique et de la langue française.

Pour couvrir le volet économique de la mission, il sera intéressant de connaître le coût d’un accident nucléaire. L’IRSN pourra nous éclairer sur ce point.

Enfin, comme l’a relevé l’Académie des sciences, nous devons réfléchir en termes d’acceptabilité. Les experts que nous sommes doivent expliciter les enjeux et les choix tant dans le domaine économique et technique que dans celui de la sûreté.

M. Jean Gauvain, Agence de l’OCDE pour l’énergie nucléaire. Qu’une analyse soit formulée par des spécialistes étrangers est une chose, mais il faut aussi tenir compte des expériences étrangères, et de deux manières. La première est de prendre en considération les meilleures pratiques, et on ne peut qu’inviter la France à poursuivre son excellente participation à l’élaboration des normes de sûreté internationales, pour les tirer vers le haut. La seconde consiste, comme cela se fait dans le cadre de l’OCDE, à mettre en commun des meilleures connaissances internationales, en encourageant les travaux sur certains aspects encore insuffisamment creusés, tel le risque hydrogène, qu’à ce jour seuls certains pays prennent suffisamment au sérieux pour installer des dispositifs de mitigation.

M. Daniel Paul, député. Les problèmes soulevés par la sous-traitance ont été à peine évoqués ; pourtant, à l’évidence, ils nuisent à l’acceptabilité. À cette question mise en avant par les organisations syndicales, on ne pourra s’abstenir d’apporter une réponse, laquelle n’est pas
seulement technique ; il s’agit plus largement des modes de travail dans les centrales nucléaires. Chacun conviendra que l’on ne peut y travailler comme on travaille dans une fabrique de meubles.

Mme Monique Sené. Après discussion entre le Haut Comité pour la transparence et l’information sur la sécurité nucléaire, les CLI et l’ASN, il a été décidé d’intégrer les questions d’organisation du travail dans l’audit. Il faut en effet essayer de comprendre comment on en est arrivé à la situation actuelle, telle que, dans certaines centrales sont à l’œuvre des salariés insuffisamment formés et qui ne savent pas exactement à quoi sert ce qu’ils font, ce qui pose de graves problèmes.

L’ANCCLI travaille avec l’ASN, EDF, Areva, sans prétendre avoir la même expertise que l’IRSN. Les experts des CLI ont pour rôle de poser des questions sur ce qui se passe sur un site et d’apporter un éclairage différent. Un regard extérieur permet des interrogations auxquelles on ne pense pas obligatoirement en interne ; d’ailleurs, lors de la visite décennale de la centrale de Fessenheim, le rapport des experts de la commission locale a été pris en compte par l’ASN. Les commissions locales peuvent aider les syndicats à faire progresser leurs demandes de radioprotection et de sûreté, qui les ont conduits à appeler l’attention sur la sous-traitance.

Mme Marie-Christine Blandin, sénatrice. Pour mettre en perspective tous les facteurs de choix, il faut, cela a été dit, évaluer les coûts induits par une éventuelle catastrophe nucléaire. Dans ce cadre, il convient de prendre en compte, outre les morts immédiate, les conséquences biologiques à long terme d’un tel événement, en tirant les enseignements de la catastrophe de Fukushima. Il ne faut donc pas négliger le coût de la contamination de centaines d’hectares rendus inutilisables pendant des décennies pour toute activité humaine, ni ignorer le fait qu’Areva a échoué à installer un cycle de refroidissement des circuits de la centrale de Fukushima sinistrée, ce qui a contraint à utiliser de l’eau fraîche à présent contaminée et dont le rejet dans l’océan menace l’ensemble de la chaîne alimentaire, où les nucléides se concentrent – au lieu que, comme l’a dit M. Repussard, ils se dissolvent. Tout cela demande à être quantifié.

M. Jean Gauvain. Il y a deux ans, l’agence de l’OCDE pour l’énergie nucléaire a réalisé une étude consacrée au contrôle de la sous-traitance. L’équilibre est difficile à trouver entre optimisation des coûts et
optimisation de la qualité ; les deux approches sont parfois conflictuelles. On l’a constaté en Finlande, où des sous-traitances en cascade ont provoqué des incidents de chantier et une grande difficulté à maintenir le contrôle de la qualité. Les décideurs se concentrent généralement sur les coûts ; si la qualité n’entre pas dans les paramètres à partir desquels la décision se forme, on peut en venir à de sérieuses difficultés.

M. Hubert Flocard. Ayant eu à connaître, dans deux bassins d’emplois, du programme des licences et des maîtrises professionnelles destinées aux étudiants appelés à travailler dans l’industrie nucléaire, j’ai constaté que, de plus en plus souvent, ces formations se font en association avec des entreprises sous-traitantes. Tout le processus de sûreté, toutes les règles d’habilitation, sont définis en commun, avec les exploitants. La sous-traitance ne disparaîtra pas complètement, mais la problématique de sûreté est prise en compte de manière de plus en plus sérieuse dans les formations des ingénieurs et les techniciens supérieurs qui travailleront dans les entreprises considérées.

M. le président Claude Birraux. En principe, toute personne intervenant dans une centrale nucléaire doit être titulaire d’une habilitation l’autorisant à travailler sur des installations émettant des rayonnements ionisants ; si l’on en croit ce qui nous a été dit, les membres du personnel des entreprises sous-traitantes viennent se former à l’ensemble des opérations qu’ils auront à conduire, dans les conditions réelles, sur le chantier école du Tricastin, où ils apprennent les procédures d’habillage, de déshabillage, de contrôle et de manipulation.

M. Philippe Saint-Raymond. Il me paraît, comme à M. Gauvain, que le problème posé par la sous-traitance est bien plus large : c’est celui, général, de la qualité des constructions.

M. Bruno Sido, sénateur, premier vice-président, rapporteur. Sans nier toute l’importance de la question, soulignée par les syndicats, je ne pense pas que les difficultés que pose actuellement la sous-traitance déterminent l’avenir de la filière nucléaire. J’aimerais que l’on revienne aux réacteurs nucléaires de génération IV, dont la mise en service ne peut être que lointaine. M. Bernard Bigot, administrateur général du CEA, a souligné devant nous que les réacteurs de quatrième génération ne peuvent
fonctionner qu’avec du plutonium. La question se pose donc de l’articulation dans le temps des réacteurs de générations II, III et IV.

M. Sylvain David. Passer, en France, aux réacteurs de génération IV d’ici la fin du siècle suppose d’employer à cette fin tout le plutonium civil disponible. C’est d’ailleurs parce qu’il contient de ce précieux métal que le combustible MOX usé ne peut être catégorisé comme déchet. Mais si l’accident de Fukushima a pour conséquence que les réacteurs de génération IV ne se déploient pas, le plutonium deviendra un déchet, de tous le plus toxique, et le principal en risque de prolifération. Par ailleurs, en matière nucléaire, les temps sont très longs et le choix de construire en 2012 un prototype de réacteur de type Astrid engagera le pays pour des décennies. Que l’échéance des réacteurs de génération IV soit très lointaine, la nouvelle filière industrielle démarrant en 2040, ne peut dispenser d’une décision.

Mme Monique Sené. La définition de la politique énergétique que l’on souhaite mettre en œuvre participe de la transparence. En 1977 déjà, un rapport parlementaire soulignait que l’on était en train de passer au « tout nucléaire » en oubliant qu’il fallait aussi développer les énergies renouvelables. Malheureusement, les auteurs de ce rapport n’ont pas été entendus.

Il faut être réaliste. On peut certes fixer 2030 pour échéance - ce que l’on fait déjà pour l’inventaire national des déchets - mais il paraît bien difficile de s’en tenir au parc actuel en « oubliant » qu’il y aura un autre parc. Le site d’enfouissement des déchets de Bure sera plein : pourra-t-on agrandir les galeries ? Ce qui a été promis aux riverains, c’est que l’on s’en tiendrait à l’inventaire national de 2030 ; jamais il n’a été dit qu’il y aurait peut-être des enfouissements ultérieurs et même dans la perspective de l’inventaire de 2030, on fermerait le site en 2120. Il faut être conscient que l’engagement
dans cette filière pèsera lourd sur le programme énergétique du pays ; il faut donc se demander s’il ne faut pas une ouverture à d’autres énergies que la seule énergie nucléaire. Cela coûtera peut-être plus cher, mais le coût total pour la nation sera-t-il vraiment plus élevé ? Une discussion pluraliste est indispensable.

M. Robert Guillaumont. Dans l’hypothèse du retraitement du combustible MOX usé, le problème des déchets est en passe d’être résolu pour le parc actuel. Mais si l’on décide de ne pas s’engager dans la construction des réacteurs de quatrième génération, on change la nature des déchets, et les problèmes à résoudre ne seront pas exactement les mêmes. Or, c’est une question sur laquelle on est pour l’instant très discret.

M. Philippe Saint-Raymond. De même, la nature de la sûreté peut changer si l’on décide de sortir du nucléaire. Il est en effet beaucoup plus facile d’assurer une bonne sûreté dans un parc vivant que dans un parc en extinction ; nos amis allemands s’en rendront compte bientôt.

M. le président Claude Birraux. De fait, aucune contrainte de sûreté supplémentaire n’a été imposée aux industriels allemands dans l’accord d’extinction passé, à l’époque, avec le chancelier Schröder. Aucune étude n’a été conduite en Allemagne sur le vieillissement des centrales ; seul a été mis au point un programme informatique recensant les incidents intervenus au cours des vingt premières années de fonctionnement des réacteurs, et l’on porte là-bas une attention particulière aux incidents qui se sont produits avec la plus grande fréquence. Mais, si je puis me permettre cette comparaison, l’arthrose ne touche-t-elle pas plutôt les sujets âgés de plus de 50 ans ?

M. Philippe Tourtelier, député. Peut-on imaginer une alternative consistant à développer un minimum de réacteurs de quatrième génération pour retraiter le plutonium, dont il faudra bien faire quelque chose ?

M. Sylvain David. Les réacteurs de génération IV sont des réacteurs régénérateurs ; c’est pourquoi il faut absolument accumuler quelque 1 000 tonnes de plutonium en France si nous voulons disposer d’un parc de 60 gigawatts à l’équilibre. Mais si le problème de la ressource en uranium ne se pose pas, on peut très bien imaginer des réacteurs de génération IV
incinérateurs de plutonium. Dans ce cas, on aura un parc mixte, composé d’une part de réacteurs thermiques, d’autre part de réacteurs rapides destinés à brûler le plutonium et non à obtenir un équilibre par régénération. Dans cette configuration, on pourrait stabiliser à 200 ou 300 tonnes la quantité de plutonium nécessaire, soit le volume présent aujourd’hui dans le combustible MOX usé. Mais cette décision empêchera de développer des réacteurs régénérateurs à la ressource durable quand on en aura besoin, dans 50 ou 100 ans. C’est donc un choix qui engage aussi l’avenir du pays.

M. Jean Gauvain. Je reviens un instant sur la situation en Allemagne pour souligner qu’il est très difficile de maintenir des compétences et d’en attirer de nouvelles quand une échéance a été fixée pour l’arrêt d’une activité. Il faut garder cela en mémoire quand on considère l’avenir de la filière, car il ne peut y avoir de filière industrielle nucléaire sans que soient assurées les compétences technologiques bien sûr, mais aussi de sûreté.

M. le président Claude Birraux. Mesdames, messieurs, je vous remercie pour vos commentaires intéressants et pertinents.
ANNEXE 5 : DOCUMENTS
STRUCTURE DU BUDGET DE L'AUTORITÉ DE SURETÉ NUCLÉAIRE

<table>
<thead>
<tr>
<th>Mission</th>
<th>Responsable du programme</th>
<th>Programme</th>
<th>Action</th>
<th>Nature</th>
<th>LFI 2010 (MS)</th>
<th>LFI 2011 (MS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission internationale Ecologie, développement et aménagements durables</td>
<td>Élie PETIT</td>
<td>Programme III :</td>
<td>Action 9 :</td>
<td>Dépenses de personnel (y compris les salaires mis à disposition)</td>
<td>3986</td>
<td>3880</td>
</tr>
<tr>
<td>Mission internationale</td>
<td></td>
<td>Programme III :</td>
<td>Action 9 :</td>
<td>Dépenses de fonctionnement et d'investissement</td>
<td>1312</td>
<td>1310</td>
</tr>
<tr>
<td>Mission internationale</td>
<td>Jean-François MONTEILS</td>
<td>Programme III :</td>
<td>Action 1 :</td>
<td>Fonctionnement du Haut-comité pour la transparence et l'information sur la sécurité nucléaire (HCTISN)</td>
<td>0,15</td>
<td>0,15</td>
</tr>
<tr>
<td>Mission internationale Direction de l'action du gouvernement</td>
<td>Serge LASSIGUES</td>
<td>Programme III :</td>
<td>Action 1 :</td>
<td>Fonctionnement des 11 divisions territoriales de l'ASN</td>
<td>9,35</td>
<td>9,77 (9)</td>
</tr>
<tr>
<td>Mission internationale Gestion des finances publiques et des ressources humaines</td>
<td>Dominique LAMBOT</td>
<td>Programme III :</td>
<td>Action 4 :</td>
<td>Fonctionnement des services annexes de l'ASN (Paris et Fournes-sur-Mer)</td>
<td>6,77</td>
<td>6,77 (2)</td>
</tr>
<tr>
<td>Mission internationale Recherche et enseignement supérieur Régie BREHIER</td>
<td></td>
<td>Programme III :</td>
<td>Sub-action 1.2 (annexe 3) :</td>
<td>Activités d'appui technologique du FRSN, 1ère année</td>
<td>78,13</td>
<td>46,40</td>
</tr>
<tr>
<td>Mission internationale Recherche et enseignement supérieur Régie BREHIER</td>
<td></td>
<td>Programme III :</td>
<td>Sub-action 1.2 (annexe 3) :</td>
<td>Activités du FRSN, 2ème année</td>
<td>166,68</td>
<td>166,99</td>
</tr>
<tr>
<td>Mission internationale Recherche et enseignement supérieur Régie BREHIER</td>
<td></td>
<td>Programme III :</td>
<td>Sub-action 1.2 (annexe 3) :</td>
<td>Activités du FRSN, 3ème année</td>
<td>166,68</td>
<td>166,99</td>
</tr>
</tbody>
</table>

Contribution annuelle au profit de l'FRSN, initiée par l'article 96 de la loi n° 2010-1648 du 29 décembre 2010 de finances communautaire pour 2010

| Sous-total | 146,08 | 147,89 |
| Sub-total | 166,68 | 166,99 |

Total général | 313,73 | 344,88 |
DÉCISION N° 2011-DC--0204 DE L'AUTORITÉ DE SÛRETÉ NUCLÉAIRE
DU 4 JANVIER 2011
Décision n° 2011-DC-0204 de l'Autorité de sûreté nucléaire
du 4 janvier 2011 établissant la liste des installations
nucléaires de base au 31 décembre 2010

Le collège de l'Autorité de sûreté nucléaire,

Vu le décret n°2007-1557 du 2 novembre 2007 relatif aux installations nucléaires de base et au contrôle, en matière de sûreté nucléaire, du transport de substances radioactives, notamment son article 5 ;

Vu le règlement intérieur de l'Autorité de sûreté nucléaire en date du 19 octobre 2010, notamment son article 4,

Décide :

Article 1°

La liste des installations nucléaires de base, mise à jour au 31 décembre 2010, est annexée à la présente décision.

Article 2

La présente décision sera publiée au Bulletin officiel de l'Autorité de sûreté nucléaire.

Fait à Paris, le 4 janvier 2011.

Le collège de l'Autorité de sûreté nucléaire *,

Signé

André-Claude LACOSTE

Marie-Pierre COMETS Michel BOURGUIGNON

* Commissaires présents en séance
Annexe

tà la décision n° 2011-DC-0204 de l’Autorité de sûreté nucléaire
du 4 janvier 2011 établissant la liste des installations
nucléaires de base au 31 décembre 2010

Liste des installations nucléaires de base

(Article 5 du décret n°2007-1557 du 2 novembre 2007)

4 janvier 2011
<table>
<thead>
<tr>
<th>N° dans la liste</th>
<th>Dénomination et implantation de l'installation</th>
<th>Exploitant</th>
<th>Nature de l'installation</th>
<th>Déclarée le</th>
<th>Autorisée le</th>
<th>J.O. du</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>ULYSSE (Saclay) 91191 Gif-sur-Yvette Cedex</td>
<td>CEA</td>
<td>Réacteur</td>
<td>27.05.64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>MÉLUSINE 38041 Grenoble Cedex</td>
<td>CEA</td>
<td>Réacteur</td>
<td>27.05.64</td>
<td></td>
<td></td>
<td>Arrêté le 30.06.88 Modification en vue de son démantèlement et déchassement : décret du 08.01.04 (J.O. du 09.01.04)</td>
</tr>
<tr>
<td>20</td>
<td>SILOE 38041 Grenoble Cedex</td>
<td>CEA</td>
<td>Réacteur</td>
<td>27.05.64</td>
<td></td>
<td></td>
<td>Arrêté le 23.12.97 Décret de mise à l'arrêt définitif et de démantèlement du 26.01.05 (JO du 02.02.05) Décret n°2010-111 du 01.02.2010 (JO du 02.02.2010) prorogeant d'1 an le délai d'achèvement des opérations de mise à l'arrêt définitif et de démantèlement</td>
</tr>
<tr>
<td>22</td>
<td>INSTALLATION DE STOCKAGE PROVISOIRE (PEGASE) et INSTALLATION D'ENTREPOSAGE A SEC DE COMBUSTIBLES NUCLEAIRES IRRADIÉS (CASCAD) (Cadarache) 13115 Saint-Paul-De-Durance</td>
<td>CEA</td>
<td>Stockage de substances radioactives</td>
<td>27.05.64</td>
<td>17.04.80</td>
<td>27.04.80</td>
<td>Ex-reacteur arrêté le 19.12.75 Modification : décret du 04.09.89 (J.O. du 08.09.89) (création de Cascad)</td>
</tr>
<tr>
<td>24</td>
<td>CAERI ET SCARABÉE (Cadarache) 13115 Saint-Paul-De-Durance</td>
<td>CEA</td>
<td>Réacteurs</td>
<td>27.05.64</td>
<td></td>
<td></td>
<td>Modification : décret du 20.03.06 (J.O. du 21.03.06)</td>
</tr>
<tr>
<td>25</td>
<td>RAPSODIE/LAC (Cadarache) 13115 Saint-Paul-De-Durance</td>
<td>CEA</td>
<td>Réacteur</td>
<td>27.05.64</td>
<td></td>
<td></td>
<td>Arrêté le 15.04.83</td>
</tr>
<tr>
<td>29</td>
<td>USINE DE PRODUCTION DE RADIÔEMENTS ARTIFICIELS (Saclay) 91191 Gif-sur-Yvette Cedex</td>
<td>CEA</td>
<td>Transformation de substances radioactives</td>
<td>27.05.64</td>
<td></td>
<td></td>
<td>Changement d'exploitant : décret n°2009-1320 du 15.12.08 (JO du 17.12.08)</td>
</tr>
<tr>
<td>32</td>
<td>ATELIER DE TECHNOLOGIE DU PLUTONIUM (ATPh) (Cadarache) 13115 Saint-Paul-De-Durance</td>
<td>CEA</td>
<td>Fabrication ou transformation de substances radioactives</td>
<td>27.05.64</td>
<td></td>
<td></td>
<td>Décret n°2009-263 de mise à l'arrêt définitif et de démantèlement du 06.03.09 (JO du 08.03.09)</td>
</tr>
<tr>
<td>33</td>
<td>USINE DE TRAITEMENT DES COMBUSTIBLES IRRADIÉS (UP) (La Hague) 50107 Cherbourg</td>
<td>AREVA NC</td>
<td>Transformation de substances radioactives</td>
<td>27.05.64</td>
<td></td>
<td></td>
<td>Modification : décret du 17.01.74 (J.O. du 05.02.74) Changement d'exploitant : décret du</td>
</tr>
<tr>
<td>N° dans la liste</td>
<td>Dénomination et implantation de l'installation</td>
<td>Exploitant</td>
<td>Nature de l'installation</td>
<td>Déclarée le</td>
<td>Autorisée le</td>
<td>J.O. du</td>
<td>Observations</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>35</td>
<td>ZONE DE GESTION DES EFFLUENTS LIQUIDES (Saclay) 91191 GIF-sur-Yvette Cedex</td>
<td>CEA</td>
<td>Transformation de substances radioactives</td>
<td>27.05.64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>STATION DE TRAITEMENT DES EFFLUENTS ET DÉCHETS SOLIDES 38041 Grenoble Cedex</td>
<td>CEA</td>
<td>Transformation de substances radioactives</td>
<td>27.05.64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>STATION DE TRAITEMENT DES EFFLUENTS ET DÉCHETS SOLIDES (Cadarache) 13115 Saint-Paul-les-Durance</td>
<td>CEA</td>
<td>Transformation de substances radioactives</td>
<td>27.05.64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>STATION DE TRAITEMENT DES EFFLUENTS ET DÉCHETS SOLIDES (STE2) ET ATELIER DE TRAITEMENT DES COMBUSTIBLES NUCLEAIRES OXYDE (AT1) (La Hague) 50107 Cherbourg</td>
<td>AREVA NC</td>
<td>Transformation de substances radioactives</td>
<td>27.05.64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>MASURCA (Cadarache) 13115 Saint-Paul-les-Durance</td>
<td>CEA</td>
<td>Réacteur</td>
<td>14.12.06</td>
<td>15.12.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>OSIRIS-ISIS (Saclay) 91191 GIF-sur-Yvette Cedex</td>
<td>CEA</td>
<td>Réacteurs</td>
<td>08.06.05</td>
<td>12.06.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>POLE (Cadarache) 13115 Saint-Paul-les-Durance</td>
<td>CEA</td>
<td>Réacteur</td>
<td>23.06.05</td>
<td>28 et 29.06.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>RÉACTEUR UNIVERSITAIRE DE STRASBOURG 67037 Strasbourg Cedex</td>
<td>Université Louis Pasteur</td>
<td>Réacteur</td>
<td>25.06.05</td>
<td>01.07.05</td>
<td></td>
<td>Décret de mise à l’arrêt définitif et de démantèlement du 15.02.2006 (J.O. du 22.02.2006)</td>
</tr>
<tr>
<td>45</td>
<td>CENTRALE NUCLEAIRE DU BUJEY (secteur 1) BP 60120 01155 Lagnieu Cedex</td>
<td>EDF</td>
<td>Réacteur</td>
<td>22.11.08</td>
<td>24.11.08</td>
<td></td>
<td>Modification du périmètre : décret du 10.12.85 (J.O. du 18.12.85)</td>
</tr>
</tbody>
</table>
LISTE DES INSTALLATIONS NUCLEAIRES DE BASE* (au 31.12.2010)

<table>
<thead>
<tr>
<th>N° dans la liste</th>
<th>Dénomination et implantation de l'installation</th>
<th>Exploitant</th>
<th>Nature de l'installation</th>
<th>Déclarée le</th>
<th>Autorisée le</th>
<th>J.O. du</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>CENTRALE NUCLÉAIRE DE SAINT-LAURENT-DES-EAUX (réacteurs A1 et A2) 41220 La Ferrière-Saint-Cyr</td>
<td>EDF</td>
<td>Réacteurs</td>
<td>22.11.68</td>
<td>24.11.68</td>
<td></td>
<td>mise à l'arrêt définitif et les opérations de démantèlement complété</td>
</tr>
<tr>
<td>47</td>
<td>ATELIER ELAN IIB (La Hague) 50107 Cherbourgh</td>
<td>AREVA NC</td>
<td>Transformation de substances radioactives</td>
<td>03.11.67</td>
<td>09.11.67</td>
<td></td>
<td>Changement d'exploitant : décret du 09.08.78 (J.O. du 19.08.78)</td>
</tr>
<tr>
<td>49</td>
<td>LABORATOIRE DE HAUTE ACTIVITÉ (Scey) 91191 Gif-sur-Yvette Cedex</td>
<td>CEA</td>
<td>Utilisation de substances radioactives</td>
<td>08.01.68</td>
<td></td>
<td></td>
<td>Extension : décret du 22.02.88 (J.O. du 24.02.88) Décret n°2008-979 de mise à l'arrêt définitif et de démantèlement du 18.09.08 (J.O. du 21.09.08)</td>
</tr>
<tr>
<td>50</td>
<td>LABORATOIRE D'ESSAIS SUR COMBUSTIBLES IRRADIES (LECI) (Scey) 91191 Gif-sur-Yvette Cedex</td>
<td>CEA</td>
<td>Utilisation de substances radioactives</td>
<td>08.01.68</td>
<td></td>
<td></td>
<td>Modification : décret du 30.05.00 (J.O. du 05.06.00)</td>
</tr>
<tr>
<td>52</td>
<td>ATELIER D'URANIUM ENRICHED (ATUE) (Cadénac) 13115 Saint-Paul-lez-Durance</td>
<td>CEA</td>
<td>Fabrication de substances radioactives</td>
<td>08.01.68</td>
<td></td>
<td></td>
<td>Décret de mise à l'arrêt définitif et de démantèlement du 08.02.06 (J.O. du 15.02.2006)</td>
</tr>
<tr>
<td>53</td>
<td>MAGASIN DE STOCKAGE D'URANIUM ENRICHED ET DE PLUTONIUM (Cadénac) 13115 Saint-Paul-lez-Durance</td>
<td>CEA</td>
<td>Dépôt de substances radioactives</td>
<td>08.01.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>LABORATOIRE DE PURIFICATION CHIMIQUE (Cadénac) 13115 Saint-Paul-lez-Durance</td>
<td>CEA</td>
<td>Transformation de substances radioactives</td>
<td>08.01.68</td>
<td></td>
<td></td>
<td>Décret n°2009-262 de mise à l'arrêt définitif et de démantèlement du 06.03.09 (J.O. du 08.03.09)</td>
</tr>
<tr>
<td>55</td>
<td>LABORATOIRE D'EXAMENS DES COMBUSTIBLES ACTIFS (LECA) et STATION DE</td>
<td>CEA</td>
<td>Utilisation de substances radioactives</td>
<td>08.01.68</td>
<td></td>
<td></td>
<td>Modification : décret du 04.09.89 (J.O. du</td>
</tr>
<tr>
<td>No dans la liste</td>
<td>Dénomination et implantation de l'installation</td>
<td>Exploitant</td>
<td>Nature de l'installation</td>
<td>Déclaré le</td>
<td>Autorisée le</td>
<td>J.O. du</td>
<td>Observations</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>------------</td>
<td>--------------------------</td>
<td>------------</td>
<td>-------------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>56</td>
<td>TRAITEMENT, D'ASSAINISSEMENT ET DE RECONDITIONNEMENT DE COMBUSTIBLES IRRADIES (STAR) (Cadarache) 13115 Saint-Paul-lez-Durance</td>
<td>CEA</td>
<td>Stockage de substances radioactives</td>
<td>08.01.68</td>
<td></td>
<td>08.01.69</td>
<td>(cabinet de STAR)</td>
</tr>
<tr>
<td>61</td>
<td>PARC D'ENTREPOSSAGE DES DECHETS RADIOACTIFS (Cadarache) 13115 Saint-Paul-lez-Durance</td>
<td>CEA</td>
<td>Utilisation de substances radioactives</td>
<td>08.01.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>LABORATOIRE DE TRES HAUTE ACTIVITE (LAMA) 38041 Grenoble Cedex</td>
<td>CEA</td>
<td>Fabrication de substances radioactives</td>
<td>09.05.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>USINE DE FABRICATION D'ELEMENTS COMBUSTIBLES 26104 Romans-sur-Isère</td>
<td>FIDC</td>
<td>Fabrication de substances radioactives</td>
<td>27.10.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>CENTRE DE STOCKAGE DE LA MANCHE (CSM) 50448 BAMBERG-HAGUE</td>
<td>ANDRA</td>
<td>Stockage de substances radioactives</td>
<td>19.06.69</td>
<td>22.06.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>REACTEUR A HAUT FLUX (RHIF) 38041 Grenoble Cedex</td>
<td>Institute Max von Laue Paul Langevin</td>
<td>Réacteur</td>
<td>19.06.69</td>
<td>05.12.94</td>
<td>22.06.69</td>
<td>Modification du périmètre : décret du 12.12.88 (J.O. du 16.12.88)</td>
</tr>
<tr>
<td>68</td>
<td>INSTALLATION D'IONISATION DE DAGNEUX Z.1 Les Chaintimères 01120 Dagneux</td>
<td>IONISO</td>
<td>Utilisation de substances radioactives</td>
<td>20.07.71</td>
<td>25.07.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>CENTRALE PHÉNIX (Marcoule) 30205 Bagnols-sur-Cèze</td>
<td>CEA</td>
<td>Réacteur</td>
<td>21.12.69</td>
<td>09.01.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° dans la liste</td>
<td>Dénomination et implantation de l'installation</td>
<td>Exploitant</td>
<td>Nature de l'installation</td>
<td>Déclarée le</td>
<td>Autorisée le</td>
<td>J.O. du</td>
<td>Observations</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>72</td>
<td>ZONE DE GESTION DE DÉCHETS RADIOACTIFS SOLIDES (Saclay) 91191 Gif-sur-Yvette Cedex</td>
<td>CEA</td>
<td>Stockage ou dépôt de substances radioactives</td>
<td>14.06.71</td>
<td>22.06.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>ENTREPOSAGE DE CHEMISES DE GRAPHITE IRRADIÉS (Saint-Laurent-des-Laus) 41220 La Ferté-Saint-Cyr</td>
<td>EDF</td>
<td>Stockage ou dépôt de substances radioactives</td>
<td>14.06.71</td>
<td>22.06.71</td>
<td></td>
<td>Changement d'exploitant : décret du 28.06.84 (J.O. du 06.07.84)</td>
</tr>
<tr>
<td>75</td>
<td>CENTRALE NUCLÉAIRE DE FESSENHEIM (réacteurs 1 et 2) 68740 Fessenheim</td>
<td>EDF</td>
<td>Réacteurs</td>
<td>03.02.72</td>
<td>10.02.72</td>
<td></td>
<td>Modification du périmètre : décret du 10.12.85 (J.O. du 18.12.85)</td>
</tr>
<tr>
<td>77</td>
<td>INSTALLATIONS D’IRRADIATION POSEIDON - CAPRI (Saclay) 91191 Gif-sur-Yvette Cedex</td>
<td>CEA</td>
<td>Utilisation de substances radioactives</td>
<td>07.08.72</td>
<td>15.08.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>CENTRALE NUCLÉAIRE DU BUGEY (réacteurs 2 et 3) BP 60420 01155 Lagnieu Cedex</td>
<td>EDF</td>
<td>Réacteurs</td>
<td>20.11.72</td>
<td>26.11.72</td>
<td></td>
<td>Modification du périmètre : décret du 10.12.85 (J.O. du 18.12.85)</td>
</tr>
<tr>
<td>79</td>
<td>ENTREPOSAGE DE DÉCROISSANCE 38041 Grenoble Cedex</td>
<td>CEA</td>
<td>Stockage ou dépôt de substances radioactives</td>
<td>20.12.72</td>
<td>01.02.73</td>
<td></td>
<td>Décret n°2008-980 de mise à l’arrêt définitif et de démembrement du 18.09.08 (J.O. du 21.09.08)</td>
</tr>
<tr>
<td>80</td>
<td>ATELIER HAO (Huitte activité oxyde) (La Hague) 50107 Cherbourg</td>
<td>AREVA NC</td>
<td>Transformation de substances radioactives</td>
<td>17.01.74</td>
<td>05.02.74</td>
<td></td>
<td>Changement d'exploitant : décret du 03.08.78 (J.O. du 19.08.78)</td>
</tr>
<tr>
<td>84</td>
<td>CENTRALE NUCLÉAIRE DE DAMPIERRE (réacteurs 1 et 2) 45570 Ozoir-sur-Loing</td>
<td>EDF</td>
<td>Réacteurs</td>
<td>14.06.76</td>
<td>19.06.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>CENTRALE NUCLÉAIRE DE DAMPIERRE (réacteurs 3 et 4) 45570 Ozoir-sur-Loing</td>
<td>EDF</td>
<td>Réacteurs</td>
<td>14.06.76</td>
<td>19.06.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>CENTRALE NUCLÉAIRE DU BLAYAUX (Réacteurs 1 et 2)</td>
<td>EDF</td>
<td>Réacteurs</td>
<td>14.06.76</td>
<td>19.06.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° dans la liste</td>
<td>Dénomination et implantation de l'installation</td>
<td>Exploitant</td>
<td>Nature de l'installation</td>
<td>Déclarée le</td>
<td>Autorisée le</td>
<td>J.O. du</td>
<td>Observations</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>87</td>
<td>CENTRALE NUCLÉAIRE DU TRICASTIN (Réacteurs 1 et 2) 26130 Saint-Paul-Trois-Châteaux</td>
<td>EDF</td>
<td>Réacteurs</td>
<td>02.07.76</td>
<td>04.07.76</td>
<td>Modification du périmètre : décret du 10.12.85 (J.O. du 18.12.85)</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>CENTRALE NUCLÉAIRE DU TRICASTIN (Réacteurs 3 et 4) 26130 Saint-Paul-Trois-Châteaux</td>
<td>EDF</td>
<td>Réacteurs</td>
<td>02.07.76</td>
<td>04.07.76</td>
<td>Modifications du périmètre : décrits du 10.12.83 (J.O. du 18.12.83) et du 29.11.04 (J.O. du 02.12.04)</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>CENTRALE NUCLÉAIRE DU BUGEY (réacteurs 4 et 5) BP 60120 01155 Lagnieu Cedex</td>
<td>EDF</td>
<td>Réacteurs</td>
<td>27.07.76</td>
<td>17.08.76</td>
<td>Modification du périmètre : décret du 10.12.85 (J.O. du 18.12.85)</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>ATELIER DE PASTILLAGE 38113 Veuzy-Voreize</td>
<td>SICN</td>
<td>Fabrication de substances radioactives</td>
<td>27.01.77</td>
<td>29.01.77</td>
<td>Modifications : décrits du 15.06.77 (J.O. du 13.06.77) et du 14.10.86 (J.O. du 17.10.86) Décret de mise à l'arrêt définitif et de démantèlement du 15.02.2006 (J.O. du 22.02.2006)</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>RÉACTEUR SUPERPHENIX 38510 Morestel</td>
<td>EDF</td>
<td>Réacteur nucléaire à neutrons rapides</td>
<td>12.05.77</td>
<td>10.01.89</td>
<td>28.05.77</td>
<td>12.01.89</td>
</tr>
<tr>
<td>N° dans la liste</td>
<td>Dénomination et implantation de l'installation</td>
<td>Exploitant</td>
<td>Nature de l'installation</td>
<td>Déclarée le</td>
<td>Autorisée le</td>
<td>J.O. du</td>
<td>Observations</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>------------</td>
<td>-------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>92</td>
<td>PHEBUS (Cadarache) 13115 Saint-Paul-lès-Durance</td>
<td>CEA</td>
<td>Réacteur</td>
<td>05.07.77</td>
<td>19.07.77</td>
<td></td>
<td>Modification : décret du 07.11.91 (J.O. du 10.11.91)</td>
</tr>
<tr>
<td>93</td>
<td>USINE GEORGES DESSE DE SÉPARATION DES ISOTOPES DE L'URANIUM PAR DIFFUSION GAZEUSE (Eurodif) 26702 Pierrelatte Cedex</td>
<td>EURHODI PRODUCTION</td>
<td>Transformation de substances radioactives</td>
<td>08.09.77</td>
<td>10.09.77</td>
<td></td>
<td>Modification du périmètre : décret du 22.06.84 (J.O. du 30.06.84) Modification : décret du 27.04.07 (J.O. du 29.04.07)</td>
</tr>
<tr>
<td>94</td>
<td>ATELIER DES MATÉRIAUX IRRADIÉS (Chiron) 37420 Avoine</td>
<td>EDF</td>
<td>Utilisation de substances radioactives</td>
<td>29.01.04</td>
<td></td>
<td></td>
<td>Modification : décret du 15.04.85 (J.O. du 19.04.85)</td>
</tr>
<tr>
<td>95</td>
<td>MINERVE (Cadarache) 13115 Saint-Paul-lès-Durance</td>
<td>CEA</td>
<td>Réacteur</td>
<td>21.09.77</td>
<td>27.09.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>CENTRALE NUCLEÂRE DE GRAVELINES (reacteurs 1 et 2) 59820 Guevillers</td>
<td>EDF</td>
<td>Réacteurs</td>
<td>24.10.77</td>
<td>26.10.77</td>
<td></td>
<td>Modification du périmètre : décret du 29.11.84 (J.O. du 02.12.84)</td>
</tr>
<tr>
<td>97</td>
<td>CENTRALE NUCLEÂRE DE GRAVELINES (reacteurs 3 et 4) 59820 Guevillers</td>
<td>EDF</td>
<td>Réacteurs</td>
<td>24.10.77</td>
<td>26.10.77</td>
<td></td>
<td>Modification du périmètre : décret du 29.11.84 (J.O. du 02.12.84)</td>
</tr>
<tr>
<td>98</td>
<td>UNITÉ DE FABRICATION DE COMBUSTIBLES NUCLEAIRES 26104 Romars-sur-Isère</td>
<td>FBFC</td>
<td>Fabrication de substances radioactives</td>
<td>02.03.78</td>
<td>10.03.78</td>
<td></td>
<td>Modification : décret du 20.03.06 (J.O. du 22.03.06)</td>
</tr>
<tr>
<td>99</td>
<td>MAGASIN INTERRÉGIONAL DE CHINON 37420 Avoine</td>
<td>EDF</td>
<td>Entreposage de combustible neuf</td>
<td>02.03.78</td>
<td>11.03.78</td>
<td></td>
<td>Modification : décret du 04.06.98 (J.O. du</td>
</tr>
<tr>
<td>N° dans la liste</td>
<td>Dénomination et implantation de l'installation</td>
<td>Exploitant</td>
<td>Nature de l'installation</td>
<td>Déclarée le</td>
<td>Autorisée le</td>
<td>J.O. du</td>
<td>Observations</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>100</td>
<td>CENTRALE NUCLEAIRE DE SAIN-LEVOY-DES-EAUX (réacteurs B1 et B2) 41220 La Ferté-Saint-Cyr</td>
<td>EDF</td>
<td>Réacteurs</td>
<td>08.03.78</td>
<td>21.03.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>ORPHELIE (Saucy) 91191 Gif-sur-Yvette Cedex</td>
<td>CEA</td>
<td>Réacteur</td>
<td>08.03.78</td>
<td>21.03.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>MAGASIN INTERREGIONAL DU BUGEY BP 60120 01155 Lagnieu Cedex</td>
<td>EDF</td>
<td>Entreposage de combustible nuclé</td>
<td>15.06.78</td>
<td>27.06.78</td>
<td></td>
<td>Modification : décret du 04.06.98 (J.O. du 06.06.98)</td>
</tr>
<tr>
<td>103</td>
<td>CENTRALE NUCLEAIRE DE PAILLE (réacteur 1) 76450 Cangy-Bertheville</td>
<td>EDF</td>
<td>Réacteur</td>
<td>10.11.78</td>
<td>14.11.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>CENTRALE NUCLEAIRE DE PAILLE (réacteur 2) 76450 Cangy-Bertheville</td>
<td>EDF</td>
<td>Réacteur</td>
<td>10.11.78</td>
<td>14.11.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>USINE DE PREPARATION D'HEXAFLUORURE D'URANIUM (COMURHEX) 26130 Saint-Paul-Trois-Châteaux</td>
<td>COMURHEX</td>
<td>Transformation de substances radioactives</td>
<td></td>
<td></td>
<td></td>
<td>Clôture secrète jusqu'au 31.12.78 (décision de déclassement du 10.07.78)</td>
</tr>
<tr>
<td>106</td>
<td>LABORATOIRE POUR L'UTILISATION DU RAYONNEMENT ELECTROMAGNÉTIQUE (LURE) 91405 Orsay Cedex</td>
<td>CNRS</td>
<td>Accélérateur de particules</td>
<td>22.03.79</td>
<td></td>
<td></td>
<td>Changement d'exploitant : décret du 08.07.85 (J.O. du 12.07.85) Modification : décret du 02.07.92 (J.O. du 08.07.92) Décret n° 2009-405 de mise à l'arrêt définitif et démantèlement du 14.04.2009 (J.O. du 16.04.09)</td>
</tr>
<tr>
<td>108</td>
<td>CENTRALE NUCLEAIRE DE FLAMANVILLE (réacteur 1) 50800 Flamanville</td>
<td>EDF</td>
<td>Réacteurs</td>
<td>21.12.79</td>
<td>26.12.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>CENTRALE NUCLEAIRE DE FLAMANVILLE (réacteur 2) 50800 Flamanville</td>
<td>EDF</td>
<td>Réacteurs</td>
<td>21.12.79</td>
<td>26.12.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>CENTRALE NUCLEAIRE DU BLAYAIS (réacteurs 3 et 4) 33820 Saint-Cernin-sur-Garonne</td>
<td>EDF</td>
<td>Réacteurs</td>
<td>05.02.80</td>
<td>14.02.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° dans la liste</td>
<td>Dénomination et implantation de l'installation</td>
<td>Exploitant</td>
<td>Nature de l'installation</td>
<td>Date déclaration</td>
<td>Date autorisation</td>
<td>J.O. du</td>
<td>Observations</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>------------</td>
<td>-------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>112</td>
<td>CENTRALE NUCLEAIRE DE CRUAS (réacteurs 3 et 4)</td>
<td>EDF</td>
<td>Réacteurs</td>
<td>08.12.80</td>
<td>31.12.80</td>
<td>3911.04</td>
<td>Modification du périmètre : décret du 29.11.04 (J.O. du 02.12.04)</td>
</tr>
<tr>
<td>113</td>
<td>GRAND ACCELÉRATEUR NATIONAL D’IONS LOURDS (GANIL)</td>
<td>G.E. GANIL</td>
<td>Accélérateur de particules</td>
<td>29.12.80</td>
<td>10.01.81</td>
<td></td>
<td>Modification : décret du 06.06.01 (J.O. du 13.06.01)</td>
</tr>
<tr>
<td>114</td>
<td>CENTRALE NUCLEAIRE DE PALUEL (réacteur 3) 76450 Cany - Barville</td>
<td>EDF</td>
<td>Réacteur</td>
<td>03.04.81</td>
<td>05.04.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>CENTRALE NUCLEAIRE DE PALUEL (réacteur 4) 76450 Cany - Barville</td>
<td>EDF</td>
<td>Réacteur</td>
<td>03.04.81</td>
<td>05.04.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>USINE DE TRAITEMENT D’ÉLÉMENTS COMBUSTIBLES IRRADIÉS PROVENANT DES REACTEURS NUCLEAIRES À EAU ORDINAIRE « UP3 A » (La Hague) 50107 Cherbourg</td>
<td>AREVA NC</td>
<td>Transformation de substances radioactives</td>
<td>12.05.81</td>
<td>16.05.81</td>
<td></td>
<td>Report de mise en service : décret du 28.03.80 (J.O. du 07.04.80) Modifications : décret du 18.01.93 (J.O. du 24.01.93) et du 10.01.03 (J.O. du 11.01.03) Modification du périmètre : décret du 10.01.03 (J.O. du 11.01.03)</td>
</tr>
<tr>
<td>117</td>
<td>USINE DE TRAITEMENT D’ÉLÉMENTS COMBUSTIBLES IRRADIÉS PROVENANT DES REACTEURS NUCLEAIRES À EAU ORDINAIRE « UP2 800 » (La Hague) 50107 Cherbourg</td>
<td>AREVA NC</td>
<td>Transformation de substances radioactives</td>
<td>12.05.81</td>
<td>16.05.81</td>
<td></td>
<td>Report de mise en service : décret du 28.03.80 (J.O. du 07.04.80) Modifications : décret du 18.01.93 (J.O. du 24.01.93) et du 10.01.03 (J.O. du 11.01.03) Modification du périmètre : décret du 10.01.03 (J.O. du 11.01.03)</td>
</tr>
<tr>
<td>118</td>
<td>STATION DE TRAITEMENT DES EFFLUENTS LIQUIDES ET DES DÉCHETS SOLIDIES « STE3 » La Hague 50107 Cherbourg</td>
<td>AREVA NC</td>
<td>Transformation de substances radioactives</td>
<td>12.05.81</td>
<td>16.05.81</td>
<td></td>
<td>Report de mise en service : décret du 27.04.88 (J.O. du 03.05.88) Modifications : décret du 10.01.03 (J.O. du 11.01.03) Modification du périmètre : décret du 10.01.03 (J.O. du 11.01.03)</td>
</tr>
<tr>
<td>119</td>
<td>CENTRALE NUCLEAIRE DE SAINT-ALBIAN-SAINT-MAURICE</td>
<td>EDF</td>
<td>Réacteur</td>
<td>12.11.81</td>
<td>15.11.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° dans la liste</td>
<td>Dénomination et implantation de l'installation</td>
<td>Exploitant</td>
<td>Nature de l'installation</td>
<td>Déclarée le</td>
<td>Autorisée le</td>
<td>J.O. du</td>
<td>Observations</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>120</td>
<td>CENTRALE NUCLÉAIRE DE SAINT-ALBAN-SAINT-MAURICE (réacteur 2) 38559 Le Pêage-de-Roussillon</td>
<td>EDF</td>
<td>Réacteur</td>
<td>12.11.81</td>
<td>15.11.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>LABORATOIRE D'ÉTUDES ET DE FABRICATION EXPERIMENTALES DE COMBUSTIBLES NUCLÉAIRES (LEPCA) (Cadarache) 13115 Saint-Paul-le-Durance</td>
<td>CEA</td>
<td>Fabrication de substances radioactives</td>
<td>23.12.81</td>
<td>26.12.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>CENTRALE NUCLÉAIRE DE CATTENOM (réacteur 1) 57570 Cattenom</td>
<td>EDF</td>
<td>Réacteur</td>
<td>24.06.82</td>
<td>26.06.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>CENTRALE NUCLÉAIRE DE CATTENOM (réacteur 2) 57570 Cattenom</td>
<td>EDF</td>
<td>Réacteur</td>
<td>24.06.82</td>
<td>26.06.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>CENTRALE NUCLÉAIRE DE CATTENOM (réacteur 3) 57570 Cattenom</td>
<td>EDF</td>
<td>Réacteur</td>
<td>24.06.82</td>
<td>26.06.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>CENTRALE NUCLÉAIRE DE BELLEVILLE (réacteur 1) 18240 Lée</td>
<td>EDF</td>
<td>Réacteur</td>
<td>15.09.82</td>
<td>16.09.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>CENTRALE NUCLÉAIRE DE BELLEVILLE (réacteur 2) 18240 Lée</td>
<td>EDF</td>
<td>Réacteur</td>
<td>15.09.82</td>
<td>16.09.82</td>
<td></td>
<td>Modification du périmètre : décret du 29.11.64 (J.O. du 02.12.64)</td>
</tr>
<tr>
<td>132</td>
<td>CENTRALE NUCLÉAIRE DE CHINON (réacteurs B7 et B4) 37420 Avoine</td>
<td>EDF</td>
<td>Réacteurs</td>
<td>07.10.82</td>
<td>10.10.82</td>
<td></td>
<td>Modification : décret du 23.07.98 (J.O. du 26.07.98)</td>
</tr>
<tr>
<td>133</td>
<td>CHINON AID 37420 Avoine</td>
<td>EDF</td>
<td>Stockage ou dépôt de substances radioactives</td>
<td>11.10.82</td>
<td>16.10.82</td>
<td></td>
<td>Ancien réacteur arrêté le 16/04/73</td>
</tr>
</tbody>
</table>
LISTE DES INSTALLATIONS NUCLEAIRES DE BASE* (au 31.12.2010)

<table>
<thead>
<tr>
<th>N° dans la liste</th>
<th>Dénomination et implantation de l'installation</th>
<th>Exploitant</th>
<th>Nature de l'installation</th>
<th>Déclarée le</th>
<th>Autorisée le</th>
<th>J.O. du</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>135</td>
<td>CENTRALE NUCLÉAIRE DE GOLFECH (réacteur 1) 82400 Golfech</td>
<td>EDF</td>
<td>Réacteur</td>
<td>03.03.83</td>
<td>06.03.83</td>
<td></td>
<td>Modification du périmètre : décrit du 29.11.04 (J.O. du 02.12.04)</td>
</tr>
<tr>
<td>136</td>
<td>CENTRALE NUCLÉAIRE DE PENLY (réacteur 1) 76370 Neuville-lès-Dieppe</td>
<td>EDF</td>
<td>Réacteur</td>
<td>25.02.83</td>
<td>26.02.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>CENTRALE NUCLÉAIRE DE CATTENOM (réacteur 4) 57570 Cattenom</td>
<td>EDF</td>
<td>Réacteur</td>
<td>29.02.84</td>
<td>03.03.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>INSTALLATION D'ASSAINISSEMENT ET DE RÉCUPÉRATION DE L'URANIUM (Tricastin) 26130 Saint-Paul-Trois-Châteaux</td>
<td>SOCATRI</td>
<td>Usine</td>
<td>22.06.84</td>
<td>30.06.84</td>
<td></td>
<td>Modifications : décrits du 29.11.03 (J.O. du 07.12.93) et du 10.06.03 (J.O. du 17.06.03)</td>
</tr>
<tr>
<td>139</td>
<td>CENTRALE NUCLÉAIRE DE CHOZOZ B (réacteur 1) 08600 Givet</td>
<td>EDF</td>
<td>Réacteur</td>
<td>09.10.84</td>
<td>13.10.84</td>
<td></td>
<td>Report de mise en service : décrits du 18.10.93 (J.O. du 23.10.93) et du 11.06.99 (J.O. du 18.06.99)</td>
</tr>
<tr>
<td>140</td>
<td>CENTRALE NUCLÉAIRE DE PENLY (Réacteur 2) 76170 Neuville-lès-Dieppe</td>
<td>EDF</td>
<td>Réacteur</td>
<td>09.10.84</td>
<td>13.10.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>CENTRALE NUCLÉAIRE DE GOLFECH (réacteur 2) 82400 Golfech</td>
<td>EDF</td>
<td>Réacteur</td>
<td>31.07.85</td>
<td>07.08.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>ATELIER DE MAINTENANCE NUCLÉAIRE (SOMANU) 59600 Mombenge</td>
<td>SOMANU</td>
<td>Maintenance nucléaire</td>
<td>18.10.85</td>
<td>22.10.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>CENTRALE NUCLÉAIRE DE CHOZOZ B (réacteur 2)</td>
<td>EDF</td>
<td>Réacteur</td>
<td>18.02.86</td>
<td>25.02.86</td>
<td></td>
<td>Report de mise en service :</td>
</tr>
<tr>
<td>N° dans la liste</td>
<td>Dénomination et implantation de l'installation</td>
<td>Exploitant</td>
<td>Nature de l'installation</td>
<td>Déclarée le</td>
<td>Autorisée le</td>
<td>J.O. du</td>
<td>Observations</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>08600 Girce</td>
<td>146 INSTALLATION D'IONISATION DE POIZIAUGES</td>
<td>IONISOS</td>
<td>Installation d'ionisation</td>
<td>30.01.89</td>
<td>31.04.89</td>
<td>d'études</td>
<td>décrets du 18.10.93 (J.O. du 23.10.93) et du 11.06.99 (J.O. du 18.06.99)</td>
</tr>
<tr>
<td></td>
<td>Z.I. de Montlant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Changement d'exploitant : décret du 23.10.95 (J.O. du 28.10.95)</td>
</tr>
<tr>
<td></td>
<td>85700 Poizieres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>147 INSTALLATION D'IONISATION GAMMA MASTER</td>
<td>ISOTRON</td>
<td>Installation d'ionisation</td>
<td>30.01.89</td>
<td>31.04.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.N. 712</td>
<td>FRANCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13323 Marseille Cedex 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chauslan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30200 Bagnols-sur-Cèze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>149 CENTRE DE STOCKAGE DE L'AUBE (CSA)</td>
<td>ANDRA</td>
<td>Stockage en surface de substances radioactives</td>
<td>04.09.89</td>
<td>06.09.89</td>
<td></td>
<td>Changement d'exploitant : décret du 24.03.95 (J.O. du 26.03.95) Modification : décret du 10.08.06 (J.O. du 11.08.06)</td>
</tr>
<tr>
<td></td>
<td>Sceulaines-Dhuys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10200 Bar-sur-Aube</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>151 USINE DE FABRICATION DE COMBUSTIBLES</td>
<td>MELOX SA</td>
<td>Fabrication de substances radioactives</td>
<td>21.05.90</td>
<td>22.05.90</td>
<td></td>
<td>Modifications : décrets du 31.07.99 (J.O. du 04.09.03), du 04.10.04 (J.O. du 03.10.04) et du 26.04.07 (J.O. du 27.04.07), du 03.09.10 (J.O. du 05.09.10) Changement d'exploitant (MELOX SA) : décret n° 2010-1052 du 03.09.10 (JO du 05.09.10)</td>
</tr>
<tr>
<td></td>
<td>NUCLEAIRES (MELOX)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BP 2 – 30200 Chauslan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>153 CHINON A2 D</td>
<td>EDF</td>
<td>Stockage ou dépôt de substances</td>
<td>07.02.91</td>
<td>13.02.91</td>
<td></td>
<td>Ancien réacteur arrêté le 11.06.83</td>
</tr>
<tr>
<td></td>
<td>37420 Avoine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° dans la liste</td>
<td>Dénomination et implantation de l'installation</td>
<td>Exploitant</td>
<td>Nature de l'installation</td>
<td>Déclarée le</td>
<td>Autorisée le</td>
<td>J.O. du</td>
<td>Observations</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>06600 Giver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>146 INSTALLATION D’IONISATION DE POUZAUGES Z.I. de Montliliant 85700 Pouzauges</td>
<td>IONISOS</td>
<td>Installation d’ionisation</td>
<td>30.01.89</td>
<td>31.01.89</td>
<td></td>
<td>Changement d’exploitant : décret du 23.10.95 (J.O. du 28.10.95)</td>
<td></td>
</tr>
<tr>
<td>147 INSTALLATION D’IONISATION GAMMASTER – M.I.N. 712 13323 Marseille Cedex 14</td>
<td>ISOTRON FRANCE</td>
<td>Installation d’ionisation</td>
<td>30.01.89</td>
<td>31.01.89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>149 CENTRE DE STOCKAGE DE L’AUBRE (CSA) Soutaines-Dhuys 10200 Bar-sur-Aube</td>
<td>ANDRA</td>
<td>Stockage en surface de substances radioactives</td>
<td>04.09.89</td>
<td>00.09.89</td>
<td></td>
<td>Changement d’exploitant : décret du 24.03.95 (J.O. du 26.03.95) Modification : décret du 10.08.06 (J.O. du 11.08.06)</td>
<td></td>
</tr>
<tr>
<td>151 USINE DE FABRICATION DE COMBUSTIBLES NUCLEAIRES (MELOX) BP 2 – 30200 Chasclac</td>
<td>MELOX SA</td>
<td>Fabrication de substances radioactives</td>
<td>21.05.90</td>
<td>22.05.90</td>
<td></td>
<td>Modifications : décrets du 30.07.99 (J.O. du 31.07.99), du 03.09.03 (J.O. du 04.09.03), du 04.10.04 (J.O. du 05.10.04) et du 26.04.07 (J.O. du 27.04.07) 03.09.10 (J.O. du 05.09.10) Changement d’exploitant (MELOX SA) : décret n°2010-1052 du 03.09.10 (J.O. du 05.09.10)</td>
<td></td>
</tr>
<tr>
<td>153 CHINON A2 D 37420 Avoire</td>
<td>EDF</td>
<td>Stockage en dépôt de substances</td>
<td>07.02.91</td>
<td>13.02.91</td>
<td></td>
<td>Ancien réacteur arrêté le 14.06.85</td>
<td></td>
</tr>
<tr>
<td>N° dans la liste</td>
<td>Dénomination et implantation de l'installation</td>
<td>Exploitant</td>
<td>Nature de l'installation</td>
<td>Déclarée le</td>
<td>Autorisée le</td>
<td>J.O. du</td>
<td>Observations</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>------------</td>
<td>-------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>154</td>
<td>INSTALLATION D'IONISATION DE SABLÉ-SUR-SARTHE Z.I. de l'Aubrée 72300 Sablé-sur-Sarthe</td>
<td>IONISOS</td>
<td>Installation d'ionisation</td>
<td>01.04.92</td>
<td>04.04.92</td>
<td></td>
<td>Changement d'exploitant : décret du 23.10.95 (J.O. du 28.10.95)</td>
</tr>
<tr>
<td>155</td>
<td>INSTALLATION TU 5 BP 16 26701 Pierrelatte</td>
<td>AREVA NC</td>
<td>Transformation de substances radioactives</td>
<td>07.07.92</td>
<td>11.07.92</td>
<td></td>
<td>Modification : décret du 15.03.93 (J.O. du 24.03.93)</td>
</tr>
<tr>
<td>156</td>
<td>CHICADE (Cadnaite) BP 1 13108 Saint-Paul-lez-Durance Codex</td>
<td>CEA</td>
<td>Laboratoire de recherche et développement</td>
<td>29.03.93</td>
<td>30.03.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>BASE CHAUDÉE OPÉRATIONNELLE DU TRICASTIN (BCT) BP 127 84504 Bollène Codex</td>
<td>EDF</td>
<td>Maintenance nucléaire</td>
<td>29.11.93</td>
<td>07.12.93</td>
<td></td>
<td>Modification : décret du 29.11.94 (J.O. du 02.12.94)</td>
</tr>
<tr>
<td>158</td>
<td>CENTRALE NUCLEAIRE DE CIVAUX (réacteur 1) BP 1 80320 Civaux</td>
<td>EDF</td>
<td>Réacteur</td>
<td>06.12.93</td>
<td>12.12.93</td>
<td></td>
<td>Report de mise en service : décret du 11.06.99 (J.O. du 18.06.99)</td>
</tr>
<tr>
<td>159</td>
<td>CENTRALE NUCLEAIRE DE CIVAUX (réacteur 2) BP 1 80320 Civaux</td>
<td>EDF</td>
<td>Réacteur</td>
<td>06.12.93</td>
<td>12.12.93</td>
<td></td>
<td>Report de mise en service : décret du 11.06.99 (J.O. du 18.06.99)</td>
</tr>
<tr>
<td>160</td>
<td>CENTRACO Codolat 30200 Bagnols-sur-Cèze</td>
<td>SOCODEI</td>
<td>Traitement de déchets et effluents radioactifs</td>
<td>27.08.96</td>
<td>31.08.96</td>
<td></td>
<td>Décret n°96-761 Modification : décret du 09.02.00 (J.O. du 12.02.2006) Modification : décret n°2008-1005 (J.O. du 27.09.08)</td>
</tr>
<tr>
<td>161</td>
<td>CHINON A3 D 37120 Avraine</td>
<td>EDF</td>
<td>Stockage ou dépôt de substances radioactives</td>
<td>27.08.96</td>
<td>31.08.96</td>
<td></td>
<td>Ancien réacteur arrêté le 17.03.93 Modification : décret du 23.11.95 (J.O. du 02.12.95) Décret n° 2010-511 (autorisant à procéder au démantèlement) du 18.05.10 (J.O. du 20.05.10)</td>
</tr>
<tr>
<td>162</td>
<td>MONTS D'ARREE EL4D Bremilis 29218 Huelgoat</td>
<td>EDF</td>
<td>Stockage ou dépôt de substances radioactives</td>
<td>31.10.96</td>
<td>08.11.96</td>
<td></td>
<td>Ancien réacteur arrêté le 31.07.85 Modification : décret du 19.09.00 (J.O. du</td>
</tr>
<tr>
<td>N° dans la liste</td>
<td>Dénomination et implantation de l'Installation</td>
<td>Exploitant</td>
<td>Nature de l'installation</td>
<td>Déclarée le</td>
<td>Autorisée le</td>
<td>J.O. du</td>
<td>Observations</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>------------</td>
<td>-------------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| 165 | CENTRALE NUCÉLAIRE DES ARDENNES
CNA-D
| 164 | CEDRA
(Cadarache)
13115 Saint-Paul-lès-Durance Cedex | CEA | Conditionnement et entrepôtage de substances radioactives | 04.10.04 | 05.10.04 | | |
| 165 | PROCÉDE
92265 Fontenay-aux-Roses Cedex | CEA | Installation de recherche en démantèlement | 30.06.06 | 02.07.06 | | Décret n° 2006-772 (J.O. du 02.07.06) |
| 166 | SUPPORT
92265 Fontenay-aux-Roses Cedex | CEA | Installation de traitement d'effluents et d'entreposage de déchets en démantèlement | 30.06.06 | 02.07.06 | | Décret n° 2006-771 (J.O. du 02.07.06) |
| 167 | CENTRALE NUCÉLAIRE DE FLAMANVILLE (réacteur 3 - EPR)
50830 Flamanville | EDF | Réacteur | 10.04.07 | 11.04.07 | | Décret n° 2007-534 (J.O. du 11.04.07) |
| 168 | USINE GEORGES BESSE 2 DE SÉPARATION DES ISOTOPIES
DE L'URANIUM PAR CENTRIFUGATION
26702 Pierrelatte Cedex | SET | Transformation de substances radioactives | 27.04.07 | 29.04.07 | | Décret n°2007-631 (J.O. du 29.04.07) |
| 169 | MAGENTA
13115 Saint-Paul-lès-Durance Cedex | CEA | Réception et expédition de matières nucléaires | 25.09.08 | 27.09.08 | | Décret n°2008-1004 (J.O. du 27.09.08) |
| 170 | GAMMATEC
30200 Charlin | Isotop France S.A.S | Traitement par ionisation de matières, produits et matériels, à des fins industrielles | 25.09.08 | 27.09.08 | | Décret n°2008-1005 (J.O. du 27.09.08) |
<table>
<thead>
<tr>
<th>N° dans la liste</th>
<th>Dénomination et implantation de l'installation</th>
<th>Exploitant</th>
<th>Nature de l'installation</th>
<th>Déclarée le</th>
<th>Autorisée le</th>
<th>J.O. du</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>171</td>
<td>ATELIER DE GESTION AVANCEE ET DE TRAITEMENT DES EFFLUENTS « Agate » (Codirach) 13115 Saint-Paul-lès-Durance Cedex</td>
<td>CEA</td>
<td>Conditionnement et enregistrement de substances radioactives</td>
<td>25.03.09</td>
<td>28.03.09</td>
<td>Décret n°2009-332 J.O. du 28.03.09</td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>REACTEUR JULES HORowitz (RJH) (Codirach) 13115 Saint-Paul-lès-Durance Cedex</td>
<td>CEA</td>
<td>Réacteur</td>
<td>12.10.09</td>
<td>14.10.09</td>
<td>Décret n°2009-1219 J.O. du 14.10.09</td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>Installation de conditionnement et d'enregistrement de déchets actifs (ICEDA) 01120 Saint Valbert</td>
<td>CEA</td>
<td>Conditionnement et enregistrement de substances radioactives</td>
<td>23.04.10</td>
<td>25.04.10</td>
<td>Décret n°2010-402 J.O. du 25.04.10</td>
<td></td>
</tr>
</tbody>
</table>

* Les numéros manquants correspondent à des installations ayant figuré dans des éditions précédentes de la liste, mais ne constituant plus des installations nucléaires de base ou ayant été autorisées comme nouvelle installation nucléaire de base.

Les INB déclarés sont ceux qui existaient antérieurement à la publication du décret n° 63-1229 du 11 décembre 1963 relatif aux installations nucléaires et que ledit décret n’a pas soumis à autorisation mais à déclaration auprès du ministère chargé de l’énergie atomique.

Le nombre d’INB au 31.12.10 est de : 126
Les accidents majeurs survenus sur des centrales nucléaires

Three Mile Island (TMI – 28/03/1979), Tchernobyl (26/04/1986) et Fukushima (11/03/2011)

Principales similarités et différences

L’accident de Fukushima étant toujours en cours, les informations parcellaires et l’analyse de son déroulement et de ses causes peu voire pas engagée, les éléments ci-dessous relatifs à Fukushima ne sont que préliminaires et devront être ultérieurement confirmées.

Installations affectées

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TMI</td>
<td>Le réacteur n°2, de type à eau sous-pression (REP). Ce type de réacteur correspond à ceux actuellement en exploitation ou en construction (EPR) en France</td>
</tr>
<tr>
<td>Tchernobyl</td>
<td>Le réacteur n°4, de type RBMK. Ce type de réacteur n’est pas exploité en France.</td>
</tr>
<tr>
<td>Fukushima</td>
<td>Les 6 réacteurs du site, de type à eau bouillante (REB), ainsi que les piscines d’entreposage (sous eau) des combustibles. Ce type de réacteurs n’est pas exploité en France. Des piscines de combustibles existent sur les centrales nucléaires d’EDF, dans d’autres installations nucléaires en France.</td>
</tr>
</tbody>
</table>
État du réacteur au début de l’accident

<table>
<thead>
<tr>
<th>Pays</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMI</td>
<td>Le réacteur venait d’être automatiquement mis à l’arrêt (défaillance de l'alimentation normale en eau des générateurs de vapeur)</td>
</tr>
<tr>
<td>Tchernobyl</td>
<td>Le réacteur fonctionne en puissance</td>
</tr>
<tr>
<td>Fukushima</td>
<td>3 réacteurs étaient à l’arrêt depuis quelques temps (arrêt de tranche pour maintenance et renouvellement du combustible), 3 réacteurs venaient d’être automatiquement mis à l’arrêt sur détection du tremblement de terre</td>
</tr>
</tbody>
</table>

Causes principales de l’accident

<table>
<thead>
<tr>
<th>Pays</th>
<th>Description</th>
</tr>
</thead>
</table>
| TMI | Cumul de défaillances (notamment défaillance d’un équipement de sûreté conjuguée à une mauvaise configuration de circuit.)
L’absence temporaire d’alimentation en eau des générateurs de vapeur (mauvaise configuration d’un circuit) entraîne une montée en pression du circuit primaire et ouverture d’une soupape du circuit primaire. Défaillance de cette soupape, qui ne se referme pas et constitue donc une brèche, qui conduit, après débordement du réservoir recueillant le débit de la soupape, à une fuite du fluide primaire dans l’enceinte de confinement du réacteur. |
| Tchernobyl | Essai particulier, amenant le réacteur dans des conditions instables, volontairement réalisé après avoir mis hors service plusieurs sécurités (protections entrainant l’arrêt automatique du réacteur). |
| Fukushima| Catastrophe naturelle : séisme majeur suivi d’un tsunami excédant celui retenu pour la conception de l’installation. |

Origine de l’accident : fonction de sûreté défaillante

<table>
<thead>
<tr>
<th>Pays</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tchernobyl</td>
<td>Accident de réactivité. La conception du réacteur favorise des excursions de réactivité. Ce phénomène, très violent et rapide, a provoqué une explosion et un incendie du cœur du réacteur</td>
</tr>
<tr>
<td>Fukushima</td>
<td>Défaillance du refroidissement du cœur. Le séisme et le tsunami qui l’a suivi ont provoqué la perte des fonctions « support » (alimentations électriques du site, station de pompage). Ceci a entraîné une impossibilité de refroidir le combustible, tant en cuve qu’en piscine, par les moyens prévus à cet effet.</td>
</tr>
</tbody>
</table>
Explosion / incendie au cours de l’accident

<table>
<thead>
<tr>
<th></th>
<th>TMI</th>
<th>Tchernobyl</th>
<th>Fukushima</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>« Petite » explosion hydrogène dans l’enceinte de confinement, sans provoquer de dégâts particuliers.</td>
<td>Violente explosion (explosion hydrogène ou explosion vapeur) soulevant notamment la dalle de béton au-dessus de réacteur (plus de 2000 t) Incendie du graphite (qui est utilisé en tant que modérateur)</td>
<td>Plusieurs explosions hydrogène détruisant le bardage des bâtiments de 3 réacteurs, donc mettant donc les piscines à ciel ouvert (et potentiellement une dégradation des voiles des piscines). Une explosion affectant au moins une enceinte de confinement. Plusieurs incendies d’origine inconnue.</td>
</tr>
</tbody>
</table>

Étendue de la dégradation du combustible

<table>
<thead>
<tr>
<th></th>
<th>TMI</th>
<th>Tchernobyl</th>
<th>Fukushima</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fusion d’environ 45% du cœur. Le corium est resté en cuve.</td>
<td>Fusion totale. Le corium n’est pas resté en cuve.</td>
<td>Fusion au moins partielle des cœurs des réacteurs Localisation des coriums : ??</td>
</tr>
</tbody>
</table>

Rejets radioactifs

<table>
<thead>
<tr>
<th></th>
<th>TMI</th>
<th>Tchernobyl</th>
<th>Fukushima</th>
</tr>
</thead>
</table>
Conséquences hors du site

TMI

Les conséquences hors du site ont été très limitées. Une recommandation d’évacuation provenant de l’autorité de sûreté américaine, recommandation cependant annulée par le Gouverneur de l’État de Pennsylvanie.

Après l’accident, la population a pu reprendre sa vie habituelle.

Tchernobyl

L’ampleur des rejets a conduit à l’évacuation des populations proches du site (dont les 50 000 habitants de Prypiat), alors que les rejets étaient en cours, et à une contamination de l’environnement sur un territoire important et à des mesures de restriction de consommation de telle ou telle denrée. Encore aujourd’hui, il existe une zone d’exclusion de 30 km autour du site.

Fukushima

Dans les premiers jours suivants l’accident, les autorités ont progressivement étendu la zone d’évacuation afin de limiter l’exposition aiguë, pour atteindre 20 km autour du site, avec mise à l’abri de 20 à 30 km (et conseil de quitter la zone).

L’environnement autour du site a été contaminé et des mesures de restriction de consommation de telle ou telle denrée ont été décrétées... Le 12 avril, le gouvernement Japonais a étendu la zone d’évacuation jusqu’à 40 km pour limiter l’exposition dans la durée des populations (gestion post accidentelle)

Dessins extraits de la revue de presse ASN (mars 2011)
ANNEXE 6 : GLOSSAIRE DES SIGLES UTILISÉS

<table>
<thead>
<tr>
<th>Sigle</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEN</td>
<td>Agence pour l’énergie nucléaire de l’OCDE</td>
</tr>
<tr>
<td>AIEA</td>
<td>Agence internationale de l’énergie atomique</td>
</tr>
<tr>
<td>ANDRA</td>
<td>Agence nationale pour la gestion des déchets radioactifs</td>
</tr>
<tr>
<td>ANR</td>
<td>Agence nationale de la recherche</td>
</tr>
<tr>
<td>ASN</td>
<td>Autorité de sûreté nucléaire</td>
</tr>
<tr>
<td>CEA</td>
<td>Commissariat à l’énergie atomique et aux énergies alternatives</td>
</tr>
<tr>
<td>CEFRI</td>
<td>Comité français de certification des entreprises pour la formation et le suivi du personnel travaillant sous rayonnements ionisants.</td>
</tr>
<tr>
<td>CLI</td>
<td>Commission locale d’information</td>
</tr>
<tr>
<td>CNPE</td>
<td>Centre nucléaire de production d'électricité</td>
</tr>
<tr>
<td>EDF</td>
<td>Electricité de france</td>
</tr>
<tr>
<td>EPR</td>
<td>European pressurized reactor</td>
</tr>
<tr>
<td>HCTISN</td>
<td>Haut comité pour la transparence et l'information sur la sécurité nucléaire</td>
</tr>
<tr>
<td>IFFO-RMe</td>
<td>Institut français des formateurs risques majeurs et protection de l'environnement</td>
</tr>
<tr>
<td>INB</td>
<td>Installation nucléaire de base</td>
</tr>
<tr>
<td>IRSN</td>
<td>Institut de radioprotection et de sûreté nucléaire</td>
</tr>
<tr>
<td>PPI</td>
<td>Plan particulier d’intervention</td>
</tr>
<tr>
<td>REB</td>
<td>Réacteur à eau bouillante</td>
</tr>
<tr>
<td>REP</td>
<td>Réacteur à eau pressurisée</td>
</tr>
<tr>
<td>TEPCO</td>
<td>Tokyo electric power company</td>
</tr>
<tr>
<td>TSN (loi)</td>
<td>Loi Transparence et sécurité en matière nucléaire</td>
</tr>
</tbody>
</table>